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Abstract Band structures are investigated in two-dimensional phononic crystals (PC) composed of a periodic S-shaped slot
in an air matrix with a square lattice. Dispersion relations, pressure fields and transmission spectra are calculated using the
finite element method and Bloch theorem. Numerical results show that the proposed PC can yield complete and large band
gaps at lower frequency ranges compared with that of the Jerusalem slots in Li et al. (Phys B 456:261–266, 2015) under the
same parameter setting of the lattice and outline of the inclusions. The transmission spectrum is verified to be reasonably
consistent with the band gaps along the �X direction. By analysing the pressure fields of several modes, the resonance modes
of cavities within the S-shaped slot structure are found to result in the low-frequency band gaps. The effects of the geometrical
parameters on the upper and lower edges of the first and second complete band gap are further studied. Numerical results
show that the bandwidth of the first and second band gaps can be modulated over an extremely large frequency range by the
geometrical parameters. The properties of the proposed PC have potential for implementation in structures and devices of
noise and vibration control, such as noise filters and waveguides.
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1 Introduction

Much effort has been devoted in recent years to study of the
propagation of acoustic/elastic waves in the periodic com-
posites called PCs [1–5]. PCs are artificial media consisting
of periodic inclusions in a matrix background with various
topologies [6–10]. They can exhibit various special physical
properties such as phononic band gaps in which waves are
prevented from propagating. The key motivation for propos-
ing new PCs is to explore their potential applications in
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engineering, such as acoustic filters [11], waveguides [12]
and noise insulators [13–15].

According to Ref. [16], the actual formation mechanism
of band gaps in PCs remains unobvious, while through the
Bragg-scattering mechanism at the Brillouin zone bound-
aries and through Mie resonances are two typical forms for
the band gaps. The mechanism of Bragg-scattering for pro-
ducing bandgaps is attributed to the destructive interference
between incident acoustic waves and reflections from the
periodic scatters [17] while the Mie resonance of PCs, being
less dependent on periodic scatters, could yield much lower
frequency band gaps [18,19].

To achieve low-frequency band gaps, researchers have
studied the performance of different PCs. Charles et al. [20]
numerically investigated the propagation of guided elastic
waves in 2DPCs. They found that Lamb or generalizedLamb
modes could stop bands appearing in the dispersion curves.
Cui et al. [21] proposed a new PC composed of a square array
of parallel steel tubeswith narrow slits and analysed the trans-
missions of the band system. Experimental measurements
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showed that transmission through an array of slit tubes with
periodic narrow slits decreased the noise level throughout the
frequency interval which is in good agreement with that in
the calculated prohibited band. Yu et al. [22] presented a new
PC composed of periodic slotted tubes with an internal rib
structure in air. Their results showed that the internal rib had a
significant influence on the first band gap.Xu et al. [23] inves-
tigated the band structures of a two-dimensional solid/air
hierarchical PC. Their results showed that the solid/air hierar-
chical PCs possessed outstanding tuneable band gap features.
Gao et al. [24] calculated the dispersion relation, transmis-
sion spectra and displacement fields of a two-dimensional
PC with two resonators and found that the opening of the
bandgaps was due to the local resonance and the scatter-
ing interaction between two resonators and matrix. Li et al.
[25] presented a band gap structure composed of a periodic
Jerusalem cross slot in an air matrix and obtained large band
gaps in the low-frequency range.

S-shaped slots are common structures. The band prop-
erties of PCs with S-shaped inclusions have yet not been
reported, as far as we know. In this paper, band structures of
a novel two-dimensional PC with an S-shaped slot are evalu-
ated using the finite element method (FEM) [10,22,25–27].
The formation mechanisms of bands are analysed based on
the acoustic mode. The transmission spectra of the S-shaped
structure are also investigated. Further, the effects of the geo-
metric parameter on the first and second complete band gap
are discussed. Compared with the Jerusalem cross slot and
internal rib structure, the S-shaped structure could achieve
comparable or even superior results with simpler configura-
tion for manufacturing.

2 Model and Methods of Calculation

A two-dimensional PC with an S-shaped slot in an air matrix
of a square lattice is considered (see Fig. 1). Figure 1a and

b show schematic views of the cross-section of the proposed
PC structure and the representative unit cell. The parameters
of the unit cell including the S-shaped slot are defined as fol-
lows: the cell length of the square lattice is a, andm and n are,
respectively, the vertical parameters shown in Fig. 1b. The
horizontal length of the S-shaped slot is l. The width of the
slot is assumed to be d. By repeating the representative unit
cell along the x and y directions, an infinite two-dimensional
PC is formed. In the following calculation, the lattice con-
stant a = 36 mm and the slot width d = 2 mm are used.

To investigate the acoustic band gaps and eigenmodes of
the proposed structure, calculations of the dispersion rela-
tions and transmission spectra are conducted using the FEM
and the Bloch theorem. Since the infinite system is periodic
along the x and y directions simultaneously, only the rep-
resentative unit cell in Fig. 1b needs to be considered. In
the calculations, the representative unit cell is divided into
two domains, the fluid domain and the solid domain. For the
fluid domain, the governing equation of the acoustic waves
can be given by the Helmholtz equation in frequency domain
as follows.

∇
(

− 1

ρ0
∇ p

)
= ω2 p

ρ0cs
, (1)

where p, ρ0, ω and cs are the acoustic pressure, density,
angular frequency and speed of the fluid, respectively.

As the acoustic impedance of air is much lower than that
of the solid, longitudinal waves propagating in the air will
be reflected by the S-shaped inclusions. Therefore, the wave
propagation in the air domain is predominant, and the trans-
verse waves in solid inclusions can be neglected. The solid
S-shaped inclusions are considered as fluid with very high
stiffness and specific mass. The periodic conditions applied
at the boundaries between the representative unit cell and its
four adjacent cells are:

Fig. 1 a Schematic view of the
cross-section of the
two-dimensional PC. b The
representative unit cell of the
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p (r + a) = p (r) eik • a, (2)

where r is located at the boundary nodes and a represents
the basis vector of the periodic structure. K is defined as
a two-dimensional Bloch wave vector. We solve the eigen-
value equations with the software COMSOL Multiphysics
4.3b. The acoustic module operates under a two-dimensional
pressure acoustic applicationmode (acpr). A constant bound-
ary condition is applied to the boundaries between the air
and the solid, and a periodic boundary condition is imposed
on the two opposite boundaries of the representative unit
cell. The triangular mesh with Lagrange quadratic elements
provided by COMSOL is used to discretise the unit cell.
Eigenfrequency analysis is chosen as the solving mode and
the direct (MUSR) is applied as the linear system solver.
A group of corresponding eigenfrequencies and eigenmodes
can be obtained with a given value of the Bloch wave vector
K. By changing the values along the boundaries of the first
Brillouin zone and repeating the calculation, the dispersion
relations of the proposed PC can be obtained.

For the calculation of transmission spectra, we consider a
finite element system composed of 16 representative units in
x direction with a periodic condition imposed on y direction
to represent the infinite system. Boundaries between the air
and the S-shaped inclusions can still be treated as constant
boundaries because of the high stiffness and specific mass of
the slot. The governing equation for the acoustic waves is the
same as Eq. (2). Radiation boundary conditions which allow
an outgoing wave to leave the solution domain with minimal
reflections are applied to the left and right boundaries of the
finite system, yielding

n •
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+ i
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(
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e−i(kr)

×K = −kn, (3)

where p is the pressure, n is the inward normal vector of the
structure, k is the wave number, �T represents the Laplace
operator in the tangent plane at certain point on the boundary
and p0 is the amplitude of the planewave of the sound source.
The sound source is located on the left boundary with p0 =
1 Pa. The planewaves with single frequencies travel from the
left side to the right side along x direction. The transmission
spectra are defined as

T L = 10 log10

(
Pin
Pout

)
, (4)

where Pin and Pout denote incident power on the left side
and transmitted power on the right side of the finite system,

respectively. By varying the excitation frequency of the inci-
dent waves, the transmission spectra are obtained.

3 Results and Discussion

3.1 Band Gaps of the Proposed PCs with Periodic
S-Shaped Slot

Some numerical results are given in Fig. 2 to illustrate the
characteristics of the band gaps in the proposed PC structure.
Since the inclusion is out of 90-degree symmetry, the wave
vector should sweep the edge of the irreducible Brillouin

fr
eq

ue
nc

y(
kH

z)

Reduced wace vector

fr
eq

ue
nc

y(
kH

z)

fr
eq

ue
nc

y(
kH

z)

Transmission spectra(dB)Reduced wave vector

(a)

(b)

Fig. 2 a Band structure in the proposed PC composed of a periodic
square array of S-shaped slots in an air matrix. The unit cell and the first
Brillouin zone are shown in the second band gap. b The band structure
along � − X direction and transmission spectra in � − X direction of
a finite structure composed of 16 × 1 unit cells
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zone, along a rectangular boundary. The material parameters
are chosen as follows: density ρ0 = 7850 kg/m3 and sound
speed of the longitudinal wave cs0 = 6100m/s for steel;
ρ1 = 1.25 kg/m3 and cs0 = 343m/s for air. The geometric
parameters of a typical representative cell are defined as:
lattice constant a = 36mm, vertical slot length m = 14 mm
and n = 8mm, horizontal slot length l = 28 mm and slot
width d = 2 mm.

Figure 2a shows the band structure of the PC with several
complete band gaps and orientational band gaps from 0 to
10 kHz in which seven bands, including four complete band
gaps (green regions) and five wider orientational band gaps
(red regions along the �X direction in Fig. 2b) are involved.
The lowest complete band gap, between the first band and
the second band, extends from 1647 to 2124 Hz, which is
nearly 200 Hz lower than that of the Jerusalem inclusion
mentioned in Ref. [25] with the same lattice constants, ver-
tical and horizontal length of the inclusions and the width of
the slot, thus is more suitable for lower frequency noise con-
trol. The other three band gaps extend from 2189 to 3445 Hz
for the second complete band gap (between the second and
third band) which is 840 Hz lower than that of the Jerusalem
configuration, from 5341 to 5554 Hz for the third band gap
(between the third and fourth band), and from 8096 to 8796
Hz for the fourth band gap (between the sixth and seventh
band), respectively. The widths of the complete band gaps
are, respectively, 447, 1256, 213 and 700 Hz. All these com-
plete band gaps are very useful for sound control because
they could prohibit the propagation of waves irrespective of
direction through the two-dimensional PC. It also can be seen
that the gap widths of the orientational band gaps are much
wider than those of the complete band gaps. The advantage
of the orientational band gaps can be taken for preventing
waves propagating from a specific direction.

In order to validate the characteristics of the band structure
of the proposed PC, transmission spectra are computed using
FEM. Figure 2b demonstrates the calculated transmission
spectra for plane acoustic waves propagating in the proposed
PC along x direction of the finite PC structurewith 16×1 unit
cells corresponding to the � − X direction of the unit cell. It
can be seen that large attenuations in four frequency ranges
emerge in the transmission spectra from the right figure in
Fig. 2b, which shows good agreement with the orientational
band gaps in the left figure in Fig. 2b.

It can be observed in Fig. 2a that some bands are flat in
most of the range in the first Brillouin zone, namely the first,
second, fourth and sixth bands, which may mean that some
localized resonant modes exist in this PC structure. As such,
we investigate the distribution of the acoustic pressure field
at some specific points of the band structure to obtain deeper
understanding of the formation mechanism of the bandgaps.
The acoustic modes at the points marked as A, B, C, D, E, F,
G and H in Fig. 2a are illustrated in Fig. 3.

Figure 3a shows that the acoustic pressure field of mode A
mainly concentrates in the two cavities of the S-shaped slot
structure with opposite phases. Compared with the pressure
within the cavities, the pressure field outside is so small that
it can be ignored. The two cavities act as resonators. From
Fig. 3b, we can see that the resonances of the two cavities are
in the same phase and the minimum pressure concentrates on
the two corners of the unit cell. The pressure field of mode C
is opposite to that of mode A and with greater pressure. The
resonance of the two cavities dissipates most of the energy
of the unit cell. Comparing mode D with mode B, it can
be observed that the main difference is the location of the
minimum pressure which mainly distributed on the upper
and lower sides of the S-shaped inclusion. The energy in the
four modes from A to D is concentrated on the two cavities
within the S-shaped slot. It can be concluded that the first and
secondbandgaps aremainly attributed to the resonance of the
two cavitieswithin theS-shaped slot and can bemodulated by
changing the geometric parameters of the S-shaped inclusion
to alter the cavities.

Figure 3e demonstrates that the pressure field of mode
E is almost concentrated on the two closed corners outside
the cavities and the pressure within the cavities is nearly
zero. This indicates that the lower edge of the third band gap
is mostly related to the external structure and changing the
geometric parameters of the inclusion has little effect on the
band gap. For mode F in Fig. 3f, the pressure field is similar
to that of mode E but with different locations of the maxi-
mum and minimum pressure which are located at the upper
and lower sides of the S-shaped inclusion. Thus the upper
edge of the third band gap bears little relationship to the geo-
metric parameter of the inclusions. For modes G and H, it
can be observed that resonance occurs in the two cavities,
with each cavity including two reversed phase resonances.
From mode E to mode H, it can be seen that the pressure
field is distributed within and outside the inclusion. When
the pressure field is concentrated on the outside, the pres-
sure outside is much greater than that inside. On the other
hand, when the pressure field is concentrated on the inside,
the pressure within is much greater than that outside. It can,
therefore, be concluded that the third band gap is produced
by the interaction of acoustic pressure fields within and out-
side the S-shaped slot and the slot has little effect on the
band gap, whereas the fourth band gap is mainly attributed
to the resonance within the cavities and the gap width can be
modulated by the geometric parameters.

3.2 Effects of Geometric Parameters on the First and
Second Band Gaps

It is noted that the geometric parameters have significant
influences on band gaps of the proposed PC. The lower the
frequency of the acoustic wave is, the longer the wavelength
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Fig. 3 Pressure field at a representative unit cell of the eigenmodes marked A (a), B (b), C (c), D (d), E (e), F (f), G (g) and H (h) in Fig. 2a

is and the more difficult the noise control is. Moreover, the
acoustic pressure fields of mode A, B and C indicates the
edges of the first and second band gaps are related to the
resonance of the two cavities which are dependent on the
geometry parameters. For this reason, the effects of the geo-
metric parameters are taken into consideration mainly on the
first and second band gaps. In the analysis, the band gaps are
irrespective of direction, which means phonon cannot pass
through the PC.

Figure 4 shows trends of the first and second band gaps
with edges as a function of the horizontal length of the slot l.
The shaded zones with oblique blue and red lines represent
the widths of the first and second band gaps, respectively.
In our analysis, the slot width d = 2 mm, vertical length
m = 14 mm and n = 8 mm are kept the same. We can see
that with the increase of the horizontal length of the slot l,
edges of both of the band gaps shift to a lower frequency
range, and the slopes of the upper edge of the first band gap
and the lower edge of the second band gap are approximately
same, which results in the gap between the two band gaps
unchanged. While the widths of both band gaps are getting
slightly wider as the horizontal length becomes larger. With
the analysis of the effects of the horizontal length of the
slot l on the band gaps, it can be concluded that a longer l
could push the first and second band gaps to lower frequency
ranges with the gap width slightly changed, which is helpful
for lower noise control.

In order to investigate the effect of the vertical length of the
slotm, the band structures of the proposed PCs are calculated
with different values of m ranging from 9 to 14 mm. In the
process of calculation, the slot width d = 2 mm, the vertical
length n = 8 mm and the horizontal length l = 28 mm are
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Fig. 4 Effect of the central length of the slot l on the first and second
band gaps with the slot width d = 2 mm, vertical length m = 14 mm
and vertical length n = 8 mm

kept constant. Figure 5 illustrates the changes of the first and
second band gaps as a function of the vertical length of the
slotm. It can be observed that as the length ofm increases, the
second band gap moves to a higher frequency range, simul-
taneously the gap width broadened, while the lower edge of
the first band gap fluctuates as m changes, leading to uncer-
tain gapwidth. The fluctuation of the first band gap gets more
severewith lagerm. Thatmeans, the vertical length of the slot
m could modulate the location and position of the first and
second band gaps flexibly when brought into applications.

The effects of another vertical lengths of the slot n on the
first and second band gaps are shown in Fig. 6 with the slot
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Fig. 5 Effect of the vertical length of the slotm on the first and second
band gaps with the slot width d = 2 mm, horizontal length l = 28 mm
and vertical length n = 8 mm
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Fig. 6 Effect of the side length of the slot n on the first and second
band gaps with the slot width d = 2 mm, horizontal length l = 28 mm
and vertical length m = 14 mm

values of width d = 2 mm, vertical length m = 14 mm and
horizontal length l = 28 mm unchanged during the calcula-
tion while n varying from 0 to 12 mm at a step of 2 mm. It
can be seen that, with the increase of the vertical length n,
both of the band gaps move to a lower frequency range; the
width of the second band gap gets narrower while the shape
of the first band gap resembles a spindle. Consequently, the
gap between the two band gaps gets narrower which hints a
merge of the two band gaps into a wider one in lower fre-
quency ranges. The results above indicate that the vertical
length n has a much greater influence on the first and second
band gaps.

From the analysis of the parameters effect on the first
and second band gaps, conclusions can be drawn that each

length of the inclusion slot could modulate the band gaps in
different ways. The horizontal length l could push the two
band gaps to lower frequency rangeswith slightly broadening
their width. The vertical length n can also lower the location
of the two band gaps, while narrower gap widths. Changing
of the vertical length of m may broaden the second band gap
in higher frequency ranges.

4 Conclusions

Making use of the FEM and the Bloch theorem, we investi-
gated the band structures of a two-dimensional PC composed
of periodic S-shaped inclusions in an air matrix of a square
lattice. Numerical results show that the proposed PC can
generate several complete band gaps and induce wider orien-
tational band gaps than existing PCs. Transmission spectra
are also calculated, and the results show reasonable con-
sistency with the orientational band gaps along the �X
direction. Pressurefields are analysed to achieve better under-
standing of the formation mechanism of band gaps and it
shows the lower band gaps are because of resonance in the
cavities which are strongly dependent on the geometry para-
meters. Furthermore, the effects of geometric parameters on
the first and second band gaps are investigated. It can be
concluded that the gap width can be tuned over a very large
frequency range by geometric parameters such as the vertical
length and the horizontal length of the S-shaped slot. With
these properties, the proposed PC could be implemented in
engineering applications such as sound insulation and noise
filtering.
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