
Pergamon 0045-7949(94)Ew6-6 

Comprers & Swucrures Vol. 58. No. 4, pp. 835-843. 1996 
Elsetier Science Ltd 

Printed in Great Britain 
0045-7949/96 $9.50 + 0.00 

COUPLED TORSIONAL-FLEXURAL VIBRATION OF SHAFT 
SYSTEMS IN MECHANICAL ENGINEERING-I. 

FINITE ELEMENT MODEL 

Qing Hua Qinf and Cheng Xiong Mao$ 
TDepartment of Mechanics and SDepartment of Electrical Engineering, Huazhong University of 

Science and Technology, Wuhan, 430074, People’s Republic of China 

(Received 9 July 1993) 

Abstract-A new shaft element model with 10 degrees of freedom for coupled torsional-fiexural vibration 
of rotor systems is developed. The model is based on an extended Hamilton’s principle and includes the 
effects of translational and rotational inertia, gyroscopic moments, bending, shear and torsional 
deformations, internal viscous and hysteretic damping, and mass eccentricity. The practical efficiency of 
the new element has been assessed through a series of examples. 

1. lNTRODlJCTION 

Rotary machines, such as motors, compressors and 
turbines are very common and widely used. Recently 
the designers of these machines have been required to 
meet very severe specifications from the demands of 
high speed operating power or improvements in 
efficiency and reliability for the design. In such situ- 
ations, finding some robust and reliable mathematical 
models, in conjunction with special numerical sol- 
ution procedures, which enable designers to make an 
accurate assessment of the relevant parameters, the 
critical speeds and the dynamic behaviour of 
the system, especially the response of the system to 
unbalance excitation, is of great importance in 
order to design for increased speeds of rotation, to 
optimize weight, to improve reliability, and to reduce 
maintenance costs. 

During the last 30 years many different mathemati- 
cal methods have been proposed for the analysis of 
rotor systems (see reference lists in Dimarogonas and 
Paipetis [l] and Zhang [2]). To the authors’ knowl- 
edge an early work on the use of a finite element 
method for modelling a rotor-system is due to Ruhl 
and Booker [3,4], but their finite element model only 
includes translational inertia and bending effects. At 
about the same time Thorkildsen [5] developed a 
finite element which was more general than Ruhl and 
Booker’s in that it also included rotatory inertia and 
gyroscopic moments. In 1974 Polk [6] presented a 
study on natural whirl speed and critical speed analy- 
sis using a Rayleigh beam finite element. Nelson and 
Mcvaugh [7], using the Rayleigh beam theory, im- 
proved Polk’s model by adding the effects of axial 
load and axial torque. Gash [8] refined the formu- 
lation by taking account of the destabilizing effect 
due to linear viscous damping. Zorzi and Nelson [9] 

inspired by the work of Gunter [lo] and 
Dimarogonas [ 111, include a second destabilizing 
mechanism due to internal hysteretic damping. Later 
on Nelson [12] presented a model which included 
shear deformation but neglected internal damping. 
dzgiiven and ozkan [13], and Hashish and 
Sankar [14] extended the description of the cylindrical 
C’-compatible shaft element by synthesizing the pre- 
vious models. More recently Edney et al. [15] 
described a conical-C’ compatible shaft element with 
eight degrees of freedom, by assuming constant shear 
distribution along the length of the element, Gmiir 
and Rodrigues [16] developed a set of Co-compatible 
linearly tapered shaft elements including the effects of 
translational and rotatory inertia, gyroscopic 
moments, internal viscous and hysteretic damping, 
shear deformation and mass eccentricity, but not 
including torsional effects. Moreover the excitation is 
limited to being harmonic (e.g. unbalanced forces). 

From the preceding survey of the development of 
rotor system models an observation may be made. 
Researchers have in the past focused their attention 
mainly on the development of rotor system elements 
including the effects of translational and rotatory 
inertia, gyroscopic moments, internal viscous and 
hysteretic damping, shear deformation, and mass 
eccentricity, and the spin speed is often assumed to be 
constant. These approaches are inadequate to study 
dynamic behaviour of a large power system due to a 
pulse load or other special load. At the same time 
these formulations are not able to model the coupled 
torsional-transverse motion, such as the subsyn- 
chronous torsional oscillations of steam turbines and 
generator shaft [17], due to neglecting the torsional 
deformation. Sometimes it is important to obtain the 
information concerning the instantaneous coupled 
torsional and transverse behaviour of a rotor bearing 
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system, especially for those regions close to the rotor torsion angle of the shaft which is assumed to be a 
instability conditions. In this case, a time-space finite small parameter). 
element model, in which the effects of torsional 
deformation are also included and the limitation of 2.2. Shane functions 1 . 
the spin speed being constant is removed, is required 
for providing meaningful solutions and for a 

A two node Timoshenko shaft element with five 

proper understanding of the dynamic behaviour of a 
degrees of freedom at each node is used as a model. 

rotor-bearing system. 
Following the method of [2, 181, the translation of a 
typical point of the element is, in this case, approxi- 
mated by the relation 

2. MECHANICAL MODELLINC 

2.1. System configuration 

A typical elastic shaft-bearing system to be 
analysed consists of a shaft, m rigid disks and n linear 
fluid-film bearings. Such a system is illustrated in 

where {a,(t)} and {a2(t)) in (3) are the generalized 

Fig. 1. A fixed coordinate reference system (XYZ), 
parameter vectors, and 

with the X-axis coinciding with the undeformed 
centreline of the shaft, is used to describe the system N*(s)= (1 s s* s)}, (2) 
configuration. The shaft element is considered to be 
initially straight and is modelled as a 10 degrees of while the rotation of a typical cross-section of the 
freedom element, namely two translations and three element is interpolated by 

rotations at each end point of the element, while the 
cross-section of the element, located at a distance s 
from the left end point, translates and rotates during 
the general motion of the element. The translational 
displacements in the Y- and Z-directions of the 
cross-section centreline, neglecting axial motion, are 
given by the two displacements (u, w). The rotations 
of the cross-section about the Y-, Z- and X-axes 
are described by the rotation angles (0, = yy - dw/&, 
0, = do/as - yz, 6, = SZt + g, where yy and y, are shear 
strains in the Y- and Z-directions, R is the rotational 
velocity inputting by the electric motor, and q the 

where E is Young’s modulus, G the shear modulus, 
k the shear correction factor, A the cross-sectional 
area, and I the second moment of area about a 
diameter. 

The nodal displacements of a typical element are 
the values of v, w, f$, 0, and 0, at the ends 1 and 2 
of the element (see Fig. 1). Applying the “boundary 
conditions” to (1) and (3), leads to 

or 

d = ca 

a = c-‘d 

(44 

(W 

Fig. 1 

+-+ 

Typical element and coordinate systems. 
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where 

U(S, r) = Nd, (5) V‘ = (l/2) 
I 

L {Er[(ae,/as)2 + (ae,/as)y 
0 

+ ItGA [(c% /as - 0,)’ + (aw /ds + OJ’] 

r+, r)= IC w 0,. 8, e,)r(r, f) (6) + GJ(ae,/a.r)‘} ds, (13) 

d={tl, w, e,., e,, o,, in which m’, Ii and Ii are, respectively, mass per unit 
x c2 w2 0,: Oz, OXZ}T (7) length, dimetral and polar mass moments per unit 

I N, 0 0 N2 0 N, 0 0 N.,O- 

0 N,-N,O 0 0 N, -N4 0 0 

N= OD,-D,O 0 0 D, -D, 0 0 . (8) 

D, 0 0 Dz 0 D, 0 0 D, 0 

00 0 Ol-(00 0 05 

and where 5 =x/L, L is the length of the element, length, and J is the cross-sectional polar moment of 
and inertia. 

The variational work of a typical shaft element is 
N,=(l +$ -l(/< -35’+25’)/(1 +$) expressed by 

Nz= L<(l +$/2-2< -+5i2+c2)/(1 +$) 

I 

L 

6W'= 6iJTPds, (14) 

N, = (+5 + 35’- 20)/(1 + $) 
0 

ly,=L5(-*/2-5 +*5/2+r2);(I+*) 
where P” = {qy qz My M, M, jT is the external force 
vector. If the vector only includes the local unbalance 

D, = c’N,i& + (EljkGA)a’N,ih’ 
force, P can be further expressed by 

t+b = 12El/kGA. (9) 
P” z pAR’{et cos C?t - et sin Rt, 

2.3. Finite element formulation 
e,: sin Qr + e: cos Rr, 0, 0, 0)’ (15) 

The element formulation can be derived by use of where p is mass density, and e; and et are eccentric- 
the extended Hamilton’s principle, which states that ities in the Y- and Z-directions of the shaft element. 
the true path renders the definite integral 

2.3.2. Rigid dfik. Assume that a typical rotor el- 
I> 

H= 
1‘ 

(T- I’+ W)dr 
ement includes n rigid disks which are located at 

(‘0) S,,S2,. . 
11 

, s,, respectively. The kinetic energy of these 
disks can be expressed by 

stationary with respect to any variation of the path 
between two instants t, and I, providing the path 
variation vanishes at the end points. The equations of 

~d=(l/2)~;mp(~2+~2)+I~,(B:+Bi) 
I 

motion are thus determined by the relation +L;,(& - 2fie,.&)j,=.,,, (16) 

i 

12 
[6(T- t’)+6W’ldt =O, (11) while the variational work of these disks is expressed 

1, by 

where T and V are the kinetic and potential energies 
respectively of the element and 6 W represents the 6Wd=&wP~I,_,,, (17) 
variational work done by external forces. I 

2.3.1. Rotor element. The kinetic and strain ener- 
gies for an isotropic linear elastic beam, including 

where Pp = (0 0 My, M,, M,, )’ for a general loading 

transverse shear and torsional deformations, are 
caSe and 

’ 
given by Pd % mtf12 ed. cos Clf - ed sin fit I { JU If 9 

x e$SinQt + e$cosRt, 0, 0, O}T (18) 

+ I;(& - Zn0,8, )} d.r 
for the unbalance forces, and where mf, tj, and ldpi 

(12) denote the mass, diametrical and polar mass moment 
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of inertia of disk i, e$ and e$ are the mass centre strains for a damped shaft element can be, in this 
eccentricities of disk i in the global Y- and Z-direc- case, given by 
tions. The application of Hamilton’s extended prin- 
ciple equation (1 l), with the energy and work 
expressions (12)-( 17) and interpolation equation (5) 
produces the following matrix equation of the motion 
for the shaft-disk element: 

[M” + M”]{d} + [G" + Gd]{d} 
EIYy, 0 0 

EM’, 0 

where 

+ K”(d) = Q” + Qd (19) Lo 

s 

L 

I 

L 

MS= NTa”N ds 7 G”= NT/l=N ds, K” = 
0 0 1 

L 

BTyB ds 
0 

Q”= LN’PS&, 
s 

hid=& Gd$Gf 
0 1 I 

Qd=iQ;, Mf= NTafNI,,, G; = NTj3;NI,,, 

where 

a’= diag[m’ mi Zi fi Zb] (i = s, d) 

y = diag[kGA kGA EI EI GJI 

B=bN 

00 0 0 o- 

000 00 

0 z&l 0 

0 0 -z;n 0 0 

000 00 

a/as 0 0 -1 0 
0 alaS i 0 0 

0 alaS 0 0 

and where [M” + Md ] = [Ml, [G” + Gd] = [G], K” 
denote the mass, gyroscopic and stiffness matrices of 
the element, respectively, each being of order 10, 
while Q” + Qd = Q represents the equivalent nodal 
force vector. 

2.3.3. The effects of internal damping. During 
rotation, the element of the rotor, besides contribut- 
ing to the distributed mass and elastic deformations, 
the rotating shaft also contributes to the internal 
damping. Following the procedure of Zorzi and 
Nelson [9], the constitutive relationship between the 
moment, shear force, torque and the corresponding 

where 

[Yl = 
[ 

F 

-(Y$ + YJ,lJ~ 

Y"R + YJm 
F 1 (22) 

F = (1 + Y,)Jm~ 

and where Y’, and Yu designate the hysteretic loss 
factor and viscose damping coefficients, respectively. 

By means of the above expressions, the corre- 
sponding strain energy and dissipation function may 
be defined in the form: 

VS= (i/2) 
s 
L(Ez{ae~,as,ae,jas)[s] 

0 

x {ae,/as,ae,/a0y 

+kGA(ao/as -e,,aw/as+e,)[9](a~/as 

-eZ,aw/as +e,}*+w~(ae~a~)2)ds (23) 

DS = (112) 
s 

L pz{afJ,,as, a&/as} 
0 

[~i{ad,m, a&/as)’ 
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8 9 

Fig. 2. The configuration of a dual rotor system. 

+kGA{c%/as - 8,, 13+/h + 8,}[6’]{~d/i?s 

-8,, &~/ds + t$}T + GJY@8,/&~] d.s, (24) 

where [@I = diag[ Y,, Y,]. 
Thus the Lagrangian equations of motion, includ- 

ing internal damping, of the shaft-disk element can 
be established as 

WI {a> + [YY,K” + Gl @j 

+[FK”+ K,(Y,R + Y&/m(d) = Q, (25) 

where Kc is a circulation matrix and skew-symmetric: 

I.= 

Kc = 
1 0 L 

BTilB ds 

0 RGA 0 0 0 

-kGA 0 0 0 0 

0 0 0 EI 0 

0 0 -EI 0 0 

0 0000 

(26) 

1 . (27) 

2.3.4. The effects of&d-film bearing. A satisfactory 
model for most practical cases is to assume the 
validity of the usual linearized relationship between 

the fluid-film forces and the displacements and vel- 
ocities of the bearing location. In this standard 
model, the local matrices related to the journal 
bearings may be expressed as [ 161 

k;y k;z 0 
K:= i kiz kjz 0 1 (2W 

0 0 5x5 

(28b) 

where the stiffness and damping coefficients, which 
are determined either experimentally or analytically, 
depend upon the value of the spin speed n. 

The effects of the journal bearings can, therefore, 
be directly incorporated into eqn (25) by adding 
adequate contributions due to Kk and Ck. If 
we assume that a typical rotor element includes n 
linear fluid-film bearings which are located at 

SirS2,. .*t s,, respectively, the finite element equation 
(25) becomes 

WI ial + [Cl @I + WI 14 = Q (29) 

Table 1. Data of a dual rotor damped system 

Station (kgkl2) NTm 
c L 

N s/m m 

1 0.0577 0 2.6269 x 10’ 5254 0.0762 
2 10.7023 0.0859 - 0 0.1778 
3 0.2499 0 - 0 0.1524 
4 0.1538 0 - 0 0.0508 
5 7.0869 0.0678 - 0 0.0508 
6 0.0385 0 1.7513 x 10’ 3502 0.0508 
7 0.0467 0 1.7513 x 10’ 3502 0.0508 
8 7.202 0.0429 - 0 0.1524 
9 3.692 0.0271 - 0 0.0508 

10 0.0467 0 0.8756 x 10’ 1751 0.0508 

E = 2.068 x 10” N/m2. 
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Table 2. Eigenvalues obtained by the present FEM compared with CMS for 
example 1 

Present FEM 
A 0 

-1.98 469.2 
- 14.08 727.52 

- 113.62 1420.98 
- 107.42 2171.69 

-62.54 2334.03 
- 70.23 3010.93 

-255.84 4264.67 
- 62.99 5641.77 

CMS 
6 I w 6 

0.0265 -2.00 469.51 0.0268 
0.1216 - 14.15 728.33 0.1220 
0.5024 - 114.06 1423.34 0.5033 
0.3108 - 108.56 2174.93 0.3155 
0.1684 -63.57 2335.42 0.1709 
0.1466 -71.42 3014.76 0.1488 
0.3769 -257.85 4271.58 0.3791 
0.0725 -64.05 5650.71 0.0712 

where 

[C] = YJK”] + [G] + [Cb] (30) 

(324 

[Cb] = NTC:NI,,s,. Wb) 

In expressions (29)-(32), all matrices are symmetric 
with the exception of the gyroscopic term [G] and the 
circulation terms [K,] which are skew-symmetric. It 
can be seen from the expression for [Kj that the 
instabilities resulting from internal damping are 
characterized. It is also noteworthy that both viscous 
and hysteretic forms of material damping contribute 
to the circulation effects, with the viscous form also 
providing a dissipation term, YVKS{d}. Thus the 
viscous form can provide a stable rotor system 
providing that this dissipation term dominates. This 
is achieved when for undamped isotropic supports 
the spin speed is less than the first forward preces- 
sional mode (critical speed). 

Finally the solution of eqn (29) is twofold: 

(1) The homogeneous solution will give the critical 
speed of the system. 

(2) The dynamic response of the system. The 
enforced external loads are often of general function 
of time t. So a time-space finite element formulation 
has to be developed for treating such a category of 
problems. In doing this, the Wilson-0 method is 
utilized in this paper. On the other hand, in the time 
stepping method the centre is to express the acceler- 
ation and velocity in terms of displacement at any 
given time instant, say t,: 

d(tJ = A(t?)d(t,) + B(ti) 

d(tJ = C(ti)d(tj) + D(ti). 

(33) 

(34) 

For the Wilson-0 method, we have 

A(ti+ ,) = 6/02At2 

B(t,+ 1) = - 6[d(t/) + 6d(ti) 

x OAt + 2~(ti)~*At2/3]/~*At2 

C(ti+ ,) = 3/OAt 

D(tj+ ,) = - 3d(t,)/0At + 2;l(t,)/3 + ii(t#At/3. 

The substitution of (33) and (34) into (29), leads to 

{[K] + 6[M]/8*At2 + 3[C]/0At}d(ti + f?At) 

= Q(h) + NQ(ti + At) - s(ti)l 

- 

- 4 ,t=i 

w-m 

I- - 
I Iuc a I”’ 
I I 

1 4 5 6’7 .8 19 ,.lO _ 11 12 -13 ,.I4 15 ,.16 ,.I7 ll8 1 19 _ 
1 1 - ‘. ., -* .- 7 ., - ‘)- 

I 
I 

I 
I-. m __ J 

STAl STA2 STA3 STA4 STAS STA6 STAI 

Fig. 3. Rotor configuration for example 2. 
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Table 3. Initial data for example 2 (cm) 

Axial distance 
Station Element to the left end ID OD 

1 1 0 0.51 
2 1.27 1.02 

2 3 5.08 0.76 
4 7.62 2.03 

3 5 8.89 2.03 
6 10.16 3.30 
7 10.67 1.52 3.30 
8 11.43 1.78 2.54 
9 12.70 2.54 

10 13.46 1.27 

4 I1 16.51 1.27 
12 19.05 1.52 

5 13 22.86 1.52 
14 26.67 1.27 

6 15 28.70 1.27 
16 30.48 3.81 
17 31.50 2.03 
18 34.54 1.52 2.03 

Bearing stiffness: Kb =KFz = 4.378 x lO’N/m, 
Bearing damping: & = Ciz = 2.627 x 10’ N s/m, 

Kiz= K$= 0. 
Ciz = Cx = 0. 

Hysteretic damping loss factor: 8, = 0.1. 
Viscous damping coefficients: I, = 1.5 x 10e4 s. 
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+ [M]{6cl(ti)/~2AtZ + d(tJ/t?At + 2d(ti)} 

+ [C]{3d(ti)/0At + 2&ti) f $ri)0At/2> 

(i=l,2 )..., n), (35) 

in which 0 is a free parameter and the algorithms 
(33) and (34) are unconditionally stable when 
6 2 1.37 (0 is taken to be 1.4 in our paper). Solving 
(35) we can find the vector d of the generalized nodal 
displacements subjected to the initial condition and 

- Ref. [91 
6o - - - - Present FEM 

I I I I I I 

to 20 30 40 50 60 

Rotation speed (RPM x 10e3) 

Fig. 4. Whirl speed for example 2. 

possibly to some addition essential boundary con- 
ditions. 

3. NUMERICAL APPLICATION 

The proposed finite element model will be assessed 
by investigating three examples of rotor systems. In 
all the calculations, Poisson’s ratio is taken to be 0.3. 
The complex eigenvalues are determined in the form 

fxi = li + iw, (36) 

and the logarithmic decrement are defined as 

hi = - 27&/q (37) 

thus the stability region is ai > 0. 

Example 1. Consider the dual rotor systems [19] 
shown in Fig. 2. Some initial data are listed in 
Table 1. The rotating speed and the area moment of 
inertia about diameter axis of rotor 1 and rotor 2 are 
1047.2 rad/s, 2.6467 x 10e9 m4, 1570.8 rad/s, and 
2.1935 x lo-* m4, respectively. Table 2 lists the 
results by the proposed method and comparison 
is made with that by component mode synthesis 
(CMS) [19]. It can be seen that those results are in 
good agreement. 

Example 2. Consider a slightly complex rotor sys- 
tem as illustrated in Fig. 3 and investigate its dynamic 
behaviour and stability with whirl speed. In this 
example, a density of 7806 kg/cm2, elastic modulus of 
2.075 x 10” N/m* are used for the distributed rotor 
and a concentrated disk with a mass of 1.401 kg, 
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Gear 1 

Motor - 
Shaft 1 - 

Jl nrr m 
% % - - Shaft 2 - 

Load 

Gear 2 

Fig. 5. Model of a single stage spur-gear system 

Table 4. Parameters of the gear system [20] 

Tooth profile STD 

Diametrical pitch 
Number of teeth, Gear 1 
Number of teeth, Gear 2 
Pressure angle (“) 
Pitch radius, Gear 1 (mm) 
Pitch radius, Gear 2 (mm) 
Base radius, Gear 1 (mm) 
Base radius, Gear 2 (mm) 
Face width, (mm) 
Contact ratio 
Backlash (mm) 
Moment of inertia, Drive (kg. m2) 
Moment of inertia, Load (kg. m*) 
Moment of inertia, Gear 1 (kg. m*) 
Moment of inertia, Gear 2 (kg. m*) 
Shaft stiffness, shaft 1 (N I m/rad) 
Shaft stiffness, shaft 2 (N m/rad) 
Load per unit face width (N/mm) 

20 
20 
20 
63.5 
63.5 
59.67 
59.67 
25.4 

1.56 
0.25 
0.026 
0.026 
0.0051 
0.005 1 

102.0 
102.0 
175 

polar inertia of 0.0020 kg/m* and diametric inertia of 
0.0135 kg/m* is located at station 3. As was done in 
[9], the rotor is modelled by 18 elements which are 
listed in Table 3. The numerical results are shown in 
Fig. 4. It can be seen from Fig. 4 that the present 
value of damped critical speed (16,950 rpm) is slightly 
lower than that of Zorzi and Nelson [9] (17,500 rpm). 
The main reason is due to the effects of shear- and 
torsional-deformation. 

Example 3. The example reproduces the results 
presented by Kumar and Sanker [20] of the spur gear 
system shown in Fig. 5. The detailed information on 
the system physical properties contained in [20] is 

Time (set) 

Fig. 6. Relative response of the gear pair modelled. 

reproduced in Table 4. The integration time step is 
taken to be 0.2 s. Figure 6 shows the relative response 
of a gear pair and comparison is made with those 
given by Kumar and Sankar [20]. The results demon- 
strate that the proposed method can treat time vary- 
ing shaft system. 

4. CONCLUSION 

A new shaft element model with 10 degrees of 
freedom is developed for calculating critical speed 
and for the dynamic response analysis of a rotor 
system. The proposed method is based on an 
extended Hamilton’s principle. It includes the effects 
of translational and rotational inertia, gyroscopic 
moments, bending-, shear- and torsional- 
deformations, internal viscous and hysteretic damp- 
ing, and mass eccentricity. The numerical effort in 
this study included three practical examples and the 
results indicate that the finite element model devel- 
oped in this paper provides an accurate represen- 
tation of coupled torsional-flexural dynamic 
behaviour of a damped shaft system. Moreover the 
model can be incorporated easily in existing computer 
programs. 
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