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Abstract-A new approach is developed for calculating the dynamic response of multi-spool rotor systems 
with several intershaft hearings using the combined methodologies of the finite element method (FEM), 
transfer matrices (TM) and impedance methods. The approach makes use of FEM to model shaft elements 
and then transforms the system properties to transfer matrix mode. The intershaft bearings are treated 
by the impedance method. It combines the advantages of these three methods. Some numerical examples 
are considered to check the viability of the method. 

1. INTRODUCTION 2. ANALYSIS 

In the first part of this paper [l], a new finite element 
model was developed for analysing dynamic response 
of damped shaft systems. For large shaft systems, 
however, the use of FEM leads to prohibitively 
higher computation time and costs. In order to 
minimize this, a continuing effort is made by various 
researches to limit the dynamic degrees of freedom 
without reducing the accuracy of the results. Of these, 
the transfer matrix technique [2,3] is of importance 
since it is exceptionally suitable for chain-like or 
branching systems that are made up of several subsys- 
tems, with each subsystem made of shaft, disks and 
bearings. An equation of motion for each subsystem 
is formulated in terms of the state vectors consisting 
of displacements and internal forces. With this 
method the size of matrix is determined by the 
maximum number of degrees of the subsystem and is 
usually much smaller than in FEM [4,5]. However, 
the transfer matrix method cannot be directly used 
for complex systems with two or more parallel chains 
with several interconnections. Under this circum- 
stance, the component mode synthesis or the transfer 
matrix impedance coupled method will be effec- 
tive [6,7]. Unfortunately, the applications of these 
two methods are restricted to natural frequency 
eigensolutions and steady state response analysis 
under harmonic excitation only. 

2.1. Time-space FE formulation 

As was undertaken by Huang [7], consider a typical 
spool-rotor system with several intershaft bearings. 
It consists of N rotors and M intershaft bearings 
(Fig. 1). 

For a particular shaft element with discs and 
bearings, which is shown in Fig. 2, the finite element 
formulation can be written as [1]: 

]Ml{~(t)) + [‘4’&)~ + [~lW)~ = Q(t)> 

where [Ml, [C] and [K] denote mass, damping and 
stiffness matrices of the element, respectively, each 
being of order ten; d(t) and Q(t) represent the dis- 
placement and equivalent nodal force vectors 
(10 x I), and are defined as 

P(t)> = +-I, Id, 1’ 

For convenience, the matrices [Ml, [C] and [K] are 
rewritten as 

In this study, the formulation of the coupled 
method of FE-TM with the impedance approach is 
first presented. It incorporates the advantages of the 
finite element, transfer matrix for the chain systems 
and the mechanical impedance technique for the 
connecting points. Some numerical examples are 
considered to establish the validity of the method. 
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Fig. 1. A multi-spool rotor system with several intershaft 
components. 

In the natural frequency estimation or steady state 
response analysis under harmonic excitation, the 
acceleration (d(t)} and the velocity {d(t)} can be 
replaced by -a2{d} and i~{d}, respectively, where 
i = J( - 1). However, for a system subjected to 
arbitrary external load, these substitutions are 
not valid and hence an appropriate numerical inte- 
gration algorithm should be used for solving eqn (1). 
Most of the numerical integration algorithms are 
based on the assumption that at any given time 
instant, say fi, {li<t)) and {d(j)) can be expressed as 
a linear function of {d(ti)} with reasonable accuracy. 
That is 

&, = A(?j)d(li) + B(t,) (5) 

h(r) = D(ti)d(ti) + E(tj). (6) 

The substitution of (5) and (6) into (l), leads to 

[[WA Cti) + LCIDCt,) + [k71{d(ti)I + [“l{B(ti)I 

+ [ClE(t,) = {Q(ti)}* (7) 

If the Wilson 0 method is used, we have 

A (Ii) = 6/e2Atz (8a) 

B(ti) = -6[d(ti_,) + 6&_,)OAt 

+ d(ti_ 1)02At2/3]/02At2 (8b) 

C(t,) = 3/t’At (8~) 

D(ti) = -3[d(ti_ 1) + 28Afd(ti_ ,)/3 

+ d(~i)B2At2/3J/8At, (8d) 

Fig. 2. Typical element and coordinate systems. 

in which 0 is a free parameter and the algorithms (5) 
and (6) are unconditionally stable when 8 2 1.37 (0 is 
taken to be 1.4 in our analysis). 

2.2. Discrete time FE-TM formulation 

The formulation of discrete time FE-TM, as given 
below, combines the discrete time finite element 
formulation and the transfer matrix formulation. For 
the expansion of (7) in terms of submatrices given in 
eqn (4), we know 

J,I = m,,A(tJ + c,,D(j,) + k,, 

J,z = m,,A&) + clzD(ti) + k12 

J21 = m2, A (bl+ ~21 D(ti) + k2, 

522 = m2,A (ti) + c22DCfi) + k22 

R,=mllB,(ti)+m,2B2(ti)+c,,E,(ti) 

(loa) 

(lob) 

(104 

UOd) 

+ c12E2W UOe) 

R2 = mzl BI tti) + m22B2(ti) + ~21 EI h> 

+ c22E2(Q (100 

with notations 

As was done in [5], eqn (9) can be further rewritten 
in terms of left and right nodal displacements and 
forces, such that 

d2 

I} 1 

- Jii’J,, Jlz’ S, 4 
q2 = J2, - J22Jjj’J,, J,,J,’ S, 

1 0 Iii q1 > (11) 
0 11 

where 

S, = - J;‘R, and S2 = J,, 3;’ R, + R, 

or further in compact form: 

{v% = UTV~P. (12) 

Here, following the conventional TM method, the 
square matrix [P] is called the field matrix, and the 
vector {v} denotes the state vector. Consequently, the 
point matrix [F] can be derived following the method 
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of Kumar and Sankar [4]. For the sake of conciseness 
we omit those details. The matrix is defined by 

Iv);” = mw:. (13) 

The transfer matrix [T],, which relates the state 
vectors at either end of the element, can be then 
formulated by combining (12) and (13). That is 

Using (14) repetitively, the overall transfer matrix 
[q, which relates the state vectors at either end of the 
rotor system, can be computed: 

iTI = li [rli. (1% 
i= I 

With the application of proper boundary con- 
ditions and the initial conditions corresponding to 
time t = ti_, , the unknown generalized displacements 
and forces at the left (or right) end of the rotor can 
be solved for: 

wf; = mv)f. (16) 

2.3. Impedance method 

For a multi-spool rotor system with several inter- 
shaft bearings, eqn (16) can not be directly used. In 
order to analyse the problems, the intershaft must be 
separated. After separating the connections of every 
intershaft bearing, the constraint conditions will be a 
pair of generalized force vectors 4 (5 x 1) added on 
the connecting point j (Fig. 3). The new unknown 
vector Fj will appear in (16). Therefore it needs to find 
5M supplemental equations to search for all these 
variables for a rotor system with M intershaft bear- 
ings. The impedance method will be adopted in 
establishing these supplemental equations. 

For a particular intershaft bearing connecting two 
rotor subsystems at point j (Fig. 3), the following 
impedance equation must be satisfied: 

(F,} = [K]{d:‘)-d:‘+‘)} +[C]{d,!‘)-a?+‘)}. (17) 

Using (16), (17) and the proper boundary and 
initial conditions, the unknown generalized displace- 
ments and forces of a multi-spool rotor system can be 
solved. 

Rotor i-l 2 
j 

Fig. 3. Separation of intershaft parts 

K&P-?&c; 
Fig. 4. Configuration of a dual rotor system. 

3. NUMERICAL APPLICATION 

Since the main purpose of this paper is to present 
the basic principles of the proposed method, its 
assessment has been limited to three simple examples. 
In all the calculations, Poisson’s ratio is taken to be 
0.3. As treated in part 1 of this paper [1], the complex 
eigenvalues, ai, are determined in the form 

ai=li+io, (18) 

and the logarithmic decrement is defined as 

6, = - 2lL&/wi, (19) 

thus the stability region is 6, > 0. 

Example 1 

This example reproduces the results appearing in 
the first part of this paper of a dual rotor system 
shown in Fig. 4. Some initial data are listed in 
Table 1. The rotating speed and the area moment of 
inertia about the diameter axis of rotor 1 and rotor 2 

Table 1. Data of a dual rotor damped system 

Station (& (IcgL) 
K C L 

(N/m) (N-Wm) (m) 

1 0.0577 0 2.6269 x 10’ 5254 0.0762 
2 10.7023 0.0859 - 
3 0.2499 0 - 
4 0.1538 0 - 
5 7.0869 0.0678 - 
6 0.0385 0 1.7513 x 10’ 
7 0.0467 0 1.7513 x 10’ 
8 7.202 0.0429 - 
9 3.692 0.0271 - 

10 0.0467 0 0.8756 x IO’ 

E = 2.068 x lO”N/m* 

0 0.1778 
0 0.1524 
0 0.0508 
0 0.0508 

3502 0.0508 
3502 0.0508 

0 0.1524 
0 0.0508 

1751 0.0508 

Table 2. Eigenvalues obtained by FE-TM impedance com- 
pared with CMS for example 1 

Present FEM CMS 
I W 6 A W 6 

- 1.991 469.12 0.0267 -2.00 469.51 0.0268 
- 14.07 727.84 0.1215 -14.15 728.33 0.1220 

-113.65 1421.55 0.5023 - 114.06 1423.34 0.5033 
- 107.69 2172.45 0.3115 - 108.56 2174.93 0.3155 

- 62.87 2334.04 0.1692 -63.57 2335.42 0.1709 
-70.64 3011.96 0.1474 -71.42 3014.76 0.1488 

-256.11 4266.43 0.3772 -257.85 4271.58 0.3791 
-63.03 5643.47 0.0702 - 64.05 5650.71 0.0712 
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Fig. 5. Model of a tri-spool rotor system. 

are 1047.2 rad/sec, 2.6467 x 10e9 m4, 1570.8 rad/sec, 
and 2.1935 x 10U8m4, respectively. Table 2 lists the 
results by the proposed method and comparison is 
made with that by component mode synthesis 
(CMS) [I. It can be seen that those results are in 
good agreement. 

Table 3. Data of the tri-snool rotor svstem 

Station 
no. (& (k&) (N%) (i) 

1 25.50 0.15 
2 2.50 0 1 x 10s 
3 4.50 0 
4 1.40 0 - 
5 30.50 0.85 - 
6 1.60 0 8 x IO’ 
I 1.10 7.5 x 10’ 
8 12.50 op35 - 
9 2.10 0 - 

10 1.10 0 6.5 x 10’ 
11 15.30 0.45 - 
12 1.05 0 6 x 10’ 
13 10.80 0.34 - 
14 1.15 0 4.5 x 10’ 
I5 11.70 0.42 - 

0.10 
0.45 
0.50 
0.15 
0.10 

0.10 
0.60 
0.10 
0.05 

0.10 
0.40 
0.05 

E = 2.07 x 10” N/m* 

Table 4. Eiaenvalues of the tri-suool rotor system 

No. 
Present FE-TM Ref. [7] 
f.w. b.w. f.w. b.w. 

1 
2 
3 
4 
5 
6 

s’ 
9 

10 

262.533 100.210 262.724 100.209 
577.432 246.356 577.899 246.658 
934.455 260.109 934.800 260.508 

1050.167 415.892 1050.603 416.552 
1408.785 800.657 1409.566 801.424 
1555.089 986.698 1555.941 987.641 
1687.41 I 1089.018 1688.392 1090.419 
1782.580 1413.200 1783.707 1414.517 
1883.298 1650.986 1885.066 1652.463 
2460.324 1689.568 2461.945 1691.609 

Table 5. Data of the rotor-bearing system shown in Fig. 6 

Type of hearings 
Bearing diameter (m) 
Bearing of L/D ratio 
Viscosity of oil at 25.5”C (N.S/m*) 
Disc mass (kg) 
Disc diameter (m) 
Disc eccentricity (m) 
Shaft diameter (m) 
Total length of shaft (m) 
Young’s modulus for the shaft 

Plane cylindrical 
0.0254 
1.0 
0.024 

11.82 
0.2032 
0.001 
0.022 
0.5105 

material (N/m*) 2.145 x 10” 

Fig. 6. The rotor system for example 3. 

Example 2 

Consider an undamped tri-spool isotropic system 
with intershaft bearings [7] (Fig. 5). Table 3 lists 
the data of the tri-spool rotor system. In order to 
allow for comparisons with other solutions given in 
[I, the rotating speed and the area moment of inertia 
about the bending axis of rotor I, rotor 2 and rotor 3 
are taken to be 314.16rad/sec, 1.40 x IO-‘m4, 
628.32 rad/sec, 1.80 x lo-’ m4, 942.48 rad/sec, 
2.325 x IO-‘m4, respectively. Table 4 lists the eigen- 
values and compares with those in [7]. They are in 
good agreement. 

Example 3 

This example is to investigate the dynamic response 
of a single rotor system supported on fluid film 
bearing [S] which is shown in Fig, 6. Table 5 lists the 
data of the rotor system. The transient orbital re- 
sponse has been studied by both the present FE-TM 
and the finite element method [I]. In the calculations, 
the number of elements and the time step used are the 
same for both methods. The orbital plots obtained 
for the rotor are shown in Figs 7 and 8, for a rotor 
speed of 1000 rpm. The steady state of the rotor has 
been obtained within six cycles in both approaches. 
The discrepancy between these two sets of results is 
almost negligible. These results are also in good 
agreement with those in [5]. 

RPM = 1000 

Max. amplitude = 0.30lE-04 

At times = 0.152 set 
Time range = 0.0-0.321 set 

Fig. 7. Orbital response of rotor at bearing location @re- 
sent FE-TM). 
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RPM = 1000 

Max. ampliludc = 0.301E-04 

At times = 0.54 15 WC 
Time range = 0.0-0.5985 see 

Fig. 8. Orbital response of rotor at bearing location (FEM 
given in [l]). 

4. CONCLUSION 

A transient FE-TM impedance approach has been 
developed to study the dynamic response of multi- 
spool rotor systems with several intershaft com- 
ponents. The approach makes use of FEM to model 
shafts and then transforms the system properties to 
transfer matrix mode. The intershaft components are 
treated by the impedance method. It combines the 
advantages of these methods. It can be seen from the 
three examples that the results are in good agreement 
with those given in [5] and [7]. Although the proposed 
formulation and the numerical examples are confined 
to the multi-spool rotor system with intershaft bear- 

ings, further extensions are possible and straightfor- 
ward, such as the use of non-uniform time steps, a 
multi-spool rotor system with general connecting 
components, electrical coupling in parallel syn- 
chronous generator system, etc. and we hope to 
present the theoretical and the numerical results of 
these in the near future. 
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