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Flexural vibration suppression in an Euler–Bernoulli beam with attached lateral local resonators (LLR) is 
studied theoretically and numerically. Hamilton’s principle and Bloch’s theorem are employed to derive 
the dispersion relation which reveals that two band gaps are generated. Within both band gaps, the 
flexural waves are partially transformed into longitudinal waves through a four-link-mechanism and 
totally blocked. The band gaps can be flexibly tuned by changing the geometry parameter of the four-
link-mechanism and the spring constants of the resonators. Frequency response function (FRF) from finite 
element analysis via commercial software of ANSYS shows large flexural wave attenuation within the 
band gaps and the effect of damping from the LLR substructures which helps smooth and lower the 
response peaks at the sacrifice of the band gap effect. The existence of the multi-flexural band gaps can 
be exploited for the design of flexural vibration control of beams.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Investigations on wave propagation in periodic structures have 
received much attention in recent years [1–4]. The studies are fo-
cused on the generating of unique band gaps within which acous-
tic waves are totally attenuated. Their related applications are 
promising in vibration isolators, frequency filters and waveguides. 
Previous configurations proposed in Refs. [5–7] are mainly on one-
dimensional lattice for controlling the longitudinal wave behaviour, 
which is far from practical application.

Beams are widely used in engineering constructions. Waves 
propagating through beams may cause damages for the struc-
tures and inaccuracy for some experimental measurements. Several 
structural configurations using the band gap concept have been 
designed for the control of the behaviour of waves in beams. 
In the configurations, the local resonators are attached to con-
tinuum beams to generate band gaps for stopping the propa-
gation of waves, including longitudinal wave [8], flexural wave 
[9–11] and torsional wave [12]. As for practical engineering ap-
plications, the control of flexural wave is of great importance for 
structures working under water regarding their radiation safety. 
With this awareness, Yu et al. [13] and Liu et al. [14] investigated 
flexural wave in different types of beams to prevent its propa-
gation, which provides guidance in vibration suppression design. 
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Sun et al. [15] attached small spring–mass–damper subsystems to 
a uniform isotropic beam to form a metamaterial, aiming at band 
gap generation for flexural vibration absorption.

Beams mentioned above yield only single band gap, which is 
inapplicable to devices or cases requiring multi-flexural wave sup-
pression. Besides, design and modelling of beams having multi-
flexural band gaps is more difficult due to their higher DOFs. Few 
researches have been carried out on this. So far, Wen et al. [16]
and Wang et al. [17] designed a multi-band gap beam by attach-
ing multi-local resonators periodically to a beam based on previous 
single band gap concept. Their work paved a way for multi-wave
suppression. Pai later extended their previous work [18], develop-
ing modelling and analysis methods to reveal the actual working 
mechanism of the multi-band gaps metamaterial beam for absorp-
tion of low frequency waves. All the work they’ve done focuses 
on the attachment of multi-resonators for the flexural wave con-
trol. No one has transformed the flexural waves to longitudinal 
waves and attenuated the flexural vibration in another direction 
in a beam.

Inspired by the LLR configuration proposed by Huang and Sun 
[19], this paper proposes a new metamaterial beam to generated 
multi-flexural band gaps with LLR substructures attached. The LLR 
structures can partially transform the flexural waves into longitu-
dinal waves, and block the wave propagation in another direction. 
The rest of this letter is organised as follows. A concise derivation 
of the Hamilton’s principles of the LLR beam is provided in Sec-
tion 2 and validated using the finite element method in Section 3
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Fig. 1. Construction of metamaterial beam: (a) an infinite beam, (b) a typical unit cell.
[20], with the analysis of the effect of the geometry parameters 
and damping on the band gaps. Design of the multi-band gap 
beams in applications is presented in the section of conclusion.

2. Theory and modelling

Fig. 1 shows a simple model of an Euler–Bernoulli beam with 
periodical LLR substructures in x direction. One LLR consists of two 
lateral resonators with spring and mass constant of k2 and m2, 
a vertical resonator with spring and mass constant of k1 and m1, 
and a four-link-mechanism with rigid and massless trusses. The 
beam and the vertical resonator vibrate in z direction and the lat-
eral resonators vibrate in x directions, with displacements of w , u1
and u2, respectively. The vertical distance and the horizontal dis-
tance of the four-link-mechanism are H and D . The length of the 
unit cell is L, and A, I , E and ρ denote the beam’s cross-section 
area, area moment, Young’s modulus and mass density, respec-
tively. The dispersion relation is derived below.

The governing equation for a unit cell of an infinite periodic 
metamaterial beam can be obtained by using the extended Hamil-
ton’s principle

L∫
0

(δT − δU + δWnc)dt = 0 (1)

where K is the kinetic energy, U is the elastic energy, and Wnc
is the non-conservative work from the external loads. From the 
typical unit cell, every item in Eq. (1) follows

δT = −
L/2∫

−L/2

ρ Aẅδwdx − m1ü1δu1 − 2m2ü2δu2 (2)

δU =
L/2∫

−L/2

E I w ′′δw ′′dx + k1(u1 − w0)δ(u1 − w0)

+ 2k2(u2 − v)δ(u2 − v)

=
L/2∫

E I w(4)δwdx + k1(u1 − w0)δ(u1 − w0)
−L/2
+ 2k2(u2 − v)δ(u2 − v)

+ E I
(

w ′′
1δw ′

1 − w ′′−1δw ′−1 − w ′′′
1 δw1

+ w ′′′
0+δw0 − w ′′′

0−δw0 + w ′′′−1δw−1
)

(3)

δWnc = E I w ′′
1δw ′

1 − E I w ′′−1δw ′−1 + E I w ′′′−1δw−1 − E I w ′′′
1 δw1

(4)

Based on the assumption of small displacements, we have

v = − H

2D
(w0 − u1) (5)

where w0 represents the flexural displacement of the centre of 
the beam, and v is the displacement of the truss end connected 
the lateral resonators. Substitution Eqs. (2)–(5) into Eq. (1) yields

0 =
t∫

0

{ L/2∫
−L/2

{
−ρ Aẅ − E I w(4)

+
[

k1(u1 − w0) − H

D
k2

(
u2 + H

2D
(w0 − u1)

)

+ E I
(

w ′′′
0+δw0 − w ′′′

0−δw0
)]

δ(x)

}
δwdx

+
[
−m1ü1 − k1(u1 − w0)

+ H

D
k2

(
u2 + H

2D
(w0 − u1)

)]
δu1

+
[
−2m2ü2 − 2k2

(
u2 + H

2D
(w0 − u1)

)]
δu2

}
dt (6)

where δ(x) is the Dirac function, w ′ = ∂ w/∂x and ẇ = ∂ w/∂t . 
Moreover, E I w ′′′

0− �= E I w ′′′
0+ because of a concentrated shear force 

created by the LLR substructure at x = 0. By setting the coefficients 
of δw , δu1 and δu2 in Eq. (6) to zero, the governing equations can 
be obtained.

−ρ Aẅ − E I w(4) +
[

k1(u1 − w0) − H
k2

(
u2 + H

(w0 − u1)

)

D 2D
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+ E I
(

w ′′′
0+δw0 − w ′′′

0−δw0
)]

δ(x) = 0 (7)

−m1ü1 − k1(u1 − w0) + H

D
k2

(
u2 + H

2D
(w0 − u1)

)
= 0 (8)

−2m2ü2 − 2k2

(
u2 + H

2D
(w0 − u1)

)
= 0 (9)

Due to the periodicity along x direction, based on the Bloch’s 
theorem, flexural wave propagating through the infinite periodic 
beam can be expressed in a harmonic form.

w(x, t) = W e j(βx−ωt), w0(t) = W0e− jωt,

u1(t) = U1e− jωt, u2(t) = U2e− jωt (10)

where β and ω are the wave number and vibration frequency, re-
spectively. The phase velocity of the flexural wave in this beam is 
cp = ω/β .

If the metamaterial beam is treated as a homogenized uniform 
beam, Eq. (7) can be integrated over the whole unit cell with har-
monic wave solutions.

−
L/2∫

−L/2

ρ Aẅdx − E I
(

w ′′′
1 − w ′′′−1

) + k1(u1 − w0)

− H

D
k2

(
u2 + H

2D
(w0 − u1)

)
= 0 (11)

m̃ẅ0 + k̃w0 + k1(u1 − w0) − H

D
k2

(
u2 + H

2D
(w0 − u1)

)
= 0

(12)

m̃ = −2ρ A sin(βL/2)

β
, k̃ = −2E Iβ3 sin(βL/2) (13)

Combination of Eq. (12) with Eq. (8) and Eq. (8) yields⎡
⎣−m̃ω2 + k̃ − k1 − 1

2 ( H
D )2k2 k1 + 1

2 ( H
D )2k2 − H

D k2

k1 + 1
2 ( H

D )2k2 m1ω
2 − k1 − 1

2 ( H
D )2k2

H
D k2

− H
2D k2

H
2D k2 m2ω

2 − k2

⎤
⎦

×
⎧⎨
⎩

W0

U1

U2

⎫⎬
⎭ = 0 (14)

To obtain the non-trivial solutions of Eq. (14), the determinant 
of the coefficient matrix should be set to 0. And the band structure 
will be obtained to describe the flexural wave propagation of the 
metamaterial beam.

3. Theoretical and numerical results

In order to validate the Hamilton theory presented above, a fi-
nite LLR beam consisting of 40 unit cells is calculated in ANSYS 
15.0 [21]. BEAM 4 is used to construct the homogeneous beam, 
and mapped mashing technique is employed to discretise the beam 
and to assure the results’ accuracy. A harmonic force with different 
frequencies is applied on the left end of the beam. The parameters 
for a typical unit cell are as follows.

For the homogeneous beam: the unit length L = 0.05 m, the 
diameter of the cross-section R = 0.01 m, the Young’s modulus 
E = 2.1 × 1011 Pa, the Poisson ratio ν = 0.3, and the mass density 
ρ = 7800 kg/m3. F = F0e jωt = 100e jωt is applied at x = 0 m.

For the vertical resonator: the vertical spring constant k1 = 1 ×
105 N/m, the vertical mass m1 = 0.01 kg.

For the lateral local resonance: m2 = 0.005 kg, k2 = 1 ×
105 N/m, H = 0.01 m, D = 0.02 m.
Fig. 2. Theoretical band structures and FRF of a finite sample with 40 unit cells.

The finite element model and FRF matrix can be expressed as

M{q̈} + C{q̇} + K{q} = {F } (15a)

{F } = {
0,0,0, F0e jωt,0, . . .

}T
(15b)

H = [−ω2M + jωC + K
]−1

(15c)

{q} = H{F } (15d)

where M, C and K represent the mass matrix, damping matrix and 
stiffness matrix of the discretised finite beam model, {q} and {F }
denote the displacement and force vector. Eq. (15) is solved using 
the commercial software ANSYS, and the FRF can be obtained by 
extracting the dynamic response of the finite beam at the other 
end. Both the theoretical results of dispersion relation and FRF of 
a finite metamaterial beam with 40 unit cells are shown in Fig. 2.

From Fig. 2(a), it can be seen that the metamaterial beam can 
generate two band gaps which are 476–532 Hz and 751–776 Hz, 
respectively. Correspondingly, in Fig. 2(b), flexural waves within the 
band gaps are totally blocked. The good consistence of the theo-
retical results and the FEM results validate the accuracy of each 
other. From the vibration shape at different frequencies, we found 
that for the first band gap, it is the vertical resonator that plays 
the main role whose resonance is 503 Hz, and part of the en-
ergy is transformed to the lateral resonators through the four-link-
mechanism. While for the second band gap, the flexural energy 
has been largely transformed to the lateral resonators, which vi-
brates vigorously to absorb the flexural wave in x direction. Waves 
with frequency within both of the band gaps can be efficiently at-
tenuated by the metamaterial beam, which provides a method of 
multi-flexural vibration control of beams.

In the present study, we utilized the definition of phase velocity 
and group velocity of a harmonic wave [22]

v p = ω

β
, v g = dω

dβ
(16)

The phase velocity is obtained by connecting a certain point on 
the dispersion curve and the origin, while the tangential value of 
certain point represents the group velocity, as shown in Fig. 2(a). 
It can be seen that the sign of phase velocity is the same as that of 
the group velocity, while the magnitudes are not. The wave vector 
points in the direction of the phase velocity, and the group veloc-
ity determines the direction of the acoustic energy in the beam. 
The absolute value of the phase velocity decreases as wave vector 
tends to the edge of the Brillouin zone, which means the frequency 
oscillations are distributed less densely in space. For the group ve-
locity, it goes to zero when the frequency approaches either the 
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Fig. 3. Effect of H/D on the band gaps.

Fig. 4. Effects of the stiffness on the band gaps.

upper edge or the lower edge of the band gaps, which implies that 
the energy distribution becomes more stationary.

From the analysis, the four-link-mechanism determines the 
transformation from flexural wave to longitudinal wave. And the 
influence of the parameter of the four-link-mechanism on the 
propagation of flexural waves is investigated in Fig. 3. During the 
calculation, the other parameters are fixed, including those for the 
beam, the vertical resonator and the lateral resonator.

In Fig. 3, as the ratio of H/D increases, the first band gap goes 
to lower frequency range with the gap width decreasing, while 
the second band gap is broadened to higher frequency range. The 
trend of the band gaps means that larger ratio of H/D helps 
the transformation from flexural wave to longitudinal wave in 
higher frequency range. And the changes of the position and gap 
width of the band gaps demonstrate that the four-link mechanism 
could flexibly tune the band gaps without changing the resonators, 
which is useful in the field of flexural wave absorption and vibra-
tion suppression design.

Another important factor which impacts the band gaps is the 
stiffness of the springs. The stiffness determines the resonance of 
the local resonators which induces the band gaps. Therefore, inves-
tigation of effects of the stiffness on band gaps is helpful. During 
the calculation, we assume that k2 = 1 × 105 N/m, and k1 is vari-
able with the ratio of k1/k2 ranging from 0.1 to 1. The numerical 
results are demonstrated in Fig. 4.

Since the varying value is the vertical spring’s constants, the 
resonance of the vertical resonator increases along with an in-
crease in the ratio of k1/k2. In Fig. 4, it can be seen that the first 
band gap shifts to higher frequency range, while the second band 
Fig. 5. Effects of damping on the band gaps.

gap remains with the ratio of k1/k2 increasing. Meanwhile, the 
gap width of both the band gaps is slightly broadened. From the 
trend of the band gaps, it can be conclude that the variation of the 
stiffness has little influence on the transformation of the waves. 
However, the corresponding stiffness may modulate the position 
of the band gaps in different frequency ranges.

From previous knowledge, damping could smooth and lower 
the response peaks and broad the band gaps. However, there are 
two different resonators in this metamaterial beam. The effect of 
damping from the resonators on the band gaps are investigated 
numerically and shown in Fig. 5.

In Fig. 5, c1 denotes the damping from the vertical resonator 
and c2 denotes the damping from the LLR substructure. It can 
be seen that damping has significant influence on the band gaps. 
When small damping is added to the two resonators, correspond-
ing the comparison of c1 = 0, c2 = 0 and c1 = 0.63, c2 = 0.45, 
the response peaks between the two band gaps and in higher 
frequency range is lowered slightly. With c1 increasing while c2
unchanged, response had been largely attenuated except the much 
low-frequency range. On the other hand, as c2 increases while c1
remains, the second band gap disappears, and the first band gap 
changes little. In all of these cases, damping could help smooth 
and lower the response peaks while the band gap effect has been 
deactivated in different extent. Moreover, damping from the ver-
tical resonator affects both of the two band gaps, while damping 
from the LLR substructure has little influence on the first band gap.

4. Conclusions

In summary, we have theoretically and numerically investigated 
the dynamic characteristics of the flexural wave propagation in 
an Euler–Bernoulli beam with LLR substructures attached. Results 
show that it can generate two band gaps to stop the flexural wave 
propagation. The formation mechanism of the two band gaps is 
owing to the transformation from the flexural wave to longitudi-
nal wave through the four-link-mechanism, which stimulate the 
lateral resonance to create inertial forces to counterbalance the 
shear forces of the plate, resulting in wave suppression in the 
other directions. The transformation, as well as the band gaps, 
can be flexibly tuned by changing the geometry parameter of 
the LLR substructure. Phase velocity and group velocity are anal-
ysed to demonstrate phase variation and energy propagation in 
space. Finite element results show flexural waves can be efficiently 
blocked within the band gaps and damping from the resonators 
may broaden the band gaps and help smooth and lower the re-
sponse peaks at the sacrifice of the band gap effect. The study 
conducted in this paper is promising in the flexural absorber and 
isolator design for vibration and noise control.
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