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Abstract-The paper presents a hybrid-Trefftz element approach for the numerical solution of transient 
linear heat conduction problems. In the proposed method, the transient heat conduction equation is first 
discretized with respect to time and then the resulting set of elliptic equations is solved by the 
corresponding time independent hybrid Trefftz element approach. At the end of the paper, the proposed 
method is assessed through numerical examples. 

1. INTRODUCTION 

The application of the finite element method (FEM) 
to heat conduction problems has been initiated in 
1965 by Zienkiewicz and Cheung [l]. Consequently 
Wilson and Nickel1 [2] formulated time dependent 
finite elements with Gurtin’s variational principle [3]. 
In 1970, Zienkiewicz and Parekh [4] applied isopara- 
metric finite elements to two- and three-dimensional 
transient heat conduction problems along with a 
recursive process for the solution in time. In 1972, 
Argyris et al. [5-71 used real time-space finite el- 
ements to analyse structural problems. Later on, 
further new methods have continuously been intro- 
duced. For example, Bruch and Zyvoloski [8] solved 
two-dimensional transient heat conduction problem 
with prismatic elements based on a weighted residual 
procedure. Padovan [9, lo] reported work on heat 
conduction for linear and nonlinear anistropic ma- 
terials where the material properties were space and 
temperature dependent. Zienkiewicz [ 1 l] proposed a 
Galerkin-type formulation in place of the traditional 
finite difference formulation for the time marching 
scheme. Comini and his associates [12] reported a 
finite element solution for nonlinear heat conduction 
with phase change. Tham and Cheung [13] used a 
quasi-variational approach to develop a parabolic 
time-space element, which was unconditionally stable 
in the solution of heat conduction problems. Yu and 
Hsu [ 141 presented a generalized finite element formu- 
lation for space-time domain for heat conduction in 
solids. More recently, Chen and Chen [15] proposed 
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a new Laplace transform to remove the time deriva- 
tive from the governing differential equation and then 
solved the associated equation by the FEM. Surana 
and Teong [16] developed a 27-node three-dimen- 
sional solid p-version element for steady-state heat 
conduction, where the temperature field in all direc- 
tions of the element can be of arbitrary order. 
Donea [ 171 compared the Grank-Nicholson recur- 
rence formula with the Galerkin approach and 
showed that the Galerkin method yields better accu- 
racy for fast varying boundary conditions. 

A relatively complete comparison for different 
time-marching schemes was made by Wood and 
Lewis [18]. These schemes are able to handle a wide 
variety of complex heat conduction problems with 
irregular geometry and a dependent heat source 
generation. It is, however, often necessary to take 
very small time steps in order to avoid undesirable 
numerically induced oscillations [ 19,201 in the sol- 
ution. which may result in an excessive amount of 
computer time [21]. 

In contrast to conventional FE, the hybrid-Trefftz 
(HT) finite element approach initiated in 1978 [22], 
has many advantages [23]: high accuracy, fast p-con- 
vergence rate, enhanced insensitivity to mesh distor- 
tion, great liberty in element geometry, possibility of 
accurately representing, without troublesome mesh 
adjustment, various local effects due to loading 
and/or geometry, etc. 

The purpose of this paper is to develop a simple 
HT finite element model for analysis of transient heat 
conduction. In doing so, we first convert the original 
governing equation into a series of modified 
Helmholtz equations at discretized times and then 
develop the corresponding HT finite element formu- 
lation. 
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2. HT FINITE ELEMENT APPROACH intraelement continuity is enforced on a non-con- 

2.1. Principle of the approach forming internal displacement field (or other physical 
field) chosen so as to a priori satisfy the governing 

Consider a two-dimensional heat conduction differential equations of the problem [22,25,26]. 
equation which describes the unsteady temperature We consider again the boundary value problem 
distribution in a solid (domain a). This problem is defined by eqns (8)-(11). The domain is subdivided 
governed by the differential equation into elements and over each element “e” the assumed 

field is written as 
KV’u + Q = PC aulat (1) u=ti+f N,c,=d+Nc (12) 

subject to the initial condition on a: 

U(X,Y, 0) =r&, Y) 

,=I 

where cj are undetermined coefficients and J and N, 
(2) are known functions which satisfy 

and the boundary conditions on dR LG=b, LN,=O on R’. (13) 

u(x, y, t) = 6(x, y, t) on r, (3) For convergence, the set of homogeneous solutions 
N,, N,, . , N,,, must be such that for m + co this set 

P(X, Y, t) =F(x, Y, t) on T2 (4) is T-complete (for T-completeness see for example 
[27]). Therefore the matrix N should be formed by a 

s(x, y, t) = S(x, y, t) on r3. (5) suitably truncated T-complete set of homogeneous 
solutions (see Section 2.2.1). 

In these relations Let 

p=fcau/an, s=hu+p, s=hu,,, (6) 
re=r;ur;ur;ur:. (14) 

where 

s? = nuan, aR = r,ur,ur,, (7) 
r;=renr,, rg=renr,, r;=renr, (15) 

where u(x, y, t) is the temperature function, K 
specified thermal conductivity, V2 = a2/ax2 + a2/ay2 
the two-dimensional operator, p the density, c the 
specific heat and the overhead bar designates the 
imposed quantities. Furthermore u,, is the initial 
temperature, h is the heat transfer coefficient and u,,, 
stands for environmental temperature. 

For simplicity, consider the single step for- 
mula [24]: 

Lu, = (V2 - a)~,, = 6, (8) 

with the following boundary conditions 

U” = Is, on r,, p,=(5, on r2, 

s,, = s, on r3, (9) 

where [see eqn (6)] 

pn=Kat4,pn, s,=hu,+p,, (10) 

and where r; is the interelement portion of r’. From 
eqn (12) the following boundary quantities can easily 
be derived: 

p =g+Pc on r; (16) 

s=s”+Sc on i-g. (17) 

Furthermore, to enforce on u the conformity, 
ZP = uf on re n rf (where “e” and “f” stand for any 
two neighbouring elements), we will use an auxiliary 
interelement frame field G approximated in terms of 
the same degrees of freedom (DOF), d, as used in the 
conventional elements, but confined now to the in- 
terelement portion of the element boundary. As 
opposed to standard HT elements (where i7 extends 
over the whole element boundary, r” = aLIe), we have 
used an alternative HT formulation [26], where rI is 
confined to the interelement portion of P. The 
obvious advantage of such a formulation is the 
decrease in the number of DOF for the element 

a=$$ b,=-(V2+a)u,_,-(Q,_,+Q,,)/K 
assembly. In our case, we assume 

(11) C=Nd onr;. (18) 

and where ii”, p,,, 5, stand for imposed quantities at As an example, Fig. 1 displays a typical HT 

the time t = t,,. Hereafter, to further simplify the element with an arbitrary number of sides. In the 

subsequent writing, we shall omit the index “n” in simplest case, with linear shape function, the vector 

eqns (8) and (9). of nodal parameters is defined as 
The main idea of the HT finite element model is to 

establish a finite element formulation whereby the (19) 
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f; (frame function 

confined to this part of 

element boundary) 

Fig. 1. Typical HT element with linear frame function. 

and along a particular element side situated on r;, where 
for example, the side 1-2, we have simply: 

_ _ 
~2 = N,u, +fi2;li,, (20) 

A= 
s 

NTN dT + d* PTP dT 
CuG 

where 
+d* c STSdT (25) 

W,=l-i;*, IV*==,*. 
J’s 

(21) 

There are no degrees of freedom at nodes four and 
a= NT& - 6) dr + d* PT(j -8) dI- 

five situated on T’nT (r = domain boundary). 
I J.5 

To enforce the boundary conditions [eqn (9) ] and 
the interelement continuity on U, we minimize for +d* 

each element the following least square functional: 
s 

S’(S - 3) dT (26) 
F1 

(u - U)T(~ - ti) dT + d2 @ -HT@ -P) dr 

+d2 
s 

(s - S)T(s - s) dI- 
rz 

+ (u - G)T(u - r7) dT = Min (22) 

where d > 0 is an arbitrary chosen length (in this 
paper the average distance between the element 
center and element comers) 

(23) 

which serves the purpose of getting a physically 
meaningful functional (homogeneity of physical 
units!). The least square statement (22) yields for the 
internal parameters c the following system of linear 
equations: 

Q = NTNdf. 
s r; 

(27) 

From eqns (24)-(27), the internal coefficients c are 
readily expressed in terms of the node1 parameters d: 

c=;+Cd, (3) 

where 

;=A-$ C=A-‘Q, (29) 

To ensure a good numerical conditioning during 
the inversion of the matrix A, the homogeneous 
solutions Nj in eqn (12) have to be expressed in terms 
of suitably scaled local coordinates originated at the 
element centroid C, 

Ac=a+Qd, (24) 

where d has been defined in eqn (23) rather than in 
terms of the global coordinates x, y. 



198 J. Jirousek and Q. H. Qin 

Fig. 2. Boundary and initial conditions for example 1. 

With this comment in mind, we now turn the 
attention to the evaluation of element matrices. in 
order to enforce the “traction reciprocity” 

W/an’ + &2/f%‘= 0 on T’n P 

and to obtain a symmetric positive definite stiffness 
matrix, we set, in a simiiar way as in Jirousek [26], 

-h 
s 

GuTa dT + Kad’r, (30) 
r: 

where r stands for vector of the fictitious equivalent 
nodal forces conjugate to nodal displacement d. 
This leads to the customary “force-displacement” 
relationship 

where 

r=P+Kd (31) 

P = CT(He + h) and K = CTHC. (32) 

The auxiliary matrices h and H are calculated by 
setting 

au/an=a(a+Nc)/~n=~+Tc (33) 

d=aajan and T=aN/an (34) 

and then performing the following boundary inte- 
grals: 

h= NTj dl- 

+ r;NT(Y- hJ)dr 
s 

H= 
s 

NTTddT +A 
i-c s Kr? 

NTN dr. (36) 

Through integration by parts, it is easy to show 
that the first integral in eqn (36) may be written as 

j-rcNTNdr. =gBTBdfZ, (37) 

where 

B = {a/ax, ajayp. (38) 

As a consequence, H is a symmetric matrix. 

2.2. Generation of the intraelement jeld 

2.2.1. Homogeneous solutions N,. The eqn (8) is 
the modified Helmholtz equation, for which a T-com- 
plete system of homogeneous solution can be ex- 
pressed, in polar coordinates Y and 0, as 

N = [Z,(r,,&)I, (r&)cos 0 I, (r&)sin 0 . . , etc.], 

(39) 

where I,( ) stands for modified Bessel function of the 
first kind with order m. 

2.2.2. Particular solution. The particular solution 
t of eqn (13), for any right-hand side b, can be 
obtained by integration of the source (or Green’s) 
function 

G(P, R) = &(rP.&)12nY (40) 

where P designates the point under consideration, R 
stands for the source point, K,() is the modified 
Bessel function of second kind with zero order and 

r PR = J(% - +>* + CVR -I+)*. 

Table 1. Example 1 with 5 x 5 elements over symmetric quadrant: distribution of 
temperature along y = 1.5 at t = 1.2 h 

X 0.300 0.600 0.900 1.20 1.500 

Ref. [8] At = 0.05 h 0.599 1.139 1.568 1.843 1.938 
At =O.lOh 0.652 1.239 1.706 2.005 2.108 

Present Ar = 0.05 h 0.578 1.103 1.518 1.797 1.894 
HT FE Ar = 0.10 h 0.588 1.126 1.553 1.835 1.929 

Exact 0.560 1.065 1.466 1.723 1.812 
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Table 2. Temperature vs N (mesh density) and At 
({x,y,t} ={1.5, 1.5, 1.2h}), for HT-element 

results of example 1 

N 5 10 15 

At = 0.01 h 1.852 1.821 1.816 
At = 0.05 h 1.894 1.848 1.829 
Af =O.lOh 1.929 1.891 1.874 
At =0.15h 2.012 1.943 1.902 

Exact 1.812 

As a consequence the particular solution d of eqn (13) 
can be expressed as 

z?(P) = & W)&(rpR&) dW). (41) 

The area integration in eqn (41) will be performed by 
numerical quadrature using the Gauss-Legendre 
rule. 

3. NUMERICAL EXAMPLES 

Since the main purpose of this paper is to outline 
the basic principles of the proposed method, the 
assessment has been limited to two simple examples. 
The domain in these two examples is a square 

R={(x,y),O<x<L,O<y<L} 

with 

as in Bruch and Zyvoloski [8], who have used the 
prismatic elements in a space-time domain and based 
the solution on a weighted residual procedure. For 

Y‘ 

u=o 

l- 
Lau=O 

U(XlYlO) 
an =30 u=o 

I 

iI 
I 

u=o 
I x 

t-L-4 
Fig. 3. Boundary and initial conditions for example 2. 

comparison, we adopt the same space discretization 
and the same DOF (one DOF at element comers) as 

in Ref. [8]. Furthermore, the linear interpolation of 
the time variable used in Ref. [8] corresponds to the 
single-step method of eqns (8) and (11). In eqn (12), 
m =6. 

In the first example, the governing eqn (8) is to be 

solved, subject to the following boundary and initial 
conditions (Fig. 2). 

U(O.Y, t) = u(?c, 0. f) = u(L, )‘, t) = u(x, L, t) = 0, 

U”(S. .v) = 30. 

The analytical solution of this problem is 

L I , 

u(.u,J’, t) = 1 1 A,, sin 7 sin’: 
fl=0,=0 

x exp L -Kn2(n2 +j2)t 

L2 1 
Table 3. Example 1: comparison of u for distorted (e and z as shown in Fig. 4) and 
undistorted 5 x 5 HT-element meshes over the symmetric quadrant (r = 1.5. I = 1.2 h. 

At = 0.05 h) 

X 0.300 0.600 0.900 1.200 1.500 

Distorted for e = 0.42 0.580 1.107 1.527 1.809 1.911 
Distorted for e = 0.3~ 0.585 1.113 1.538 1.821 1.925 

Exact 0.560 1.065 I.466 1.723 1.812 

Table 4. Example 2 with 10 x 5 elements over symmetric half of domain: distribution 
of temperature along x = 1.5 at t = 1.2 h 

Y 0.300 0.600 0.900 1.20 1.500 

Ref. [8] At = 0.05 h 1.418 2.697 3.713 4.364 4.589 
At = 0.10 h 1.480 2.815 3.874 4.554 4.788 

Present AI = 0.05 h 1.393 2.651 3.649 4.298 4.524 
HT FE At =O.lOh 1.415 2.678 3.685 4.324 4.570 

Exact 1.377 2.618 3.604 4.237 4.455 
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Table 5. Temperature vs N and At ({x,~, t} = 
{ 1.5, 1.5, 1.2 h}), for HT-element results of 

example 2 

N 5 10 15 

At = 0.01 h 4.502 4.415 4.461 
At = 0.05 h 4.524 4.491 4.473 
At =O.lOh 4.570 4.512 4.484 
At =O.l5h 4.641 4.575 4.509 

Exact 4.455 

where 

Owing to the symmetry of the problem, only 
one quadrant of the solution domain has been dis- 
cretized by N x N HT elements with linear frame 
functions. Some results obtained by the approach 
are displayed in Tables l-3 along with the results of 
Ref. [8]. 

The second example differs from the previous one 
only by the boundary conditions, which now read 
(Fig. 3) 

u(L, I’, t) = U(X, 0, t) = U(X, L, t) = 0; 

&l(O, y, r)ax = 0. 

The analytical solution of this problem is equal 
to 

u(x,y,t)= f f &sin 
(2n - 1)n.X sinJ? 

n=*,=0 2L L 

[ 

- Kn2((n - O.5)2 + j2)t 
x exp 

L? I? 
where 

B,, = 8 x 30 x (- 1)“+2 
(-l)‘- 1 

j7r2(2n - 1) 

Taking into account the symmetry about y = 1.5, 
only one half of the domain has been discretized by 

T 
i 

l---i T 

.-L~2------! 
Fig. 4. Distorted mesh in Examples 1 and 2. z = 0.2 L. 

using a regular 2N x N mesh of HT elements. As in 
example 1, Table 4 gives the predicted temperature 
along x = 1.5 at t = 1.2 h and compares it with that 
of Ref. [8]. Table 5 shows the variation of the results 
as a function of the mesh density N and time step At. 
Table 6 exhibits the study of sensitivity to the mesh 
distortion. 

The results displayed in tables 1-6 show that, for 
the same element size, time step At and number of 
DOF as in Ref. [S], the results are more accurate. 
Furthermore, the results exhibit remarkable insensi- 
tivity to the mesh distortion. 

4. CONCLUSIONS 

A HT finite element model has been presented for 
analysis of transient heat conduction. Although the 
proposed formulation and the numerical examples 
have been confined to a single step scheme and simple 
quadrilateral element with a single DOF at corner 
nodes, some extensions are possible. For example, the 
extension to a multistep algorithm for time discretiza- 
tion and to a HT-I, element form for space discretiza- 
tion is under way. 

Table 6. Example 2: comparison of u for distorted (e and z as shown in Fig. 4) and 
undistorted 10 x 5 HT-element meshes over the symmetric half of domain 

(x=1.5,t=l.2h,At=O.O5h) 

Y 0.300 0.600 0.900 1.200 1.500 

Distorted for e = 0.4~ 1.398 2.662 3.668 4.310 4.539 
Distorted for e = 0.32 1.404 2.670 3.678 4.321 4.550 

Exact 1.377 2.618 3.604 4.237 4.455 
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