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a b s t r a c t

In this paper, a meshless computational model by integrating the method of fundamental solutions
(MFS) and the method of particular solutions fulfilled with compactly supported radial basis functions
(CSRBF) is developed for three-dimensional (3D) linear elasticity with the presence of body forces. The
corresponding displacement and stress particular solution kernels across the support radius are firstly
derived using Galerkin vectors and then are used to modify the boundary conditions. Subsequently, the
classical meshless MFS, in which the homogeneous part of the full solutions are approximated using the
linear combination of displacement and stress fundamental solutions in 3D linear elasticity, is
formulated for solving the homogeneous 3D linear elastic system. Finally, several examples are
presented to demonstrate the accuracy and efficiency of the present meshless method and also the
effect of sparseness of interpolation matrix in CSRBF interpolation is discussed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the presence of inhomogeneous body force terms, which
may be caused by the gravitational forces and inertial forces, the
particular solutions for 3D isotropic linear elasticity problems are of
great importance when more precise stress analysis is required in 3D
bodies where two-dimensional (2D) or axisymmetric or plane stress
analyses are not feasible. Apart from analytical solutions which are
available only for a few problems with simple geometries and
boundary conditions [1–6], numerical methods such as the finite
element method (FEM), the finite difference method (FDM) and the
boundary element/integral method (BEM/BIM) provide alternative
approaches to approximate the 3D elasticity solutions in the past
decades [7–10]. Among them, the FEM and the FDM require domain
discretisation while the BEM/BIM requires only boundary discretisa-
tion for the homogeneous partial differential equations (PDE) and
domain discretisation for the inhomogeneous PDE respectively. In
order to simplify the domain discretisation in BEM for inhomogeneous
cases, the dual reciprocity method (DRM) [11] has been commonly
employed to avoid the domain integration by applying collocation
discretisation in the domain. This is done by approximating the
inhomogeneous terms by a series of linearly independent basis
functions and then analytically determines the respected particular

solution kernels. The choice of the basis functions is critical to provide
accurate numerical solutions [12]. In most of the literatures, the usual
choices are the radial basis function (RBF). Successful RBF applications
to 3D linear elasticity problems include the globally supported
Gaussian [13], power splines and thin plate splines [14].

The severe drawback of using the above globally supported RBFs is
their dense interpolation matrices, which often become highly ill-
conditioned as the number of interpolation points or the order of basis
functions increases. Conversely, RBFs with local support such as the
Wendland's CSRBF are capable of producing sparse interpolation
matrices and improving matrix conditioning while maintaining com-
petitive accuracy [15–17]. As the result, CSRBF has become a natural
choice for solving higher dimensional problems [18–20]. To our best
knowledge, the application of the CSRBF has only been applied to 2D
elasticity problems by Rashed [21,22].

In this paper, a mixed meshless collocation method by integrating
the homogeneous and particular solutions is developed for 3D linear
elasticity with the presence of body forces. Similar approach had also
beenmade in Galerkin meshless method for solving isotropic elasticity
and anisotropic plate problems [23,24]. In our approach, we consider
using MFS for the approximation of homogeneous terms and the
method of particular solutions fulfilled with CSRBF instead of the
conventional globally supported basis functions for the approximation
of inhomogeneous terms. During the computation, we can freely
control the sparseness of the interpolation matrix by varying the
support radius without trading off too much of the accuracy. Using
Galerkin vectors in the linear elastic theory, the particular solution
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kernels with respect to the CSRBF approximation are firstly derived
and then the displacement and stress particular solutions are obtained
to modify the boundary conditions. Subsequently, the homogeneous
solutions are evaluated by the MFS using the modified boundary
conditions. Finally, several examples are presented to demonstrate the
accuracy and efficiency of the present method.

The remainder of this paper is organised as follows. Section 2
describes the basics of three-dimensional elasticity. Section 3 presents
the derivation of the particular solution kernels associated with the
Wendland's CSRBF, and in Section 4, the method of fundamental
solutions is presented for the homogeneous terms. Several examples
are considered in Section 5 and a further discussion on the sparseness
of the CSRBF is given in Section 6. Finally, some concluding remarks on
the present method are presented in Section 7.

2. Problem description

Consider a 3D isotropic linear elastic body with inhomogeneous
terms in the domain Ω. The governing equations are

σij;j Xð Þþbi Xð Þ ¼ 0; XAΩ ð1Þ

σij Xð Þ ¼ λεkk Xð Þδijþ2Gεij Xð Þ; XAΩ ð2Þ

εij Xð Þ ¼ 1
2 ui;j Xð Þþuj;i Xð Þ� �

; XAΩ ð3Þ

where σij is the stress tensor, εij the strain tensor, ui the displacement
vector, bi the known body force vector, λ and G the Lame constants
and δ the Kronecker delta.

Combining the above equations yields the following Navier's
equations in terms of displacement components

Gui;jj Xð Þþ G
1�2v

uj;ij Xð Þþbi Xð Þ ¼ 0; XAΩ ð4Þ

where v is Poisson's ratio which can be expressed as v¼λ/(2(λþG)).
Later in the numerical examples, Young modulus E and v will be
employed, inwhich G can be computed using the conversion formula
G¼E/(2(1þv)).

The corresponding boundary conditions are

� Dirichlet/necessary condition

ui Xð Þ ¼ ui Xð Þ; XAΓu ð5aÞ

� Neumann boundary condition

ti Xð Þ ¼ σij Xð Þnj Xð Þ ¼ ti Xð Þ; XAΓt ð5bÞ
where ti is the traction field, ui and ti the prescribed displacement
and traction, ni the unit vector outward normal to Γ¼Γu[Γt.

3. Method of particular solutions

Using the method of particular solutions, the full solution
variables ui can be expressed as the sum of particular solutions
up
i and homogeneous solutions uh

i [23,24], that is

ui Xð Þ ¼ up
i Xð Þþuh

i Xð Þ; XAΩ ð6Þ
where up

i should satisfy the inhomogeneous equation (4) and uh
i sati-

sfies the homogeneous equations with modified boundary conditions:

Guh
i;jj Xð Þþ G

1�2v
uh
j;ij Xð Þ ¼ 0; XAΩ ð7Þ

uh
i Xð Þ ¼ ui Xð Þ�up

i Xð Þ; XAΓu ð8aÞ

thi Xð Þ ¼ ti Xð Þ�tpi Xð Þ; XAΓt ð8bÞ
In order to determine the particular solution, it is convenient to

express the particular solutions of displacement up
i in terms of

Galerkin vector gi as [25]

up
i Xð Þ ¼ gi;kk Xð Þ� 1

2 1�vð Þgk;ik Xð Þ; XAΩ ð9Þ

Upon substituting Eq. (9) into Eq. (4) yields the following bi-
harmonic equation

gi;jjkk Xð Þ ¼ �bi Xð Þ
G

; XAΩ ð10Þ

By means of derivation of displacement variables, the corre-
sponding stress particular solutions in terms of Galerkin vector is

σij Xð Þ ¼ G
1�v

vgk;mmk Xð Þδij�gk;ijk Xð Þþ 1�vð Þ gi;jkk Xð Þþgj;ikk Xð Þ
� �h i

; XAΩ

ð11Þ
3.1. Dual reciprocity method

Sometimes, inhomogeneous terms of Eq. (10) could be a well
described function such as gravitational load, for which special
particular solution can be found analytically [26]. In many other cases,
finding such analytical solution is not a trivial task. The dual reciprocity
method aims to efficiently approximate the particular solution by
finding its solution kernels while prescribing the inhomogeneous
terms such as body forces with a series of linearly independent basis
functions so that any known or unknown body force terms can be
reconstructed using finite set of discrete data

bi Xð Þ �
XN
n ¼ 1

αn
l δliφn Xð Þ; XAΩ ð12aÞ

where φn is the chosen series of functions to approximate body forces
from the inhomogeneity terms of Eq. (10), N the number of interpola-
tion points in the domain, αn

l the interpolation coefficients to be
determined. The use of the Kronecker delta δ is to separate the basis
functions for approximating the body forces in each direction inde-
pendently, i.e.

φ1 Xð Þ 0 0 φ2 Xð Þ 0 0 ⋯ φN Xð Þ 0 0
0 φ1 Xð Þ 0 0 φ2 Xð Þ 0 ⋯ 0 φN Xð Þ 0
0 0 φ1 Xð Þ 0 0 φ2 Xð Þ ⋯ 0 0 φN Xð Þ

2
64

3
75

α11
α12
α13
α21
α22
α23
⋮
αN1
αN2
αN3

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

¼
b1 Xð Þ
b2 Xð Þ
b3 Xð Þ

8><
>:

9>=
>; ð12bÞ
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Similarly, the Galerkin vector gi and the particular solution up
i

and σp
ij can be expressed as

gi Xð Þ ¼
XN
n ¼ 1

αn
l δliϕn Xð Þ; XAΩ ð13aÞ

up
i Xð Þ ¼

XN
n ¼ 1

αn
l ψ

n
li Xð Þ; XAΩ ð13bÞ

σp
ij Xð Þ ¼

XN
n ¼ 1

αn
l S

n
lij Xð Þ; XAΩ ð13cÞ

where ϕn is the respected Galerkin vector solution kernels, ψn
li the

displacement particular solution kernels, Snlij the stress particular
solution kernels.

By linearity, it suffices to analytically determine ϕn by sub-
stituting Eqs. (12) and (13a) into Eq. (10)

ϕn;jjkk Xð Þ ¼ �φn Xð Þ
G

; XAΩ ð14Þ

It is clear that by enforcing Eq. (10) to satisfy the known
inhomogeneity terms in Ω, we can obtain N linear equations to
uniquely solve for the interpolation coefficients αn

l .

3.2. Particular solution kernels with CSRBF

Generally, the function φ in Eq. (14) can be chosen as radial
basis function such that

φj Xið Þ ¼φ jjXi�Xjjj
� �¼φ rij

� � ð15Þ
where Xi represents the collocation points and Xj represents the
reference points.

Herein, RBF is employed to approximate the inhomogeneous
terms of Eq. (10), as done in some literatures [19,22,27,28]. Since
RBF is expressed in terms of Euclidian distance, it usually works
well in arbitrary dimensional space and does not increase compu-
tational cost. Furthermore, many attractive properties of RBF such
as good convergence power, positive definiteness and ease of
smoothness control are widely reported [29,30].

Then, from Eqs. (9), (13a), (13b) the displacement particular
solution kernels can be expressed as

ψ li rð Þ ¼ δliϕ1�
1

2 1�vð Þ δliϕ2þr;ir;lϕ3

� � ð16Þ

Similarly, the stress particular solution kernels can be
expressed as

Slij rð Þ ¼ G
1�v

δijr;lvþ 1�vð Þ δlir;jþδljr;i
� �� �

ϕ4� δljr;iþδlir;jþδijr;l
� �

ϕ5

�
�r;ir;jr;lϕ6

� ð17Þ
where

ϕ1 ¼ϕ;rrþ
2
r
ϕ;r ð18aÞ

ϕ2 ¼
1
r
ϕ;r ð18bÞ

ϕ3 ¼ϕ;rr�
1
r
ϕ;r ð18cÞ

ϕ4 ¼ϕ;rrrþ
2
r
ϕ;rr�

2
r2
ϕ;r ð18dÞ

ϕ5 ¼
1
r
ϕ;rrþ

1
r2
ϕ;r ð18eÞ

ϕ6 ¼ϕ;rrr�
3
r
ϕ;rrþ

3
r2
ϕ;r ð18f Þ

To analytically determine ϕ, ψli and Slij, an explicit function
needs to be chosen first for φ. For Wendland's CSRBF in 3D [16,17],
φ is defined as

For C0 smoothness

φ rð Þ ¼ 1� r
α

� �2

þ
¼ 1� r

α

� �2
; 0rrrα;

0; r4α;

(
ð19aÞ

For C2 smoothness

φ rð Þ ¼ 1� r
α

� �4

þ
4
r
α
þ1

� �
ð19bÞ

For C4 smoothness

φ rð Þ ¼ 1� r
α

� �6

þ
35

r
α

� �2
þ18

r
α
þ3

� 	
ð19cÞ

For C6 smoothness

φ rð Þ ¼ 1� r
α

� �8

þ
35

r
α

� �3
þ25

r
α

� �2
þ8

r
α
þ1

� 	
ð19dÞ

where the subscript þ denotes that the bracket function will be
forced to be zero when the bracketed value is less than zero. α is a
cut off parameter for varying the support radius of interpolation
matrix φ(r) as illustrated in Fig. 1.

The sparseness of the CSRBF interpolation matrix can be
interpreted as the cumulative frequency of r, which is defined as

sparseness¼
XN
i

XN
j

f rij
� �

rijrα
� � ð20aÞ

with

f rð Þ ¼
XN
i

XN
j

r¼ rij
� �

N2 ð20bÞ

where f is the frequency function of rij and [ � ] denotes the use of
Iverson Bracket. For case α¼max(r), sparseness of the interpola-
tion matrix is equal to 100%. For case α¼0, the sparseness is equal
to 0%. In practice α can be chosen according to the sparseness
requirement.

Since the radial part of the bi-harmonic operator in Eq. (14) can
be written as

∇4 ¼ ∂4

∂r4
þ4
r
∂3

∂r3
ð21Þ

the Galerkin vector solution kernels ϕ can be analytically deter-
mined for points located within the compact support radius by
solving the ordinary differential equation

∂4ϕ rð Þ
∂r4

þ4
r
∂3ϕ rð Þ
∂r3

¼ �φ rð Þ
G

for 0rrrα ð22Þ

Fig. 1. Cut off parameter α for various support radii.
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For points located outside the compact support radius, ϕ
satisfies the homogeneous equation (24)

∂4ϕ rð Þ
∂r4

þ4
r
∂3ϕ rð Þ
∂r3

¼ 0 for r4α ð23Þ

with solution

ϕr4α rð Þ ¼ C1r2þC2rþC3þ
C4

r
ð24Þ

The four constants C1, C2, C3, C4 are to be chosen so that ϕ
satisfies the continuity conditions at the compact support radius,
that is

ϕr4α αð Þ ¼ ϕ0r rrα αð Þ ð25aÞ

ϕ0
r4α αð Þ ¼ ϕ0

0rrrα αð Þ ð25bÞ

ϕ00
r4α αð Þ ¼ ϕ00

0rrrα αð Þ ð25cÞ

ϕ000
r4α αð Þ ¼ ϕ000

0rrrα αð Þ ð25dÞ

Particularly, the corresponding ϕ for the first three Wendland's
CSRBF defined in Eqs. (19a–19c) are expressed in Eqs. (26a), (27a),
(28a) for points located within the compact support radius and in
Eqs. (26b), (27b), (28b) for points located outside the compact
support radius.

� For C0 smoothness

ϕ0r rrα ¼ � r4

120G
þ r5

180Gα
� r6

840Gα2
ð26aÞ

ϕr4α ¼
α5

630Gr
� α4

120G
þ α3r
60G

�α2r2

72G
ð26bÞ

� For C2 smoothness

ϕ0r rrα ¼ � r4

120G
þ r6

84Gα2
� r7

84Gα3
þ 5r8

1008Gα4
� r9

1260Gα5
ð27aÞ

ϕr4α ¼
α5

1260Gr
� 5α4

1008G
þ α3r
84G

�α2r2

84G
ð27bÞ

� For C4 smoothness

ϕ0r rrα ¼ � r4

40G
þ r6

30Gα2
� 5r8

72Gα4
þ 4r9

45Gα5
� 7r10

132Gα6
þ 8r11

495Gα7

� 7r12

3432Gα8
ð28aÞ

ϕr4α ¼
8α5

6435Gr
� 7α4

792G
þ 4α3r
165G

�α2r2

36G
ð28bÞ

It should be noted that the ϕ across the support radius are
at least thrice differentiable for the minimal smoothness of
the CSRBF as evidenced by Eqs. (24) and (26a). By substituting

Eqs. (26)–(28) into Eqs. (16)–(18), the displacement and stress
particular solution kernels can be found:

� For C0 smoothness

ψ li;0r rrα rð Þ ¼ �r2 84r;ir;l� 378δliþ 420δliv
� �

2520G v � 1ð Þ

�r2 126δlir2v � 117δlir2þ 36r;ir;lr2
� �

2520Gα2 v � 1ð Þ

þαr2 105r;ir;lr � 385δlir þ 420δlirv
� �

2520Gα2 v � 1ð Þ ð29aÞ

ψ li;r4α rð Þ ¼ α2 175δli� 210δlivð Þ
2520G v � 1ð Þ �α2 2α3δli� 6α3r;ir;l

� �
2520Gr3 v � 1ð Þ

�α2r2 63αδliþ 21αr;ir;l� 84αδliv
� �

2520Gr3 v � 1ð Þ ð29bÞ

Slij;r4α rð Þ ¼ α3 δlir;j� δijr;lþ δljr;iþ 3r;ir;jr;lþ 2δijr;lv � 2δlir;jv � 2δljr;iv
� �

60r2 v � 1ð Þ

þα5 δijr;lþ δlir;jþ δljr;i� 5r;ir;jr;l
� �

210r4 v � 1ð Þ ð29dÞ

� For C2 smoothness

ψ li;0r rrα rð Þ ¼ �r2 84r;ir;l� 378δliþ 420δliv
� �

2520G v � 1ð Þ

�r2 180δlir5v � 171δlir5þ 63r;ir;lr5
� �

2520Gα5 v � 1ð Þ

þαr2 900δlir4v � 850δlir4þ 300r;ir;lr4
� �

2520Gα5 v � 1ð Þ

þα3r2 1260δlir2v � 1170δlir2þ 360r;ir;lr2
� �

2520Gα5 v � 1ð Þ

�α2r2 1680δlir3v � 1575δlir3þ 525r;ir;lr3
� �

2520Gα5 v � 1ð Þ
ð30aÞ

Fig. 2. Prismatic bar under gravitational load.

Slij;0r rrα rð Þ ¼ �r δlir;j� δijr;lþ δljr;i
� �

10α2� 15αr þ 6r2
� �

30α2
�r 28α2δlir;j� 112α2δijr;lþ 28α2δljr;i� 72δijr;lr2þ12δlir;jr2þ 12δljr;ir2

� �
420α2 v � 1ð Þ

�r 24r;ir;jr;lr2þ175αδijr;lr � 35αδlir;jr � 35αδljr;ir � 35αr;ir;jr;lr
� �

420α2 v � 1ð Þ ð29cÞ
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ψ li;r4α rð Þ ¼ α2 150δli� 180δlivð Þ
2520G v � 1ð Þ �α2 α3δli� 3α3r;ir;l

� �
2520Gr3 v � 1ð Þ

�α2r2 45αδliþ 15αr;ir;l� 60αδliv
� �

2520Gr3 v � 1ð Þ ð30bÞ

Slij;r4α rð Þ ¼ α3 δlir;j� δijr;lþδljr;iþ 3r;ir;jr;lþ 2δijr;lv � 2δlir;jv � 2δljr;iv
� �

84r2 v � 1ð Þ

þα5 δijr;lþ δlir;jþ δljr;i� 5r;ir;jr;l
� �

420r4 v � 1ð Þ ð30dÞ

� For C4 smoothness

ψ li;0r rrα rð Þ ¼ � r2

G v � 1ð Þ
r;ir;l
10

�9δli
20

þδliv
2

� 	

� r2

Gα8 v � 1ð Þ
7δlir8v
22

�175δlir8

572
þ35r;ir;lr8

286

� 	

þ αr2

Gα8 v � 1ð Þ
32δlir7v

15
�92δlir7

45
þ4r;ir;lr7

5

� 	

þ α6r2

Gα8 v � 1ð Þ
7δlir2v

5
�13δlir2

10
þ2r;ir;lr2

5

� 	

þ α3r2

Gα8 v � 1ð Þ 8δlir5v �38δlir5

5
þ14r;ir;lr5

5

� 	

� α4r2

Gα8 v � 1ð Þ 5δlir4v �85δlir4

18
þ5r;ir;lr4

3

� 	

� α2r2

Gα8 v � 1ð Þ
35δlir6v

6
�245δlir6

44
þ70r;ir;lr6

33

� 	
ð31aÞ

ψ li;r4α rð Þ ¼ α2 3575δli� 4290δlivð Þ
25740G v � 1ð Þ �α2 16α3δli� 48α3r;ir;l

� �
25740Gr3 v � 1ð Þ

�α2r2 936αδliþ 312αr;ir;l� 1248αδliv
� �

25740Gr3 v � 1ð Þ ð31bÞ

Slij;r4α rð Þ ¼ 4α3 δlir;j� δijr;lþ δljr;iþ 3r;ir;jr;lþ 2δijr;lv � 2δlir;jv � 2δljr;iv
� �

165r2 v � 1ð Þ

þ8α5 δijr;lþ δlir;jþ δljr;i� 5r;ir;jr;l
� �

2145r4 v � 1ð Þ ð31dÞ

4. Method of fundamental solutions for homogeneous
solutions

In the MFS, the homogeneous displacement and stress solu-
tions satisfying the homogeneous system consisting of Eqs. (7) and
(8) can be approximated by a series of fundamental solutions
Gm
li ; Hm

lij with coefficients βm
l

uh
i Xð Þ ¼

XM
m ¼ 1

βm
l G

m
li Xð Þ ð32aÞ

σh
ij Xð Þ ¼

XM
m ¼ 1

βm
l H

m
lij Xð Þ ð32bÞ

where M is number of source points placed outside the domain.
Similar to that in Eq. (15), the fundamental solution Gli makes

use of Euclidian distance between two points

Gm
li Xnð Þ ¼ Gli jjXn�Xmjjð Þ ¼ Gli rnmð Þ ð33Þ

Slij;0r rrα rð Þ ¼ �r δlir;j� δijr;lþ δljr;i
� �

14α5� 84α3r2þ 140α2r3� 90αr4þ 21r5
� �

42α5

�
r 28α5δlir;j� 112α5δijr;lþ 28α5δljr;i� 189δijr;lr5þ 21δlir;jr5þ 21δljr;ir5þ 800αδijr;lr4
� �

420α5 v � 1ð Þ

�
r � 100αδlir;jr4� 100αδljr;ir4þ105r;ir;jr;lr5� 1225α2δijr;lr3þ 175α2δlir;jr3þ 175α2δljr;ir3
� �

420α5 v � 1ð Þ

�
r 720α3δijr;lr2� 120α3δlir;jr2� 120α3δljr;ir2þ 525α2r;ir;jr;lr3� 240α3r;ir;jr;lr2� 400αr;ir;jr;lr4
� �

420α5 v � 1ð Þ ð30cÞ

Slij;0r rrα rð Þ ¼ 4r3 δijr;l� 6δlir;j� 6δljr;iþ 2r;ir;jr;l� 7δijr;lv þ 7δlir;jv þ 7δljr;iv
� �

5α2 v � 1ð Þ

�r δijr;l� 4δlir;j� 4δljr;i� 5δijr;lv þ 5δlir;jv þ 5δljr;iv
� �

5 v � 1ð Þ

�10r5 δijr;l� 8δlir;j� 8δljr;iþ 4r;ir;jr;l� 9δijr;lv þ 9δlir;jv þ 9δljr;iv
� �

3α4 v � 1ð Þ

þ28r6 δijr;l� 9δlir;j� 9δljr;iþ 5r;ir;jr;l� 10δijr;lv þ 10δlir;jv þ 10δljr;iv
� �

5α5 v � 1ð Þ

�140r7 δijr;l� 10δlir;j� 10δljr;iþ 6r;ir;jr;l� 11δijr;lv þ 11δlir;jv þ 11δljr;iv
� �

33α6 v � 1ð Þ

þ8r8 δijr;l� 11δlir;j� 11δljr;iþ 7r;ir;jr;l� 12δijr;lv þ 12δlir;jv þ 12δljr;iv
� �

5α7 v � 1ð Þ

�35r9 δijr;l� 12δlir;j� 12δljr;iþ 8r;ir;jr;l� 13δijr;lv þ 13δlir;jv þ 13δljr;iv
� �

143α8 v � 1ð Þ ð31cÞ
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where Xn represents the collocation points on Γ and Xm represents
the source points placed outside Ω.

As is well known in the literature, there is a trade-off between
numerical accuracy and stability that the MFS equations could
become highly ill-conditioned with increased radial distances in
the fundamental solutions [27,31–34]. Usually, the source points

can be put on a virtual boundary, which is geometrically similar to
the physical boundary of the solution domain. In particular, the
source points location can be systematically generated by the
following equation [28,35]:

Xm ¼ Xnþc Xn�Xcð Þ ð34Þ

where Xc is the centre of Ω and c is a dimensionless parameter to
be specified for placing the source points outside Ω. The magni-
tude of c is a dominant factor of numerical accuracy due to its
impact on the radial distances in the fundamental solutions. In our
practical computation, the parameter c can be feasibly chosen
according to the number of source points to avoid the ill-
conditioning of the computing matrix [35,36].

Table 2
Stress results for the prismatic bar numerical simulation.

z (m) σzz (kPa)

Present method ABAQUS Analytical solutions

Sparseness¼20% Sparseness¼60% Sparseness¼100%

�0.25 36.34 36.02 35.88 36.30 35.6
�0.50 30.87 30.60 30.44 31.81 30.0
�0.75 25.57 25.35 25.19 25.91 25.0
�1.00 20.42 20.24 20.10 20.31 20.0
�1.25 15.32 15.18 15.06 15.08 15.0
�1.50 10.20 10.13 10.04 10.01 10.0
�1.75 5.11 5.07 5.02 5.00 5.0
MAPE (%) 2.232 1.390 0.673 1.975

Fig. 4. Displacements and normal stresses along the centreline of the prismatic bar
subjected to gravitational load.

Table 1
Displacement results for the prismatic bar.

z (m) �uz (10�3 m)

Present method ABAQUS Analytical solutions

Sparseness¼20% Sparseness¼60% Sparseness¼100%

�0.25 0.2424 0.2404 0.2397 0.2055 0.2345
�0.50 0.4526 0.4487 0.4471 0.4141 0.4375
�0.75 0.6291 0.6237 0.6211 0.5944 0.6100
�1.00 0.7729 0.7663 0.7627 0.7392 0.7500
�1.25 0.8845 0.8770 0.8726 0.8500 0.8600
�1.50 0.9642 0.9561 0.9511 0.9285 0.9450
�1.75 1.0119 1.0036 0.9982 0.9754 0.9900
MAPE (%) 2.871 2.003 1.552 3.728

Fig. 3. Distributions of field points, source points and interpolation points for the
prismatic bar.
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For 3D isotropic linear elastic problems, the fundamental
solutions in Eq. (32) is given as [37]

Gm
li Xnð Þ ¼ 3�4vð Þδliþr;lr;i

16πG 1�vð Þr ð35aÞ

Hm
lij Xnð Þ ¼ 1

8π 1�vð Þr2 1�2vð Þ δijr;l�δlir;j�δljr;i
� ��3r;lr;ir;j

� � ð35bÞ

From basic definition of fundamental solutions, the homoge-
neous solutions in Eq. (32) analytically satisfy the homogeneous
governing equation (7). Thus, only the modified boundary condi-
tions (8) need to be considered to determine the unknown
coefficients βm

l . For example, by making number of collocation
points on the physical boundary Γ equal to the number of source
points, we can obtain M linear equations to uniquely solve for the
coefficients βm

l , i.e.

XM
m ¼ 1

βm
l G

m
li Xkð Þ ¼ ui Xkð Þ�up

i Xkð Þ; Xk ð1rkrN1ÞAΓu ð36aÞ

XM
m ¼ 1

βm
l H

m
lij Xq
� �

nj Xq
� �¼ ti Xq

� ��tpi Xq
� �

; Xq ð1rqrN2ÞAΓt

ð36bÞ
where N1 and N2 are the numbers of nodes on the displacement
boundary Γu and the traction boundary Γt, respectively. Mean-
while, M¼N1þN2. Finally βm

l can be determined by solving this
square system of linear equations.

5. Numerical examples and discussions

To demonstrate the accuracy and efficiency of the derived
formulation, three brenchmark examples, which are solved by
the proposed meshless collocation method, are considered in this
section. The examples include: (1) a prismatic bar subjected to
gravitational load, (2) a cantilever beam under gravitational load,
and (3) a thick cylinder under centrifugal load. For simplification,
only Wendland's CSRBF with smoothness C0 is considered here.
Simulation results obtained from the proposed method and the
conventional FEM method are compared against the analytical
solutions. We also compute the mean absolute percentage error
(MAPE) as an effective description for quantifying the average
performance accuracy of the present method

MAPE¼ 1
nt

Xnt

i ¼ 1

f simulation

� �
i

f analytical
� �

i

�1














� 100% ð37Þ

where fanalytical and fsimulation are the analytical and simulation
values evaluated at test point i. nt is the total number of the test
points.

5.1. Prismatic bar subjected to gravitational load

In the first example, we consider a straight prismatic bar
subjected to gravitational load, as shown in Fig. 2. The dimensions
of the bar are 1 m�1 m�2 m and it is fixed at the top. Assuming
the bar being loaded along the z-direction by its gravitational load,

Fig. 6. Bending of cantilever beam under gravitational load.

Fig. 5. Contour plots of the vertical displacement component by ABAQUS (left) and the present method (right).

Fig. 7. Distributions of field points, source points and interpolation points for the
cantilever.
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the corresponding body forces can be expressed as

bx ¼ 0; by ¼ 0; bz ¼ ρg ð38Þ

where ρ is density and g is gravity.
The material parameters used in the simulation are:

E¼ 4� 107 Pa; v¼ 0:25; ρ¼ 2000 kg m�3; g ¼ 10 m s�2. A total
number of 490 collocation points are equally spaced on Γ and an
additional of 300 points are arranged inside Ω for interpolation
using the CSRBF. The number of source points is equal to the
number of collocation points on Γ, in which the geometric
parameter c of (34) is chosen as 3.0 for the generation of source
points, as shown in Fig. 3.

Test points are chosen along the centreline of the prismatic bar.
The corresponding displacement and stress results are compared
to the analytical solutions [38,39] and the FEM solutions, which
are evaluated by the commercial software Abaqus. Numerical
results in Tables 1 and 2 show the variations of displacement
and stress in terms of the sparseness of CSRBF. It is found that by
increasing the sparseness from 20% to 100%, the MAPE of the
present method reduces from 2.87% to 1.55% for the displacement
component uz and from 2.23% to 0.67% for the stress component
σzz. Meanwhile, the MAPE of the Abaqus records at 3.73% and
1.98% respectively. Fig. 4 displays the distribution of displacement
and stress components for the sake of clearness. Overall, the
present method gives good accuracy and good stability of numer-
ical results for different sparseness values as demonstrated in
Tables 1, 2 and Fig. 4. It is noted that in the Abaqus, a total number
of 9537 elements of type 20-node quadratic brick are employed for
the prismatic bar. Besides, the isoline plot of uz is provided in
Fig. 5, fromwhich a similar colour distribution of the displacement
is observed for both the Abaqus and the present method.

5.2. Cantilever beam under gravitational load

Next we consider the bending problem of a cantilever beam
under gravitational load. The cantilever beam fixed at y¼0 is
assumed to have dimensions 1 m� 2m�1 m as shown in Fig. 6. If
the gravitational force is along the z-axial direction, the corre-
sponding body forces are the same as those described in Eq. (38).

For the sake of convenience, the material parameters used in
the simulation are taken to be the same as those in the first
example. A total number of 250 collocation points are equally
spaced on the physical boundary and additional 72 interior points
are uniformly distributed in the domain for the CSRBF interpola-
tion. However, due to the shear locking, the solving matrix in the
MFS could be highly ill-conditioned [40]. To counter this, a number

Table 3
Displacement results for the cantilever numerical simulation.

y (m) uz (10�3 m)

Present method ABAQUS

Sparseness¼20% Sparseness¼60% Sparseness¼100%

0.25 �0.953 �0.949 �0.940 �0.939
0.50 �2.469 �2.459 �2.436 �2.429
0.75 �4.314 �4.294 �4.253 �4.249
1.00 �6.347 �6.317 �6.254 �6.263
1.25 �8.468 �8.425 �8.340 �8.373
1.50 �10.605 �10.548 �10.440 �10.500
1.75 �12.704 �12.633 �12.501 �12.586

Fig. 8. Displacements along the centre axis of the cantilever subjected to
gravitational load.

Fig. 9. Contour plots of the displacement results from ABAQUS (left) and the present method (right).

Fig. 10. Thick cylinder under centrifugal load.
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of 1000 source points are generated with geometric parameter
c¼1.0. Fig. 7 displays the geometrical configuration of the source
points, collocations and interior interpolation points used in the
computation.

To investigate bending shape of the beam, the numerical
results of deflection along the y-axis from the present method
are compared to those from Abaqus in Table 3. It is found that the
numerical results obtained from the various degrees of sparseness

do not deviate more than 1.7% from the full sparseness. This
implies that the computational accuracy of the present method is
not sensitive for low sparseness. The numerical solutions seem to
converge when the degree of sparseness increases and the
discrepancy between the present method at full sparseness and
Abaqus is only 0.32%. For better illustration, the deflection results
from the present method are plotted in Fig. 8 and well agreement
between the present method and Abaqus is demonstrated. In
Abaqus, a total number of 9537 elements of type 20-node quad-
ratic brick elements are employed. Fig. 9 illustrates the isoline
maps of the beam deflection from the conventional FEM imple-
mented by Abaqus and the present method, and similar distribu-
tion can be observed.

5.3. Thick cylinder under centrifugal load

In the third example, a cylinder with 10 m internal radius, 10 m
thickness and 20 m height is assumed to be subjected to centri-
fugal load. Due to the rotation, this cylinder is subjected to
apparent generalised body force. If the cylinder is assumed to
rotate about its z-axis as shown in Fig. 10, the generalised body
forces in terms of spatial coordinates can be written as

bx ¼ ρw2x; by ¼ ρw2y; bz ¼ 0 ð39Þ
where w is the angular velocity. In this example, w¼10 is chosen.

The problem is solved with dimensionless material parameters
E¼ 2:1� 105; v¼ 0:3;ρ¼ 1. According to the symmetry of the
model, only one quarter of the cylinder domain needs to be
considered for establishing the computing model. Proper sym-
metric displacement constraints are then applied on the symmetric
planes (see Fig. 10). In the quarter cylinder model, a total number of
430 collocation points are equally spaced on Γ and an additional of
216 points are arranged in Ω for the CSRBF interpolation. For
convenience, the number of source points is chosen to be equal to

Fig. 11. Distributions of field points, source points and interpolation points for the
thick cylinder.

Table 4
σr results for the thick cylinder numerical simulation.

r σr (kPa)

Present method ABAQUS Analytical solutions

Sparseness¼20% Sparseness¼60% Sparseness¼80% Sparseness¼100%

11.25 2.723 2.221 2.424 2.340 2.434 2.367
12.50 4.068 3.603 3.673 3.691 3.740 3.620
13.75 4.562 4.247 4.132 4.271 4.233 4.099
15.00 4.482 4.269 4.027 4.245 4.108 4.010
16.25 4.005 3.789 3.489 3.751 3.568 3.484
17.50 3.194 2.902 2.582 2.888 2.647 2.604
18.75 1.942 1.652 1.357 1.684 1.442 1.430
MAPE (%) 17.694 7.492 1.594 7.073 2.394

Table 5
σt results for the thick cylinder numerical simulation.

r σt (kPa)

Present method ABAQUS Analytical solutions

Sparseness¼20% Sparseness¼60% Sparseness¼100%

11.25 33.88 28.69 29.92 31.48 30.66
12.50 29.71 26.29 27.00 28.24 27.47
13.75 26.27 24.24 24.53 25.55 24.86
15.00 23.27 22.45 22.38 23.21 22.61
16.25 20.51 20.84 20.43 21.10 20.60
17.50 17.96 19.36 18.63 19.12 18.74
18.75 15.78 18.03 17.05 17.21 16.97
MAPE (%) 5.542 3.520 1.200 2.392
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the number of collocation points on Γ, and their configuration is
shown in Fig. 11 by setting the geometric parameter c¼1.0.

For the rotating cylinder, the displacement and the stress fields
are more complicated than those in the straight prismatic bar and
the cantilever beam as discussed above. The results of radial and
hoop stresses and radial displacement at specified locations are
tabulated respectively from the present method (see Tables 4–6).

These results are then compared to Abaqus with 10,881 elements
of type 20-node quadratic brick elements and the analytical
solutions [38,39]. As similar to the former two examples, the
MAPE of the present method reduces with increased sparseness.
That is, from 17.69% to 7.07% for the radial stress, 5.54% to 1.2% for
the hoop stress and 7.69% to 0.09% for the radial displacement
while the MAPE of Abaqus is recorded at 2.39% for the stress fields

Fig. 12. Plot of radial displacements and radial stresses along the radial direction of the cylinder subjected to centrifugal load (left) and plot of hoop stresses along the same
reference locations (right).

Table 6
ur results for the thick cylinder numerical simulation.

r ur (m)

Present method ABAQUS Analytical solutions

Sparseness¼20% Sparseness¼60% Sparseness¼100%

11.25 1.721 1.562 1.601 1.641 1.604
12.50 1.684 1.531 1.568 1.606 1.571
13.75 1.659 1.509 1.546 1.582 1.547
15.00 1.643 1.491 1.529 1.563 1.529
16.25 1.630 1.474 1.514 1.546 1.513
17.50 1.619 1.455 1.498 1.529 1.497
18.75 1.607 1.432 1.478 1.510 1.477
MAPE (%) 7.692 2.649 0.092 2.225

Fig. 13. Contour plots of the σr results simulated in Abaqus (left) and the present method (right).
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and 2.23% for the radial displacement. The present method seems
to provide better accuracy for the radial displacement as well as
the hoop stress. For the radial stress, an optimal MAPE of 1.59% is
found at 80% sparseness of the present method comparing to the
2.39% obtained from the Abaqus. Overall, it is found that reason-
able agreement with the analytical solutions is obtained as shown
in Fig. 12. The present method with small number of collocations
can produce better results than the conventional FEM solutions,
which use more elements and nodes, particularly for the case of
large sparseness. To investigate the distribution of stresses and
displacement in the entire computing domain, some contour plots
are given in Figs. 13–15, from which similar variation is observed
between Abaqus and the present method.

6. Further discussions on the sparseness of CSRBF

As we know, the merits of using the CSRBF are that the
resulting interpolation matrix is sparse for saving computation
time and storage. The sparseness of the CSRBF matrix is defined as
the cumulative frequency of radial pairs inside the support radius
α. As described in Eq. (20), the cumulative frequency plot of radial
distance against the normalised radial distance can be computed
as shown in Fig. 16. For instance, a 50% sparseness requirement on
the quarter cylinder simulation would imply a 0.4 cut off value for

α. Since the interpolation points are evenly distributed inside the
simulation domains, we anticipate that the standard deviation of
the radial distances as well as the sensitivity of α with respect to
the sparseness requirement will not differ much for different
model geometries.

Fig. 15. Contour plot of the ur results simulated in Abaqus (left) and the present method (right).

Fig. 14. Contour plot of the σt results simulated in Abaqus (left) and the present method (right).

Fig. 16. Cumulative frequency plot of radial distance for prismatic bar, cantilever
and quarter cylinder. std is the standard deviation of the radial distance.
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Besides, sparse matrix could potentially save up computational
resources when performing matrix inversion due to the many zero
entries enforced on the CSRBF interpolation matrix. Since Wend-
land's CSRBF is derived to be positive definite, symmetric and
sparse [16], Cholesky decomposition can always be employed as
an effective mean to factorise the CSRBF matrix φ into upper
triangular matrix: φ¼UTU for solving the system of linear equa-
tions [41]. During the decomposition, however, fill-in may be
created resulting in a less sparse system. Reducing the CSRBF
matrix fill-in can be achieved by reordering φ of sparse structure
before computing the Cholesky decomposition.

Three popular reordering methods, namely the reverse Cuthill–
McKee, approximate minimum degree and nested dissection algo-
rithms are chosen to study the effectiveness of minimising the fill-
in for the CSRBF matrix. The reverse Cuthill–McKee algorithm seeks
to reorder the interpolation matrix with narrow bandwidth [42,43].
The approximate minimum degree algorithm seeks to reorder the
matrix with large blocks of continuous zeroes [44,45]. While the
minimum degree algorithm prioritises the matrix permutation
based on the sparsest pivot row and column, the nested dissection
algorithm searches for a node separator, which in turn recursively
splits a matrix graph into subgraphs from a top down perspective
[46,47]. This paper employs the Matlab build-in functions: symrcm
and symamd to perform the Cuthill–Mckee reordering and the
approximate minimum degree reordering respectively. The nested
dissection implementation follows the algorithm described by Davis
[46]. These three reordering algorithms are employed to illustrate
the sparse structures of the CSRBF interpolation matrix and the

corresponding Cholesky's upper triangular matrix for the prismatic
bar simulation. For the reverse Cuthill–Mckee reordering as shown
in the left column of Fig. 17, one can clearly see that the usage of the
CSRBF can produce banded interpolation matrix which also results
in a banded Cholesky's upper triangular matrix. It is noted that the
change of the matrix bandwidth is inversely proportional to the
value of the sparseness. In the top centre of Fig. 17, the approximate
minimum degree algorithm forms a vastly different pattern of
matrix graph as comparing to the former algorithm. There we can
see that a lower degree of sparseness (less non-zero entries) tends
to produce larger and more blocks of zero entries scattering inside
the interpolation matrix. Similarly the nested dissection algorithm
produces graph with large blocks of zero entries, in which the non-
zero entries are ordered in leaf up shape as shown in the upper
right corner of Fig. 17. Neither of the approximate minimum degree
nor the nested dissection algorithm produces Cholesky's upper
triangular matrix with pattern consistent with the CSRBF matrix
before the decomposition (lower mid and lower right of Fig. 17).

To illustrate the effectiveness of each of the reordering algo-
rithms, the sparseness of the Cholesky's upper triangular matrix
with respect to the varied sparseness of the CSRBF matrix for the
prismatic bar simulation is plotted in Fig. 18. Ideally, the sparse-
ness of the Cholesky's upper triangular matrix is at best equal to
the sparseness of the original interpolation matrix provided that
there is no fill-in during the Cholesky's decomposition process.
Conversely, a full interpolation matrix will result in a full Choles-
ky's upper triangular matrix. As seen in Fig. 18, CSRBF matrix with
sparseness higher than 90% seems to create the same amount of

Fig. 17. Structures of the interpolation matrix at 10% sparseness for prismatic bar after reordering using Reverse Cuthill–McKee algorithm (left column), approximate
minimum degree (centre column) and nested dissection (right column). First row presents the interpolation matrices after reordering. Second row presents the Cholesky's
upper triangular matrices after reordering. bw is the bandwidth and nz is the number of non-zero entries of the matrices.
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fill-in with or without the reordering. For sparseness lower than
90%, Cuthill–Mckee algorithm is capable of reducing the fill-in
consistently and noticeably. The approximate minimum degree
algorithm seems to be effective for sparseness lower than 40% and
could only outperform the Cuthill–Mckee algorithm slightly for
very sparse CSRBF matrix, i.e. roughly below 20%. The performance
of the nested dissection algorithm is the mix of the former two
algorithms. At sparseness 50% or above, its performance follows
that of the Cuthill–Mckee algorithm with occasional outliners; for
sparseness below 50%, its performance follows that of the approx-
imate minimum degree algorithm with moderate and continuous
fluctuations. Sparse matrices with reordering algorithms are gen-
erally better than the ones without reordering. This can be
observed by comparing the curve without reordering (green
scattered crosses) to the very few other points that have worse
sparseness in the Cholesky's upper triangular matrix after the
reordering. The curves of the Cuthill–Mckee and the approximate
minimum degree reordering algorithms can be adequately
described by the use of exponential functions: y¼ a1 ea2xþa3 ea4x

where a1, a2, a3, a4 are the coefficients for the curve fitting.

7. Conclusion

In this study, the mixed meshless collocation method is devel-
oped through the MFS framework to enrich the application of 3D
isotropic linear elasticity with the presence of body forces. The
particular solution kernels using the CSRBF interpolation for
inhomogeneous body forces are derived using the Galerkin vectors
and then coupled with the method fundamental solutions based
on a linear combination of fundamental solutions for the full
displacement and stress solutions in the solution domain. Numer-
ical results presented in this paper demonstrate that the proposed
meshless collocation method is capable of solving three-
dimensional solid mechanics problems with inhomogeneous
terms efficiently in addition to obtaining high accuracy with varied
degrees of sparseness. In contrast to the globally supported RBF,
the CSRBF interpolation can provide stable and efficient computa-
tional treatment of various body forces. Moreover, the particular
solution kernels derived in this paper are directly applicable to the
boundary element formulation and other boundary-type methods
for determining particular solutions related to inhomogeneous
terms in the solution domain.
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