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Abstract 

This paper presents a family of quadrilateral hybrid-Trefftz (HT) p-elements based on Reissner-Mindlin theory of moderately 
thick plates. As compared with existing higher-order HT thick plate elements (J. Petrolito), which make use of an incomplete set 
of polynomial homogeneous solutions for the internal displacement and rotation fields and of an auxiliary conforming frame field 
involving independently interpolated boundary distributions of displacements and rotations, the new elements differ essentially 
with respect to the following two points: (1) A T-complete set of homogeneous solutions including polynomial and non- 
polynomial functions has been derived and used to represent the intraelement displacement and rotations fields. (2) The 
displacement component of the auxiliary frame field has been linked with the tangential component of the rotation so as to satisfy 
a particular constraint derived from equilibrium considerations. 

The practical efficiency of these modifications has been assessed through a series of numerical examples which have shown that 
the new p-elements are robust, more accurate in terms of the number of unknowns and of the computational effort, and that they 
do not lock in the thin limit. 

1. Introduction 

In the past decade the hybrid-Trefftz (HT) finite element (FE) model, initiated more than fifteen 
years ago [l, 21, was thoroughly explored and has now become a highly efficient and well-established 
tool. This model has been successfully applied to various boundary value problems, such as, e.g. plane 
elasticity [3-51, Kirchhoff plates [6-81, thin shells [9], axisymmetric solid mechanics [ 10, 111, Poisson’s 
equation [12, 131, etc. 

The first application of the HT approach to moderately thick Reissner-Mindlin plates is due to 
Petrolito [14] who presented a hierarchic family of quadrilateral elements with a number of degrees of 
freedom (DOF) ranging from 16 to 36. In this standard I-IT formulation, the displacement and rotation 
components of the auxiliary frame field ii = {G, GX,, &}, used to enforce conformity on the internal 
‘Trefftz’ field u = [w, OX, O,}, are independently interpolated along the element boundary in terms of 
their nodal values. 

In a recent paper [15], it has been shown that the performance of the HT thick plate elements can be 
considerably improved by the application of a linked interpolation whereby the boundary interpolation 
of the displacement, 6, is linked through a suitable constraint with that of the tangential rotation 
component, g*. This concept, introduced in [16], has recently been applied by several research workers, 
including the first two authors of the present study, to develop simple and well-performing thick plate 
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elements [15, 17-221. In particular, Jirousek et al. [15] has presented a new HT 12 DOF quadrilateral 
element with quadratic C;, linear OX, GY and an intraelement field u including 11 polynomial Trefftz 
functions. As compared with the lowest-order member of the family of standard HT elements of 
[14]-the DOF element Q21-15s (quadratic 6, linear @,, $, 15 polynomials Trefftz functions)-the 
linked interpolation used in [15] has not only made it possible to decrease from 16 to 12, the number of 
DOF and from 15 to 11, the number of Trefftz functions (hence to significantly reduce the cost of 
computation), but also to increase the solution accuracy if use is made of the same FE mesh. 

Practical experience with existing HT elements for thin plates [7, 131, plane elasticity [5] and 
Poisson’s equations [13] has clearly shown that, from the point of view of the cost and the convenience 
of use, the convergence based on a p-extension is largely preferable to the more conventional 
h-refinement process [3, 6, 121. In the HT FE approach the p-extension implies that the representation 
of the intraelement displacement field is based on a T-complete set of the Trefftz functions [2, 121. Use 
of such a set warrants that under very general conditions, the approximation converges towards the 
exact solution if the number of functions is increased (for a rigorous definition of T-completeness see, 
e.g. [23]). Unfortunately, the set of polynomial Trefftz functions, as introduced in [14] for thick plate 
application, is not T-complete and, as a consequence, the convergence of the p-extension process 
toward the exact solution cannot be warranted. In practice it means that the question of whether the 
process of increasing the order of approximation of the elements results in improvement or deter@ra- 
tion of the solution is problem dependent. In particular (Section 3), if the tangential component 0, of 
the rotation at the plate boundary is unconstrained (soft simple support or free edge), then the 
p-extension may diverge if the internal set of Trefftz functions is not T-complete. 

The aim of the present study is threefold: 
l to extend the linked interpolation concept, thus far confined to the lowest-order elements, to the 

higher-order ones; 
0 to replace the incomplete set of Trefftz functions introduced in [14] by a T-complete set; 
0 to critically assess the new family of HT thick plate elements based on the aforementioned 

modifications. 

2. Theory 

2.1. Basic relations 

The family of elements studied in this paper is based on the customary theory of moderately thick 
plates with transverse shear deformation [24, 251. A convenient matrix form of the resulting relations of 
this theory may be obtained through the use (Fig. 1) of the following matrix quantities: 

Fig. 1. Displacement, rotations, moments and shear forces involved in generalized vectors u, (T and t. 
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u = {w, 0,) O!,} generalized displacement 

E = {xX, xy, xXy 1 -yx, -y,,} = Lu generalized strains 

u = {M,, M,,, Mxy 1 Q,, Q,} = DE generalized stresses 

t = {Q,, -Mm, -M,,} generalized boundary tractions 

Here 

0 a/ax 0 

0 0 alay 

L= 0 

[ 1 alay alax strain operator matrix 

a/ax -1 0 

a/ay 0 -1 

(1) 

(2) 

(3) 

(4) 

(2a) 

Dkt 0 
D= 0 D, [ 1 elasticity matrix 

where 

[ 

1Y 0 
Eh3 

D,=--- 
v 1 0 

12(1--v’) 0 0 1; v 
1 D,=Ghk [ 1 0 ’ 

o 1 
1 , 

(34 

Pb, 4 

(E is Young modulus, v is Poisson’s ratio, G = E/2(1 + v) is the shear modulus, h is the plate thickness, 
k = 5/6 is the correction factor for non-uniform distribution of shear stress across h) and finally, 

0 coscy sin (Y 
0 boundary tractions 

transformation matrix 
-sin (Y -cos (Y 1 0 0 1 (44 

The governing differential equations of moderately thick plates are obtained if the differential 
equilibrium conditions are written in terms of u as 

L=a = LTDLu = -j , (5) 

where the load vector 

Ji = {p, -m,, -$} (5a) 

comprises the distributed vertical load in the z direction and distributed moment loads about the y and 
x axes (the overhead bar stands for imposed quantities). 

2.2. Variational formulation of HT thick plate p-elements 

The HT FE model is based on simultaneous use of two independent fields of generalized 
displacement (Fig. 2) 

l a non-conforming ‘Trefftz’ field 
m 

u=G+:~ivici=i+ivc (6) 
i=l 

where ci stands for undetermined coefficients and C and Ni are, respectively, the particular and 
homogeneous solutions to the governing differential equations (5), namely 

LTDLG =I -8 and LrDLNi = 0 (6% b) 

0 an exactly and minimally conforming (Co) auxiliary field 
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MDOF 3DOF 

z=-1 z=o z=+l 
r L - 0 
A CT B 

Modes associated with comer nodes 0 

Modes associated with mid-side nodes A 

etc. 

Fig. 2. Typical HT thick plate p-element and its frame functions. 

ii=id 

obtained in the customary way in terms of nodal parameters d. 
The variational formulation may be based on the following stationary principle [26] 

(7) 

H(u, zI) = II(C) - C Ue(85 - E) = Stationary 
e (8) 

where II(C) is the total potential energy of the plate expressed in terms of the conforming 
displacements u”, Ue(& - E”) is the strain energy of the difference E - E” = L(u - u”) for element e and 
where the sum C, is taken over all elements of the assembly. 

This formulation, which enforces conformity on u and reciprocity on boundary tractions t = ADLu at 
the interelement boundaries in addition to enforcing the free boundary condition, t = ton I; (for details 
see [26]), straightforwardly leads to the standard force-displacement relationship 

r=P+kd (9) 

where r stands for vector of equivalent nodal forces. Here, the load dependent part i of r and the 
symmetric positive definite stiffness matrix k of the element are defined as 

i=g-GH-‘h and k=GH-‘GT Pa, b) 

where the auxiliary matrices H, h, G and g can be evaluated (see [26]) by performing the following 
boundary integrals 



.I. Jirousek et al. I Comput. Methods Appl. Mech. Engrg. 127 (1995) 315-344 319 

H= 
I 

T=N tlT= 
I 

N=T U , G= 
I 

i=T dT , 
l-e l-e re 

h= 
I 

T=i dT , g= I 
iT=t” dr - 

I 
ic=tdr. 

l-e l-e G 

(1% b) 

(1% 4 

(r’ = 80ne-element boundary, r:--free part of element boundary). The important consequence of the 
fact that the integration is confined to the element boundary is that the explicit knowledge of the 
domain interpolation of the auxiliary conforming field u” is not necessary and may be replaced by a 
suitable boundary interpolation of u” (Section 2.4). 

Once the element assembly has been solved for nodal parameters, the, until now, undetermined 
parameters c of the internal field u = & + NC of any element can be evaluated in terms of its nodal 
parameters d as 

c = -H-‘h + H-‘G=d (11) 

2.3. Internal field u = C + NC 

For subsequent 8considerations, the system of governing equations (5) can conveniently be rewritten 
as 

D 
[ 

a20 i 
-$+~(1-~) 

a20 
A+;(l+V) 

aY2 
$]tc($+o 

a20 a20 
D 

[ 
-+$1-v)--J 

aY2 
+i(l+v) -g$]+c(++o 

( sol a@, - c v2W-dxLay 
> 

c-p 

where 

D= 
Eh3 5Eh 

12(1- Y”, ’ c = 12(1+ V) 

(124 

(12b) 

(124 

(124 

and where, for the sake of simplicity, vanishing distributed moment loads, ti, = 6, = 0, have been 
assumed. 

The coupling of the governing differential equations (12a-c) makes it difficult to generate a 
T-complete set of homogeneous solutions for W, 0, and 0,. To bypass this difficulty, two auxiliary 
functions, f and g, are introduced such that [27] 

It should be pointed out that 

agO afo agO afo 
=+-=(I and --x=0 

ay ar 

W, b) 

(1% b) 

are Cauchy-Riemann equations, the solution of which always exists. As a consequence, 0, and 0, 
remain unchanged. if f and g in (13a, b) are replaced by f + f. and g + go. This property will play an 
important role in the subsequent part of this section. 

The solution of Eqs. (14a, b) may be conveniently be expressed in a complex variable form (with 
i=6i) as 

f. + ig, = @(.r + iy) 

The substitution of (13a, b) into the first two differential equations (12) yields 

(I4c) 



320 J. Jirousek et al. I Comput. Methods Appl. Mech. Engrg. 127 (1995) 315-344 

~[Dv2g+C(w-g)]+~[;D(1-v)v2f-Cf]=0 

+JDv2g+C(w-g)]-~[;D(1-v)V2f-Cf] =o 

(154 

(15b) 

Now, if the contents of the two brackets are considered as independent generalized variables, 

A = [; D(1 - y)V’f - C’] and B = [DV’g + C(w -g)] 

we again get a set of Cauchy-Riemann equations 

%+&Lo 
ay 

dB aA ---= 
ay ax 

0 

and, in the same manner as in (14c), we can set 

A+iB= $D(l-v)V’f-C/]+i[DV’g+C(w-g)]=~(x+iy) 
[ (I5c) 

This relation is a non-homogeneous equation with independent unknown functions f, g and w. Its 
solution can be composed of a particular solution and a homogeneous solution. Since F(n + iy) is a 
harmonic function, it is easy to see that the particular solution can be taken as 

f+ig= -+F(x+iy) and w=O (I5d) 

It is obvious, see (13a, b) and (14a, b), that this solutions leads to 0, = 0, = w = 0. Therefore, the 
particular solution may simply be omitted and we only need to consider the homogeneous part of (15c), 
namely 

+D(l-v)vZf-Cf=o and DV2g+C(w-g)=O. 

From the second of these equations 

D 
w=g-cv2g 

The substitution of this relation and of the expressions (13a, b) into Eq. (12~) finally leads to 

DV4g+p=0. (17) 

As a result, we obtain for g and f the following differential equations 

DV4g = -J? 

and 

(18) 

V2f-i2f=0 with h’=(l-v); (19) 

2.3.1. Homogeneous solutions Ni = { wi, Oxi, 6$} 

(16) 

The relations (18) and (19) are the biharmonic equation and the modified Hemholtz equation, 
respectively. 

A set of homogeneous solutions (4 = 0) of the former is represented by biharmonic polynomials, 
which may be easily obtained [6] from the following generating sequence 
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g, = r2 g,=:x,-y2 g, =xY 

g,, = r2 Re zk g4k+l =r21mzk (20) 

g4k+2 = Re zk+’ g4k+3=Imzk+2 (k=1,2,. . .) 

where r2 = x2 + y2 and where Re and Im denote the real and the imaginary parts of a complex number. 
A set of homogeneous solutions of the latter may be generated from the following sequence [28] 

fi = AJ(W 
f2k=Zk(hk)codikq, f2k+l=Zk(hk)sink+7 (k=1,2,...) 1 

where p = arctan(y IX) and Zk( hr) is the modified Bessel function of the first kind 

Z,(a) = i - 
a(2m+k) 

I 
m 

m=O 2’2”+kGYr!T(k + m + 1) 
where r(a) = e-‘SCn-‘) d.r 

0 
(214 

In agreement with relations (13a, b) and (M), the homogeneous solutions wi, OXi, OYi are obtained in 
terms of g’s and f’s as 

However, as sets (20) of functions g and (21) of functions f are independent of each other, the 
submatrices Ni = {upi, Oxi, OYi} in (6) will be of either of the two following types 

(2% b) 

One of the possible methods of relating index i to corresponding j values in (22a, b) is displayed in 
Table 1. However, Imany other possibilities exist. It should also be pointed out that successful h-method 
elements have been obtained [14, 151 with only the polynomial set of homogeneous solutions. 

Table 1 
Example of a definition of corresponding indexes i and j involved in the generation of homogeneous solutions (22a, b) 

i I 1 2 3 4 5 6 7 8 9 10 I 

j in (22a) 1 2 3 4 5 - 6 7 8 9 
jin(22b) _ _ _ __ _ 1 _ _ _ _ 

11 12 13 14 15 16 17 18 19 20 21 22 ~yyy;;“““” 

i 1 23 24 2.5 26 27 28 29 30 31 32 33 34 1 . . etc. 

j in (22a) - - 1:s 19 20 21 - - 22 23 24 25 . . . etc. 
j in (22b) 6 7 _. _ _ _ 8 9 - - - - . . etc. 
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2.3.2. Particular solution C = {ti, dx?, &,,} 
The effect of various loads can accurately be accounted for by a particular solution of the form 

(23) 

where 8 is a particular solution of Eq. (18). The most useful solutions are 

jj = -pr4/64D f or a uniform load p = const . 

and 

2 = -I?$ In ri / 167~D for a concentrated load p 

(244 

(24b) 

where 

r; = (x - Xp)* + (y - y$ 

A number of particular solutions for Reissner-Mindlin plates can be found in standard texts, e.g. [29]. 

2.4. Frame field u” = id 

Since the evaluation of the element matrices (Section 2.1) only calls for boundary integration, the 
explicit knowledge of the domain interpolation of the auxiliary conforming field u” is not necessary. As a 
consequence the boundary distribution of u”, referred to as ‘frame function’, is all that is needed. 

The elements considered in this paper (Fig. 2) are of the p-type, with 3 standard DOF at corner 
nodes, e.g. 

dA = IzA = {I&, &, @,} (254 

d, = I?, = {G;,, &, $,} (25b) 

and an optional number, M, of hierarchical DOF associated with mid-side nodes 

d, = &ic = { lAGi;,, ‘A&, rAgyC 1 2A@,, 2A&, ‘A&c, . . . etc.} (254 

Since in the thin limit GX = &G/ax and_&Jy = @/a~, the order of the polynomial interpolation of G has 
to be one degree higher than that of 0, and 0, if the resulting element is.to be free of shear locking. 
Hence, if along a particular side A - C - B of the element (Figs. 2 and 3) 

$ = fi* &, + i$ GXxB + ‘il %c ‘A&.= , (264 
i=l 

(26”) 

where p” is the polynomial degree of & and &,, (the last term in (26a, b) will be missing if p” = l), then 
the proper choice for the displacement interpolation is 

d 
6 = &CA + fiBfiB + c ‘i$ ‘A$;, , (264 

i=l 

The application of these functions for p” = 1 or p” = 2 along with 13 or 25 polynomial homogeneous 
solutions (22a) leads to elements identical to Petrolito’s quadrilaterals Q21-13 and Q32-25 in [14]. One 
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of the aims of the present paper is to show that the performance of these successful elements can be 
further improved if G is linked to @ and &,, in agreement with the following consideration: 

Since the stationary principle (8) of Section 2.1 indirectly enforces equilibrium on generalized stresses 
LY corresponding to ii, it can be expected that the element performance will be improved if some of the 
parameters of ii are suitably linked so as to satisfy some statistical condition a priori (while preserving 
the necessary Co conformity). This may be accomplished if _one observes that at the boundary of a 
rectangular element the polynomial degree of the shear force Q,, obtained from moment equilibrium as 

is one degree lower’ than that derived from the tangential component of the shear deformation, namely 

(27b) 

Thus, the term with the highest polynomial degree, F, in G/at - &t must be constrained to zero (for 
more details see e.g. [15]). This leads to the following relations 

where L,, is the length of the element side and 

~,=-~~sin~+~Ycos~=-& 
AB 

(6 AGA + $ AY& 

where 

&zA=XB-XA 7 AYBA=YLI-YA 

Combining (28a-d) with (26~) finally yields 

W-4 

(28b) 

p”>l: 

g-1 

G = tiAGA + &&, + c i& ‘AG$ + 
1 

i=l 20 + p”) 
F,[“-lA& ax,, + ‘-*A& AyBA] (29b) 

Thus, if (26~) is replaced by (29a) or (29b), the polynomial degree of the 6 interpolation is maintained 
(p& = p” + 1 as compared to pe = p”) while the number M of hierarchical parameters of each element 
side is reduced by one and is now equal to 

M = 3(p” - 1) (30) 

1 Though the domain lmterpolation of C, necessary for evaluation of the relation (27a), is not given here explicitly, it is easy to 
see that for p” = 2, for example, the rotation will be represented by a full quadratic polynomial plus the terms x’y and xy2 and the 
displacement will be a full cubic polynomial plus the terms x3y and xy3. 
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It should also be noted that the above interpolation not only preserves the necessary Co conformity but 
also does not result in any strain when purely rigid body displacements and rotations are specified as 
nodal parameters. 

With (25a-c), (26a, b) and (29a, b), the frame function II= {G;, gX,, GY} along a particular side of the 
element may be conveniently written in a matrix form as follows: 

(31) 

where 

ii = iAdA + iBdB + icdc =&d, + i$d, + c ‘tic idc 
i=l 

where 

& = &z ) tiB = &z 

Z is a 3 X 3 unit matrix 

i& = &z (i = 1,2, . . . ,j?--2) tobeusedonlyifp”>2! 

and 

[ 

F-1 - 

NC 
44 

2(1+ 8 

+ic AYt?A - - 
P&Y 

+%= 

0 i-1 * 
NC 

2(1+ p”) 1 0 
- 

0 0 p-1 NC 

(314 

W) 

(32) 

Wa, b) 

(32~) 

(324 

2.5. Implementation of the new family of HT elements 

The element will be designated according to the scheme 

Gab-c/d (33a) 

where (see Sections 2.3 and 2.4), a =p” + 1 is the order of boundary approximation for fi, b =p” is the 
order of boundary approximation for 6x and 8,,, c is the number of functions in the polynomial--set 
(22a), and d is the number of functions in the set of modified Bessel functions (22b). 

A simplified designation 

Gab-c rather than Gab-c/O (33b) 

will be used if set (22b) is missing. A similar designation, namely Qab-c, has been used in [14]. The 
tilde over Q (quadrilateral) in (33a, b) has been added in order to allow the present and the Petrolito 
elements [14] to be distinguished. 
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As for all HT elements (see e.g. [6-14]), the necessary (but not sufficient) condition for the resulting 
stiffness matrix (9b) to have full rank may be stated as 

m 2 NDOF - NRIG = NDOF - 3 (34) 

where m is the number of homogeneous solutions, Ni, in the internal field (6), NDOF is the number of 
element degrees of freedom (field (7)), and NRIG is the number of rigid body modes (NRIG = 3 for 
plate bending). Though using the minimum number of Ni functions from (34) does not always 
guarantee an element with full rank, full rank can always be achieved by including more Nj functions 
into the internal field (6). In the present case the situation is considerably complicated owing to the fact 
that the same m may be obtained by a large number of combinations of the numbers of functions taken 
from either of the independent sets (22a) and (22b). The dab-c/d elements displayed in Table 2 are 
consistent with the scheme of alternating the (22a) and (22b) functions, as shown in Table 1. They have 
been numerically tested and found to exhibit no rank deficiency and to perform better than other 
possible combinations of the (22a) and (22b) functions. The Gab-c elements with purely polynomials 
functions (22a) have also been considered. Though some of them (021-11 and 643-33) exhibit one 
spurious zero energ:y mode, they may still be considered as practically robust since this mode is not 
commutable in most practical situations (see Table 2) provided that the plate has at least a minimal 
support (3DOF blocked so as to prevent rigid body modes). Indeed, in such cases global singularity 
does not occur and such elements may be largely preferable to formally flawless (no spurious zero 
energy mode) but practically too rigid 621-17 and Q43-41 elements. 

In addition to the above, the following two points must be noted when implementing the present 
family of elements: 

(1) To prevent matrix H from being singular, polynomial set (20) does not include the rigid body 
modes. As a consequence, internal displacement field (6) will be in error by rigid body 
components [6, 71. If displacements inside the element are required, then field (6) has to be 
augmented with three rigid body modes (index r) 

where c ir, c2, and cg, are undetermined coefficients to be calculated by a simple procedure [6, 71 
used to make the augmented internal field to match in a least-square sense the independent 
displacement frame Iz of the element. A simple, but less accurate alternative (not used here) 
consists in calculating the displacements from the auxiliary field u”, which in the present case (C” 

Table 2 
Overview of new HT quadrilateral thick plate elements with either T-complete (polynomials + modified Bessel) or incomplete 
(purely polynomial) sets of Trefftz function 

M Number Condition Element Actual Spurious Min m for 
of DOF (34) m modes full rank 

0 12 m29 d21-9/l 10 0 - 

621-11 11 1Na 17 

3 24 ma21 632-1715 22 0 
032-21 21 0 

6 36 m==33 643-25 I9 34 0 
043-33 33 1Nb 41 

9 48 ma4.5 654-33113 46 0 
054-45 45 0 - 

Na-non-commutable in a mesh of 2 or more elements. 
Nv-non-commutable with a minimum of 2 x 2 elements. 



326 J. Jirousek et al. I Comput. Methods Appl. Mech. Engrg. 127 (1995) 315-344 

conformity) may easily be defined over the element area rather than only at the boundary of the 
element. 

(2) To ensure good numerical conditioning of matrix H, the local coordinates n and y originated at 
the element center (Fig. 2) should be scaled, e.g. dividing them by the average distance between 
the origin and the element corners. 

3. Assessment 

3.1. Preliminary remarks 

Unlike the classical thin plate theory, the Reissner-Mindlin theory requires three independent 
boundary conditions to be prescribed at the boundary of the plate, namely: 

. w=M,=M,,,=O.. . soft simple support (SSl) 

. w=M,=O,=O... hard simple support (SS2) 
l w = 0, = 0, = 0 . . . clamped edge (C) 
l Q, = M, = M,, = 0. . . free edge (F) 
Most of the numerical studies presented in this section refer to the conventionally used square plate 

test (Fig. 3). Unless stated otherwise, the information about the mesh density concerns a symmetric 
quadrant of the plate. Furthermore, a Poisson ratio of v = 0.3 has been used in all examples and the 
displacement results are the frame values (w = G). 

The converged reference results of the thick plate theory (results designated as ‘exact’ in the 
following studies) have been generated 

l by application of the method outlined in the soft simple support (SSl) in [30] 
l by series solution presented for the hard simple support (SS2) in [29] 
l by application of the methods outlined, for the clamped edge (C) and for the combination of the 

free (F) and simply supported (SS2) boundaries (Fig. 3(d)), in [30] 
Table 3 summarizes the reference results for different span to thickness ratios, L/h, used in 

subsequent studies. 

3.2. Uniformly loaded square plate with hard simple support (SS2) 

3.2.1. h- and p-convergence study with purely polynomial T-functio_n 
The aim of this study was to investigate the performance of the Qab-c elements from Table 4. The 

results for the central displacement and bending moment for a thick plate (L/h = lo), a thin plate 
(L/h = 100) and a very thin plate (L/h = 1000) are given in Table 4. It can be seen that both the h- and 

the p-extensions perform very nicely and that no shear locking appears for the thinnest plate with 
L/h = 1000. In this case the thick plate theory approximates well the classical thin plate solution, 

Dw, = 0.00406235jjL4, M,, = 0.0478864jiL2 , 

obtained from the converged doubles series Navier solution [29]. 

(a> (b) cc> (d) 

Fig. 3. Benchmark examples of square plates with various boundary conditions. SSl-soft simple support, SS2-hard simple 
support, C-clamped edge, F-free edge. Hatched area-discretized symmetric plate quadrant (unless stated otherwise, the mesh 
density indication given in the text concerns this quadrant). 
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Table 3 

Reference results for uniformly loaded square plate (v = 0.3) 

Boundary Quantity L/h = 10 

conditions 

L/h = 40 Llh = 100 L/h = 1000 

SSl 

Fig. 3(a) 

ss2 
Fig. 3(b) 

C 
Fig. (3~) 

F+SS2 

Fig. 3(d) 

10zDw,:pL4 0.461691 0.416283 

10Mx,:pLz 0.509571 0.486616 

Q,B:PL -0.421434 -0.420835 

102Dw,:pL4 0.427284 0.407551 0.406446 0.406237 

lOM,,:pL* 0.478864 0.478864 0.478864 0.478864 

Q,B:PL -0.337660 -0.337660 -0.337660 -0.337660 

102Dw,:pL4 0.15046 0.12811 

lOM,,:pL’ 0.23200 0.22931 

10Mx,:pL2 -0.49370 -0.51192 

Q,,:PL -0.41219 -0.43572 

10ZDw,:pL4 0.156001 0.15091 

lOM,,:pL’ 0.256394 0.26760 

loM,,:pL* -0.127605 -0.13021 

Q,,:PL -0.464970 -0.46776 

Table 4 

Central deflection and central moment for simply supported (SS2) square plate (Fig. 3(b)) solved with Gab-c type of thick plate 

elements. h- and p-convergence study for L/h = 10, 100 and 1000 

Mesh over 

sym. quadrant 

1x1 

M 

0 

3 

6 

9 

L/h = 10 

10’Dw:FL4 

0.418754 

0.426476 

0.427448 

0.427284 

10Mx:pLz 

0.487982 

0.482045 

0.479180 

0.478895 

L/h = 100 

102Dw:jL4 

0.390909 

0.405531 

0.406596 

0.406440 

10M,:pL2 

0.474130 

0.489321 

0.478509 

0.478811 

L/h = 1000 

102Dw:pL4 

0.390628 

0.405318 

0.406388 

0.406231 

10MX:jL2 

0.473960 

0.489454 

0.478492 

0.478796 

2x2 

4x4 

0 0.428157 0.480086 0.405878 0.478462 0.405650 0.478419 
3 0.427241 0.478658 0.406410 0.479022 0.406202 0.479029 
6 0.427288 0.478870 0.406447 0.478830 0.406239 0.478832 
9 0.427284 0.478864 0.406446 0.478865 0.406237 0.478865 

0 0.427644 0.479043 0.406510 0.478868 0.406296 0.478856 
3 0.427282 0.478835 0.406444 0.478877 0.406236 0.478879 
6 0.427284 0.478866 0.406446 0.478861 0.406237 0.478861 
9 0.478864 0.478864 0.478864 

8X8 0 0.427379 0.478877 0.406474 0.478866 0.406265 0.478864 

3 0.427284 0.478862 0.406446 0.478864 0.406237 
6 0.478864 

9 

Exact 0.427284 0.478864 0.406446 0.478864 0.406237 0.478864 

3.2.2. Comparison of the ‘new’ frame with ‘old’ frame elements [14] 
The aim of this section is to study the consequences of replacing in Petrolito’s elements 1141 the old 

definition (26c), of G by the new one (29a, b). The definitions (26a, b) of the rotations @,, 0, as well as 
that of the purely polynomial set of initial Trefftz functions defined by (22a) and (20), remain 
unchanged. Table 5 shows an overview of the ‘old frame’ and the ‘new frame’ elements involved in this 
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Table 5 
HT elements with polynomial Trefftz functions. Overview of ‘old frame’ elements of [14] and present ‘new frame’ elements 

M 0 1 3 4 6 9 
NDOF 12 16 24 28 36 48 

Element d21-11 Q21-1.5s Q22-21 632-21 Q32-25 Q33-33 843-33 054-45 
Formulation Present ]I41 ]141 Present 1141 ]141 Present Present 

Number and type 
of spurious modes 1Na 0 0 0 3Nb 2Na 1Nb 0 

Min. m for 
full rank 17 - _ 33 35 41 

Na-non-commutable with a mesh of 2 or more elements. 
Nb-non-commutable with a minimum of 2 x 2 elements. 

study. Here, the element Q21-15s of [14] has been obtained by using the first 13 Trefftz terms plus 
terms 16 and 17 from the generating sequence (20). As stated earlier, the advantage of the new 
definition of G over the old one is the fact that, with equal number M of side modes DOF, the 
polynomial representing the new G is one degree higher than that of the old one. 

The results in Table 6 (for L/h = 10) and Table 7 (for L/h = 1000) are presented in the form of the 
percentage errors defined as 

Af % = fFEZ-fEx x 100, 
JEX 

where f stands in turn for wc, M,, and QxB and where fFE and f,, are respectively, the finite element 
results and the converged reference results from Table 3. Whenever available, the ‘old frame’ results 
have been taken from [14]. Moreover, in order to complete some missing ‘old frame’ results, the family 
of Petrolito’s elements has also been implemented into the FE library of the FE program SAFE [31]. 
The percentage errors in Tables 6 and 7 correspond to the frame values wc = Gc for displacements and 
to values derived from the internal Trefftz field (1) for M,, and Q,,. Unlike [14], no smoothing 
technique, such as, e.g. in [32-351, has been applied here to improve the predicted results for 
transverse shear forces. 

Table 6 
Comparison of ‘old frame’ ([14]) and ‘new frame’ HT elements from Table 5. % errors in wc, M,, and Q,, for simply supported 
(SS2) uniformly loaded square plate (Fig. 3(b)). L/h = 10 (thick plate) 

% error Mesh M=O 
Present 

M=l M=3 M=4 M=6 M=9 
Ref. [14] Ref. [14] Present 

Ref. 1141 Present Ref. [14] Present 

Aw, % 1x1 -1.996 -2.233 
2x2 0.204 -0.102 
4x4 0.084 -0.013 
8x8 0.022 0.006 

16 x 16 0.011 0.001 

AMxc % 1x1 1.905 6.294 
2x2 0.257 1.485 
4x4 -0.038 0.111 
8x8 -0.004 0.008 

16 x 16 0.000 0.002 

AQ,, % 1x1 -22.537 -43.834 23.275 -2.544 -8.446 19.606 -2.346 0.311 
2x2 -13.289 -4.519 29.468 -2.218 -0.829 5.245 -0.193 0.006 
4x4 -7.590 -0.811 13.564 -0.681 -0.175 0.924 -0.018 
8X8 -4.176 -0.124 4.351 -0.160 -0.033 0.133 -0.003 

16 x 16 -2.197 -0.021 1.211 -0.036 -0.006 0.018 0.000 

0.435 
-0.021 
-0.003 

0.000 

11.066 
1.380 
0.100 
0.006 
0.002 

-0.187 -0.117 -0.220 0.040 0.000 
-0.009 -0.002 -0.007 0.002 

0.000 0.000 0.000 0.000 

0.664 -0.581 -3.517 0.067 0.008 
-0.042 -0.002 -0.136 0.006 0.000 
-0.004 0.002 -0.006 0.002 

0.000 0.000 0.000 0.000 
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Table 7 
Comparison of ‘old framle’ ([14]) an d ‘new frame’ HT elements from Table 5. % errors in wc, M,, and Q,, for simply supported 

(SS.2) uniformly loaded square plate (Fig. 3(b)). L/h = 1000 

% error Mesh M=O M=l M=3 M=4 M=6 M=9 

Present Ref. [14] Ref. [14] Present 
Ref. [14] Present Ref. [14] Present 

Aw, % 1x1 -3.84 -4.10 -1.65 
2x2 -0.14 -1.02 -0.62 
4x4 0.02 -0.26 -0.16 

8X8 0.01 -0.06 -0.04 
16 x 16 0.00 -0.02 -0.01 

AMxc % 1x1 
2x2 
4x4 

8X8 
16 x 16 

AQ,, % 1x1 -25.96 -70.64 66.58 0.73 -18.51 62.44 0.97 -0.43 
2x2 -16.16 - 12.86 159.32 -4.19 12.84 44.70 -1.53 -0.02 
4x4 -8.68 -6.24 216.51 -1.83 10.23 27.93 -0.14 0.00 
8X8 -4.49 -4.53 247.44 -1.05 -5.80 15.54 -0.02 

16 x 16 -2.28 -2.69 260.04 -0.57 -0.75 7.94 -0.00 

-1.02 
-0.09 

0.00 

12.46 28.30 
6.96 6.15 
1.65 1.50 
0.40 0.37 
0.10 0.09 

-0.23 
-0.01 
-0.00 

2.21 

0.03 
0.00 

-0.12 
-0.00 

-1.87 
-0.01 
-0.00 

-0.08 0.04 -0.00 
0.01 0.00 
0.00 

-11.30 -0.08 -0.01 
-1.73 -0.01 0.00 
-0.31 -0.00 
-0.07 
-0.02 

Tables 6 and 7 shLows that the ‘new frame’ results compare favorably with the ‘old frame’ solution. In 
addition to being more accurate in terms of the number of unknowns, they exhibit, as a rule, faster h- 
and p-convergence rates. It is also interesting to point out that, for a thin plate with L/t = 1000, the ‘old 
frame’ prediction of QXB in Table 7 diverges for M = 3, whereas no such problem is encountered with 
the ‘new frame’ elements. 

The comparison Iof the ‘old’ and the ‘new frame’ solutions for shear forces displayed in Figs. 4(a) and 
(b) completes the study. 

3.2.3. Comparison of solutions with incomplete and T-complete Trefftz functions fields 

The two families of p-elements of Table 2 have been applied in turn in order to compare their 
accuracy and their h- and p-convergence. The study of results and of percentage errors in displace- 
ments, moments and shear forces displayed on Tables 8 and 9, has led to the conclusion that in the case 
of hard simple support (SS2), the two families of elements yield a compa_able degree of accuracy. 
However, from the computational point of view, the elements of the Qab-c/d family are more 
expensive to generate owing to a slightly larger number of Trefftz functions (see Table 2) and a higher 
cost of numerical integration of the non-polynomial functions (22b). 

3.2.4. Sensitivity to mesh distortion 

This study is based on the comparison of percentage errors for the uniform and distorted 4 X 4 
meshes over the whlole plate (Fig. 5). Both the thick (L/h = 10) and very thin (L/h = 1000) plates have 
been considered, and their results have been displayed in Tables 10 and 11. As expected, this study has 
confirmed that the results are not too sensitive to mesh distortion. This feature, typical for all HT 
elements (see e.g. 1[1, 3, 5-7, 13, . . .I), is mainly due to the fact that the internal Trefftz field of each 
elements is defined in his local Cartesian coordinate system and, as a consequence, does not depend on 
mesh distortion. 

3.2.5. Comparison with conventional isoparametric quadratic elements 
Since its first publication in 1970, the Ahmad isoparametric quadratic element [36] has remained the 

most popular elem’ent for analysis of moderately thick plates with transverse shear deformation. The 
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- / 
----- Old frame 

:_ / - ______________ New frame 
/ 

-0.45 

Fig. 4. Uniformly loaded simply supported (SS2) thick square plate (L/h = 10). Comparison of shear forces obtained with 2 X 2 
mesh of ‘old frame’ (Q21-21) and ‘new frame’ (632-21) HT elements. 

beneficial effect of the reduced 2 x 2 Gaussian points integration on attenuation of numerical difficulties 
encountered in the application of this element .(further designated as CIQ) to thin plates, and known as 
‘shear locking’, is now largely known and well understood [37]. Furthermore, the ‘local smoothing’ 
introduced by Hinton and Campbell [38]- a smoothing consisting of a bilinear extrapolation of results 
evaluated in the 2 x 2 Gauss points to the element nodes and of their subsequent averaging at nodes 
common to several elements-has been shown to be the simplest technique of sampling the solution 
results predicted by these elements. 

Exactly as in the case of the CIQ elements, the 632-31 and Q32-17/5 members of the two families of 
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Table 8 

Uniformly loaded simply supported (SS2) thick square plate (L/h = 10). Comparison of solutions with incomplete (dab-c) and 

T-complete (Gab-c/d) Trefftz function sets 

Quantity Mesh M=O M=3 M=6 M=9 Exact 

621-11 621-911 032-21 632-1715 643-33 643-25/9 054-45 654-33113 

103< Dw 
1x1 4.1875 4.1875 4.2648 4.2708 4.2746 4.2752 4.2728 4.2729 

FL4 2x2 4.2816 4.2818 4.2724 4.2723 4.2729 4.2729 4.2728 4.2728 
4x4 4.2764 4.2765 4.2728 4.2728 4.2728 4.2728 4.27284 

8X8 4.2738 4.2738 

16 x 16 4.2738 4.2731 

,O& 1x1 4.8798 4.8798 
FL2 2x2 4.8009 4.7987 

4x4 4.7904 4.7906 
8X8 4.7888 4.7888 

16 x 16 4.7886 4.7887 

10% 1x1 -2.6156 -2.6156 -3.2907 -3.2560 -3.2974 -3.6227 -3.3871 -3.3323 
PL 2x2 -2.9279 -3.0583 -3.3017 -3.2862 -3.3701 -3.3867 -3.3768 -3.3764 

4x4 -3.1203 -3.1314 -3.3536 -3.3552 -3.3760 -3.3768 -3.3766 -3.3766 -3.3766 
8x8 -3.2356 -3.2362 -3.3712 -3.3732 -3.3765 -3.3766 

16 x 16 -3.3024 -3.3024 -3.3754 -3.3762 -3.3766 -3.3766 

4.8204 4.8947 4.7918 4.7892 4.7890 4.7934 
4.7866 4.7866 4.7889 4.7874 4.7886 4.7886 
4.7884 4.7882 4.7887 4.7886 4.78864 
4.7886 4.7886 4.7886 4.7886 

Table 9 

Uniformly loaded simply supported (SS2) thick square plate (L/h = 10). % errors of solutions with incomplete (Gab-c) and 

T-complete (Gab-c/d) expansion sets 

Quantity Mesh M=O M=3 M=6 M=9 

021-11 621-9/ 1 032-21 032-1715 043-33 643-2519 054-45 654-33113 

Aw, % 1x1 -2.00 -2.00 -0.19 -0.05 0.04 0.06 -0.00 0.00 
2x2 0.21 0.21 -0.01 -0.01 0.00 0.00 
4x4 0.08 0.09 0.00 0.00 

8x8 0.02 0.02 
16 x 16 0.02 0.01 

AM,, % 1x1 1.90 1.90 0.66 2.21 0.07 0.01 0.01 0.10 
2x2 0.26 0.21 -0.04 -0.04 0.01 -0.03 0.00 0.00 
4x4 0.04 0.04 -0.01 -0.01 0.00 0.00 
8X8 0.00 0.00 0.00 0.00 

AQ,, % 16 x 16 

1x1 -22.53 -22.53 -2.54 -3.57 -2.35 7.29 0.31 -1.31 
2x2 -13.29 -9.41 -2.22 -2.68 -0.19 0.30 0.01 -0.01 
4x4 -7.59 -7.26 -0.68 -0.63 -0.02 0.01 0.00 0.00 
8X8 -4.18 -4.16 -0.16 -0.10 -0.00 0.00 

16 x 16 -2.20 -2.20 -0.04 -0.01 

IL------I ~--L/2-&L/2-_l 

Fig. 5. Undistorted (a) and distorted (b) 4 x 4 meshes of quadrilateral HT thick plate elements. 
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Table 10 
% errors for uniform (Fig. 5(a)) and distorted (Fig. 5(b)) 4 X 4 FE mesh. Uniformly loaded simply supported (SS2) thick square 
plate (L/h = 10) 

M Element AW, % AM,, % 
type 

Uniform Distorted mesh Uniform Distorted mesh 
mesh mesh 

d=LlS d=Ll4 d=L/S d=L14 

0 621-11 
621-911 

3 032-21 
632-1715 

6 643-33 
643-2519 

9 654-45 
G54-33/ 13 

_ 

0.20 -0.13 -1.06 0.26 2.58 5.53 
0.21 -0.11 -0.97 0.21 -2.42 3.34 

-0.01 -0.01 -0.01 -0.04 0.05 0.25 
-0.01 -0.01 -0.02 0.12 0.02 0.08 
0.00 0.00 0.00 0.00 0.00 -0.01 
0.00 0.00 0.00 0.01 -0.00 -0.03 
0.00 0.00 0.00 0.00 0.00 -0.00 
0.00 0.00 0.00 0.01 -0.00 0.00 

Exact w, = 0.00427284~LL4/D M,, = O.O478864~L* 

Table 11 
% errors for uniform (Fig. 5(a)) and distorted (Fig. 5(b)) 4 x 4 FE mesh. Uniformly loaded simply supported (SS2) thick square 
plate (L/h = 1000) 

M Element AW, % AMXC % 

type 
Uniform Distorted mesh Uniform Distorted mesh 
mesh mesh 

d=L/S d=L/4 d=L/S d=L/4 

0 621-11 -0.14 -0.65 -2.10 -0.09 1.78 3.00 
3 032-21 -0.01 -0.01 -0.02 0.03 0.08 -0.09 
6 643-33 0.00 0.00 0.00 -0.01 -0.01 0.01 
9 054-45 0.00 0.00 0.00 0.00 -0.00 0.01 

Exact wC = 0.00406237~L4/D M,, = 0.0478864~L’ 

the HT plate elements of Table 2, are 8 noded quadrilateral elements with a total of 24 DOF. It is 
therefore of particular interest to compare their performance with that of the CIQ elements. The results 
of this study are summarized in Tables 12 and 13 which show the percentage errors in displacements, 
bending moments and shear forces for a thick (L/h = 10) and thin (L/h = 1000) plate as a function of 
density of the FE mesh. It may be seen that the errors exhibited by the present HT elements are mostly 
one to two orders of magnitude smaller than those exhibited by the conventional CIQ elements. 

3.3. Uniformly loaded square plate with soft simple support (SSl) 

3.3.1. Imposing of the SSl boundary conditions in FE calculation 
The difficulty of accurately imposing the SSl boundary conditions (w ; M, =_Mnt = 0) is due to the 

fact that the conditions M,, = M,,, = 0 allow fully unconstrained rotations 0, and O,, but the imposing to 
zero of the displacement parameters alone 

GA = GB = 0 in (29a) 

or 

WA 
- = fiB = ‘AGc = . . . = F-‘L\G,, = 0 in (29b) W’b) 

(374 

is not sufficient for G along the side A - B to vanish. Following [20], the simple device of setting 

‘tic = 0 in (29a) 
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Table 12 
Comparison of two variants (632-21 and Q32-17/5) of HT 24 DOF quadrilateral elements with conventional isoparametric 
quadratic element (CIQ)‘. Uniformly loaded simply supported (SS2) thick square plate (L/h = 10) 

Mesh 

1x1 

Element type 

CIQ 
632-21 
632-17 15 

Aw, % AM,e % AQ,B % 
-4.959 39.98 -45.33 
-0.188 0.672 -2.54 
-0.047 2.216 -3.57 

2x2 CIQ -0.155 7.818 -45.33 
632-21 -0.010 -0.043 -2.22 
632-1715 -0.013 -0.043 -2.68 

4x4 CIQ -0.003 1.824 -15.83 
632-21 0.000 -0.005 -0.68 
Q32-1715 0.001 -0.009 -0.63 

8X8 CIQ 0.000 0.446 -8.58 
632-21 0.000 -0.001 -0.16 
632-1715 0.000 -0.001 -0.10 

16 x 16 CIQ 0.000 0.112 -4.46 
632-21 0.000 0.000 -0.04 
Q32-17/5 0.000 0.000 -0.01 

_ 

Table 13 
Comparison of quadrilateral 24 DOF HT 632-31 element with conventional isoparametric quadratic element (CIQ). Uniformly 
loaded simply supported (SS2) thick square plate (L/h = 1000) 

Mesh 

1x1 

2x2 

4x4 

8X8 

16 x 16 

Element type Aw, % AM,c % AQ,, % 
CIQ -61.44 1.866 -48.91 
632-21 -0.266 2.211 0.74 
CIQ -54.06 -42.20 -29.72 
632-21 -0.009 0.034 -4.19 
CIQ -0.409 1.469 -15.71 
632-21 0.000 0.003 -1.83 
CIQ -0.002 0.446 -8.58 
tj32-21 0.000 0.000 -1.05 
CIQ O.ooO 0.112 -4.55 
632-21 0.000 0.000 -0.57 

and similarly, in our case, 

FEc = 0 in (29b) 

removes the link bletween 
side A-B. 

of 

(3gb) 

fi and 6( = (GX AxBA + $ AyBA)/LAB and yields vanishing @ along whole 

The price paid folr this facility is, however, a non-standard FE coding since (38a, b) has to be imposed 
at the element level, in the element subroutine. In the case of the Q21-11 element (M = 0), separately 
studied in [15], it has been shown that condition (37a) alone still leads to excellent results and allows a 
fast convergence to the exact solution. Similarly, for higher-order elements (M > 0), the condition (38b) 
may be neglected and the SSl condition approached, without a significant loss of accuracy (see Table 
14), in either of the fol@ving two ways: 

(1) We let rotation 0, be completely unconstrained and, as a consequence, we tolerate in (29) a 
small parasitic displacement 

1 
-- =%C(b-‘A& AxoA + ‘-‘A& AyBa) = ’ 
2(1 +p”) 2(1 +p”) 

E&- 5-1A& LBA 
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Table 14 
Uniformly loaded simply supported (SSI) square plate (L/h = 10). Comparison of alternative methods of imposition of SSl 
boundary conditions. A 4 x 4 mesh of Q32-17/S elements over symmetric quadrant 

Method of 
imposing 

No linking 
$c=O 

Last DOF of 
4 left free 

Last DOF of 
4 blocked 

Aw, % 0.09 0.14 -0.15 

&S FL2 5.0997 5.1010 5.0903 

AM,c % 0.08 0.11 -0.11 

10% 
PL 

-3.9511 -3.9037 -4.0709 

AQ,, % -6.25 -7.37 -3.40 

where ‘-*A& is the last parameter of tangent rotation & 
(2) In order to cancel the above parasitic displacement and to obtain 6 = 0 along A - B, we accept a 

partial constraint on & 

p-r&& = 0. (40) 

Though the difference in accuracy is generally small (see Table 14), this method has a small 
advantage over method (1) and therefore will be applied in numerical studies presented in the following 
section. 

3.3.2. Comparison of solutions with p-elements based on incomplete and T-complete sets of Trefftz 
functions 

As compared to plates with a SS2 support, an accurate FE solution for the SSl support is far more 
difficult to reach owing to a very pronounced boundary layer effect. A typical example of such an effect 
is shown in Fig. 6. The twisting moments and shear forces shown in this figure have been obtained by 
the application of the so-called segmentation method [39]. 

The HT element results displayed for L/h = 10 in Table 15 and the percentage errors shown for 
L/h = 10 andL/h = 40 in Tables 16 and 17 lead to the following conclusions: 

0 

l 

The p-extension based on the Gab-c elements diverges. Therefore, in only the polynomial set of 
Trefftz functions is available, the best choice is the h-extension based on the 621-11 lowest order 
element. 
Both the h- and p-extension rapidly converge toward the exact results if use is made of the 
Qab-c/d elements. Nevertheless, the necessary condition for the p-extension to converge is a 
certain minimal density of the HT elements mesh (e.g. 2 x 2 for .L/h = 10 and 4 x 4 for L/h = 40). 

The above mini.mal density requirement is easy to understand. Clearly, the boundary layer effect and 
the much simpler low gradient behaviour farther away from the boundary cannot be accurately 
represented within a single band of elements adjacent to the plate edge. Furthermore, the width of the 
boundary layer decreases with decreasing L/h ratio of the plate. 

3.4. Remaining types of boundary conditions 

3.4.1. UQiformly loaded square plate with clamped edges 
The results for L/h = 10 and the percentage errors for L/h = 10 and L/h =_lOOO are displayed in 

Tables 18-20. As expected, both the h- and p-extension processes based on the Qab-c/d elements with 
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Fig. 6. Typical distributions of twisting moments (a) and shear forces (b) in uniformly loaded simply supported square plate. 

Table 15 

Uniformly loaded simply supported (SSl) thick square plate (L/h = 10). Comparison of solutions with incomplete (Gab-c) and 

T-comulete (Gab-c/d) Trefftz functions sets 

Quantity Mesh M =: 0 M=3 M=6 M=9 Exact 

621-11 621-911 632-21 Q32-17/5 643-33 643-2519 654-45 b4-33113 

10’2 Dw 1x1 5.6689 4.6282 4.6223 4.5821 6.7896 4.7534 6.8876 4.6437 
FL4 2X2 4.7122 4.5591 4.7235 4.5988 5.4271 4.6196 5.4643 4.6167 

4x4 4.6184 4.5738 4.7133 4.6099 4.9563 4.6167 4.9854 4.6169 4.61691 
8X8 4.6183 4.5992 4.6602 4.6158 4.7403 4.6169 4.7652 4.6169 
16x16 4.6151 4.6117 4.6303 4.6168 4.6529 4.6169 4.6618 

10zM,, 1X1 7.2608 5.6160 4.9597 5.0277 6.5187 5.2415 6.4949 5.4652 

FL2 2x2 4.8964 5.0626 5.2246 5.1272 5.8126 5.0845 5.8454 5.1004 

4x4 5.0834 5.0584 5.1839 5.0896 5.3998 5.0955 5.4259 5.0957 5.09571 

8x8 5.0878 5.0794 5.1348 5.0948 5.2062 5.0957 5.2281 5.0957 

16 x 16 5.0932 5.0909 5.1077 5.0956 5.1276 5.0957 5.1356 

10% 2X2 1x1 -3.9991 -3.4341 -2.8822 -2.6470 -1.7602 -2.6945 -3.1521 0.9604 -0.9935 -3.0343 -4.6230 -4.5525 -2.3509 -2.7226 -6.0395 -4.1887 

4x4 -3.6095 -3.8885 -3.7539 -4.0659 -3.4586 -4.2213 -2.6380 -4.2132 -4.21434 

8X8 -3.7295 -4.1046 -4.1186 -4.2042 -3.9417 -4.2116 -2.6246 -4.2182 

16 x 16 -3.8794 -4.1825 -4.1983 -4.2178 -3.8163 -4.2168 -3.1733 -4.2184 

T-complete solution functions rapidly converge to the exact solution. In contrast, the Gab-c elements 
behave quite differently. While the h-extension converges again toward the exact results, this 
convergence is now slower than with Gab-c/d elements. In the Gab-c case the mesh density, limited in 
Table 18 to 16 x 16 elements, had to be extended up to 64 x 64 elements, in order to confirm this 
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Table 16 

Uniformly loaded simply supported (SSl) thick square plate (L/h = 10). % errors of solutions with incomplete (Gab-c) and 
T-complete (Gab-c/d) Trefftz functions sets 

Quantity Mesh M=O M=3 M=6 M=9 

021-11 Q21-9/l 032-21 Q32-1715 643-33 643-25 I9 054-45 054-33113 

Aw, % 1x1 22.79 0.24 0.15 -0.75 47.06 2.96 49.18 
2x2 2.06 -1.25 2.31 -0.39 17.55 0.06 18.35 
4x4 0.03 -0.93 2.09 -0.15 7.35 -0.00 7.98 
8X8 0.03 -0.38 0.94 -0.02 2.67 0.00 3.21 

16 x 16 -0.04 -0.11 0.29 -0.00 0.78 0.97 

AM,c % lx 1 42.49 10.21 -2.67 -1.33 27.93 2.86 27.46 
2x2 -3.91 -0.65 2.53 0.62 14.07 -0.22 14.72 
4x4 -0.24 -0.73 1.73 -0.12 5.97 -0.00 6.48 
8x8 -0.16 -0.32 0.77 -0.02 2.17 -0.00 2.60 

16 x 16 -0.05 -0.09 0.24 -0.00 0.63 0.78 

AQ,, % 1 x 1 -5.11 -31.61 -58.23 -122.79 
2x2 -18.51 -37.19 -36.06 -25.21 
4x4 - 14.35 -7.73 -10.92 -3.52 

8X8 -11.50 -2.60 -2.27 -0.24 
16 x 16 -7.95 -0.76 -0.38 0.08 

-76.43 9.70 -44.22 43.31 

-28.00 8.02 -35.40 -0.61 
- 17.93 0.17 -37.40 -0.03 

-6.47 -0.07 -37.72 0.09 
-9.44 0.06 -24.70 0.09 

0.58 
-0.00 

0.00 

7.25 
0.09 

-0.00 
0.00 

Table 17 
U_niformly loaded simply supported (SSl) square plate (L/h = 40). % errors of solutions with incomplete (dab-c) and T-complete 
(Qab-c/d) Trefftz functions sets 

Quantity Mesh M=O M=3 M=6 M=9 

021-11 QZl-9/l 032-21 Q32-17/5 643-33 643-2519 054-45 654-33113 

Aw, % 1x1 27.49 27.49 3.40 3.02 57.12 53.21 60.15 35.17 
2x2 5.01 4.44 2.97 2.39 21.62 11.13 21.85 1.87 
4x4 1.14 0.66 1.74 0.57 9.07 0.50 9.16 0.01 
8x8 0.05 -0.32 1.12 -0.02 4.14 0.01 4.24 -0.00 

16 x 16 -0.12 -0.37 -0.70 -0.03 1.87 -0.00 2.00 -0.00 

AMXc % 1x1 48.88 48.88 -1.42 8.42 35.09 37.21 35.56 -59.79 
2x2 -1.22 -0.28 2.85 1.14 16.26 7.79 16.46 2.20 
4x4 0.65 0.33 1.37 0.45 6.88 0.38 6.94 0.01 
8x8 0.01 -0.27 0.86 -0.02 3.15 0.01 3.22 -0.00 

16 x 16 -0.09 -0.29 -0.77 -0.02 1.42 -0.00 1.52 0.00 

AQ,, % 1 x 1 -4.09 -4.09 -76.76 -171.66 -75.88 -232.46 -111.83 -166.95 
2x2 - 16.86 -42~52 -61.19 -136.14 -15.50 282.60 -92.04 277.89 
4x4 -42.04 -80.65 -50.10 -98.46 -24.95 67.32 -57.43 21.04 
8X8 - 10.79 -40.00 -29.85 -22.50 -24.81 8.02 -35.01 -0.69 

16 x 16 -10.16 -20.76 - 19.24 -2.99 -16.09 0.17 -33.93 -0.02 

statement. However, what is most interesting is the fact that for any fixed mesh density the p-extension 
now yields a different converged value. Though for practical purposes this fact is of little importance 
(whenever converged results were reached, their error with respect to the exact ones was only a fraction 
of percent), the difference is easily perceptible. Thus, e.g. the converged results for central deflection, 
as predicted by the 654-45 elements in Table 18, are, respectively, equal to 1.5084, 1.5069, 1.5056 and 
1.5050 for the meshes 2 x 2, 4 x 4, 8 x 8 and 16 x 16, while the exact valu_e is 1.5046 (as invariably 
obtained with the same meshes from the p-extension process based on the Qab-c/d elements). 

3.4.2. Uniformly loaded square plate with two edges free and two edges simply supported (Fig. 3(d)) 
The results for L/h = 10 and the percentage errors for L/h = 10 and L/h = 40 are displayed in 

Tables 21-23. Owing to the unconstrained tangent rotations along a part of the boundary, this example 
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Table 18 

Uniformly loaded thick square plate (L/h = 10) with clamped boundaries. Comparison of solutions with incomplete (Gab-c) and 
T-complete (Gab-c/d) Trefftz functions sets 

Quantity Mesh M = 0 M=3 M=6 M=9 Exact 

Q21-1.1 621-9/l 632-21 Q32-17/5 643-33 643-2519 654-45 Q54-33/ 13 

Dw 
lo*> 

1x1 1.5634 
FL4 2x2 1.4801 

4x4 1.5012 
8X8 1.5039 

16 x 16 1.5044 

1.5634 1.4882 1.4959 1.5131 1.5080 1.5106 1.5048 

1.4793 1.5072 1.5036 1.5084 1.5048 1.5084 1.5046 

1.5004 1.5066 1.5045 1.5069 1.5046 1.5069 1.5046 1.5046 

1.5034 1.5056 1.5046 1.5056 1.5046 1.5056 1.5046 

1.5043 1.5049 1.5046 1.5050 1.5046 1.5050 1.5046 

1x1 
10ZS 2x2 

3.4722 3.4722 2.3723 2.5264 2.3336 2.3112 2.3378 2.2664 

FL2 2.3323 2.3237 2.3154 2.3214 2.3246 2.3240 2.3238 2.3194 

4x4 2.3:!78 2.3274 2.3214 2.3201 2.3222 2.3201 2.3222 2.3200 2.3200 

8x8 2.3:!14 2.3209 2.3209 2.3200 2.3210 2.3200 2.3210 2.3200 

16 x 16 2.3:!03 2.3201 2.3203 2.3200 2.3203 2.3200 2.3203 2.3200 

1x1 -4.3:!82 -4.3282 -4.9523 -5.6825 -4.7839 -5.1104 -4.8987 -4.7359 

2x2 -4.3485 -4.4771 -4.7552 -5.0814 -4.8855 -4.9614 -4.8989 -4.9197 

4x4 -4.5!$16 -4.5750 -4.8607 -4.9574 -4.9140 -4.9428 -4.9134 -4.9355 -4.9370 
8X8 -4.7272 -4.7322 -4.9120 -4.9398 -4.9279 -4.9380 -4.9267 -4.9369 

16 x 16 -4.8:!84 -4.8294 -4.9298 -4.9374 -4.9340 -4.9371 -4.9336 -4.9370 

10% 1x1 -3.4401 -3.4401 -4.4703 -5.8251 -4.2173 -4.3030 -4.2560 -3.7950 

PL 2x2 -3.4t47 -3.8340 -4.2143 -4.4136 -4.2668 -4.0889 -4.2165 -4.1134 
4x4 -3.6!)70 -3.7993 -4.1723 -4.1448 -4.1945 -4.1234 -4.1740 -4.1219 -4.1219 
8X8 -3.9027 -3.9366 -4.1433 -4.1216 -4.1495 -4.1233 -4.1432 -4.1219 

16 x 16 -4.0:197 -4.0312 -4.1286 -4.1215 -4.1303 -4.1222 -4.1285 -4.1219 

Table 19 
Uniformly loaded thick square plate (L/h = 10) with clamped boundaries. % errors of solutions with incomplete (Gab-c) and 

T-complete (Gab-c/d) Trefftz functions sets 

Quantity Mesh M I: 0 M=3 M=6 M=9 

621-11 621-9/l Q32-21 032-1715 643-33 043-2519 054-45 654-33113 

Aw, % 1x1 ?‘.91 3.91 -1.09 -0.58 0.56 0.23 0.40 0.01 
2x2 -1.63 -1.68 0.17 -0.07 0.25 0.01 0.25 0.00 
4x4 -0.23 -0.28 0.13 -0.01 0.15 0.00 0.15 
8X8 -0.05 -0.08 0.07 0.00 0.07 0.07 

16 x 16 -0.01 -0.02 0.02 0.03 0.03 

AMXc % 1x1 49.66 49.66 2.25 8.90 0.59 -0.38 0.77 -2.31 
2x2 0.53 0.16 -0.20 0.06 0.20 0.17 0.16 -0.03 
4x4 0.34 0.32 0.06 0.00 0.09 0.00 0.09 0.00 
8X8 Cl.06 0.04 0.04 0.04 0.04 

16 x 16 0.01 0.00 0.01 0.01 0.01 

AM,, % 1x1 -12.33 -12.33 0.31 15.10 -3.10 3.51 -0.78 -4.07 
2x2 -11.92 -9.32 -3.68 2.92 -1.04 0.49 -0.77 -0.35 
4x4 -7.81 -7.33 -1.55 0.41 -0.47 0.12 -0.48 -0.03 
8X8 -4.25 -4.15 -0.51 0.06 -0.18 0.02 -0.21 -0.00 

16 x 16 -2.20 -2.18 -0.15 0.01 -0.06 0.00 -0.07 

AQ,, % 1x1 -161.54 - 16.54 8.45 41.32 2.31 4.39 3.25 -7.93 
2x2 -16.43 -6.98 2.24 7.08 3.52 -0.80 2.30 -0.21 
4x4 -10.31 -7.83 1.22 0.56 1.76 0.04 1.26 0.00 
8X8 -5.32 -4.50 0.52 -0.01 0.67 0.03 0.52 

16 x 16 -2.48 -2.20 0.16 -0.01 0.20 0.01 0.16 
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Table 20 

Uniformly lotded thick square plate (L/h = 40) with clamped boundaries. % errors of solutions with incomplete (oab-c) and 
T-complete (Qab-c/d) Trefftz functions sets 

Quantity Mesh M=O M=3 M=6 M=9 

621-11 621-911 632-21 032-1715 643-33 643-2519 054-45 654-33/ 13 

Aw, % 1x1 0.36 0.36 -1.63 
2x2 -4.04 -4.03 -0.10 
4x4 -0.88 -0.87 0.00 

8x8 -0.18 -0.18 0.01 
16 x 16 -0.04 -0.04 0.00 

0.03 
0.00 

-0.26 
-0.08 

0.00 

0.00 

0.00 
0.01 
0.01 
0.00 

0.15 0.07 
0.01 0.01 
0.01 0.00 
0.01 
0.00 

AMXC % 1x1 54.23 54.23 
2x2 -3.68 -4.12 
4x4 -0.05 0.03 

8x8 0.02 0.02 

16 x 16 0.01 0.00 

4.37 
-0.06 

0.00 

6.64 
0.07 
0.02 
0.00 

-0.47 -9.07 -0.06 

-0.03 -0.35 0.01 

0.00 -0.00 0.00 

1.27 
0.00 

AMXB % 1x1 -12.36 -12.36 2.84 70.22 -3.19 6.60 -0.03 -0.10 

2x2 -10.05 -0.75 -3.56 13.36 -0.39 0.07 -0.05 -1.20 

4x4 -7.13 -6.51 -1.27 1.82 -0.08 0.12 -0.04 -0.22 

8x8 -4.19 -4.14 -0.36 0.21 -0.04 0.04 -0.03 -0.02 

16 x 16 -2.23 -2.21 -0.11 0.02 -0.02 0.01 -0.02 -0.00 

AQ,, % 1x1 -19.23 -19.23 10.17 670.68 -1.16 174.47 1.69 28.43 

2x2 - 17.68 90.03 -0.38 149.37 1.60 7.26 0.75 -6.60 

4x4 -10.44 -1.91 0.53 21.28 1.64 -2.05 0.76 -1.59 

8X8 -5.95 -5.06 0.80 2.41 1.01 -0.25 0.61 -0.04 

16 x 16 -3.13 -2.66 0.46 0.14 0.48 0.01 0.34 0.00 

Table 21 
Uniformly loaded thick square plate (L/h = 10) with two sides free and two sides simply supported (Fig. 3(d)). Comparison of 
solutions with incomplete (Gab-c) and T-complete (oab-c/d) Trefftz functions sets 

Quantity Mesh M=O M=3 M=6 M=9 Exact 

021-11 821-911 632-21 032-1715 643-33 643-2519 d54-45 G54-33/13 

Dw 
10*-8- 

1x1 1.7159 
FL4 2x2 1.5823 

4x4 1.5634 
8x8 1.5605 

16 x 16 1.5601 

1.6491 1.6398 1.5804 2.2060 1.5632 2.9182 1.5607 
1.5732 1.5950 1.5622 1.6600 1.5598 1.7914 1.5600 
1.5594 1.5733 1.5601 1.5963 1.5600 1.6269 1.5600 1.56001 
1.5588 1.5643 1.5600 1.5712 1.5600 1.5845 1.5600 

1.5596 1.5612 1.5600 1.5628 1.5600 1.5700 1.5600 

KC 1x1 1.4343 
102r, 2x2 

5.7816 

PL 
2.6650 2.6833 

4x4 2.5732 2.5950 
8X8 2.5681 2.5772 

16 x 16 2.5652 2.5680 

2.6036 3.3280 2.2370 1.6064 1.2183 2.3008 

2.2864 2.5959 2.0110 2.5673 1.6920 2.5624 
2.4688 2.5669 2.3751 2.5640 2.2676 2.5639 2.56394 
2.5344 2.5642 2.5054 2.5639 2.4394 2.5639 
2.5558 2.5640 2.5493 2.5639 2.5113 2.5639 

1O_My” 1x1 1.3540 1.6860 1.6234 1.4662 1.3674 1.0337 0.7218 1.2349 
FL2 2x2 1.3094 1.3498 1.3861 1.3037 1.3193 1.2504 0.7385 1.2806 

4x4 1.2954 1.3062 1.3181 1.2785 1.3090 1.2752 0.9753 1.2769 
8x8 1.2872 1.2907 1.2985 1.2764 1.2613 1.2762 1.1655 1.2761 

16 x 16 1.2888 1.2835 1.2888 1.2762 1.2729 1.2761 1.2293 1.2760 

1.27605 

10% 2x2 1x1 -4.2438 -3.1635 

4x4 -4.3549 
8X8 -4.4984 

16 x 16 -4.5729 

5.9682 -6.7957 -6.4079 -7.3974 -6.8432 -1.9047 -4.2774 
-4.0143 -4.5763 -4.6418 -4.3890 -4.6674 -4.3613 -4.6417 
-4.3452 -4.6154 -4.6372 -4.5915 -4.6496 -4.5581 -4.6497 -4.64970 
-4.5004 -4.6403 -4.6474 -4.6320 -4.6497 -4.6119 -4.6497 
-4.5737 -4.6473 -4.6494 -4.6453 -4.6497 -4.6338 -4.6497 
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Table 22 
Uniformly loaded thick square plate (L/h = 10) with two sides free and two sides simply supported (Fig. 3(d)). % errors of 
solutions with incomplete (Gab-c) and T-complete (Gab-c/d) Trefftz functions sets 

Quantity Mesh M=O M=3 M=6 M=9 

62L.11 621-911 632-21 632-1115 643-33 643-25 19 654-45 @4-33113 

Aw, % 1x1 9.99 5.71 5.11 1.31 41.41 0.20 87.06 0.04 
2x2 1.43 0.85 2.24 0.14 6.41 -0.01 14.83 0.00 
4x4 0.22 -0.04 0.85 0.01 2.33 0.00 4.29 
8X8 0.03 -0.08 0.27 0.00 1.10 1.57 

16 x 16 0.01 -0.03 0.08 0.18 0.64 

AM,, % 1x1 -44.06 125.50 1.55 29.80 - 12.75 -37.35 -52.48 -10.26 
2x2 3.94 4.66 -10.82 1.25 -20.57 0.13 -34.01 -0.06 
4x4 0.36 1.21 -3.71 0.12 -7.37 0.00 -11.56 -0.00 
8X8 0.16 0.52 -1.15 0.01 -2.28 -0.00 -4.86 

16 x 16 0.05 0.16 -0.32 0.00 -0.57 -2.05 

AM,B % 1x1 6.11 32.13 27.22 14.90 7.16 -18.99 -43.43 -3.22 
2x2 2.61 5.78 8.62 2.17 3.39 -2.01 -42.34 0.36 
4x4 1.52 2.36 3.30 0.19 2.58 -0.07 -23.57 0.07 
8X8 0.87 1.15 1.76 0.03 -1.16 0.01 -8.66 0.00 

16 x 16 1.00 0.58 1.00 0.01 -0.25 0.00 -3.66 

AQ,, % 1 x 1 -31.93 -228.36 46.15 37.81 59.09 47.18 -99.59 -8.01 
2x2 -8.73 -13.67 -1.58 -0.17 -5.61 0.38 -6.20 -0.17 
4x4 -6.34 -6.55 -0.74 -0.27 -1.25 -0.00 -1.97 0.00 
8X8 -3.23 -3.21 -0.20 -0.05 -0.38 0.00 -0.81 

16 x 16 -1.65 -1.63 -0.05 -0.01 -0.09 -0.34 

Table 23 
Uniformly loaded thick square plate (L/h = 40) with two sides free and two sides simply supported (Fig. 3(d)). % errors of 
solutions with incomplete (Gab-c) and T-complete (dab-c/d) Trefftz functions sets 

Quantity Mesh M = 0 M=3 M=6 M=9 

821-11 621-9/ 1 632-21 632-1715 643-33 643-2519 654-45 654-33/13 

Aw, % 1x1 11.01 7.11 3.26 3.71 29.13 23.86 80.93 18.02 
2x2 2.01 1.60 1.27 1.04 6.42 2.28 14.54 0.53 
4x4 0.47 0.32 0.68 0.24 2.59 0.09 4.47 0.01 
8X8 0.08 -0.01 0.39 0.03 1.09 0.00 1.48 0.00 

16x 16 -0.00 -0.05 0.17 0.00 0.43 0.65 

AM,, % 1 x 1 -44.34 -31.31 -12.13 -30.09 -114.21 -153.33 -430.04 84.27 
2x2 0.93 11.04 -8.47 8.77 -20.08 -21.63 -32.85 -0.05 
4x4 -0.47 0.25 -2.97 0.56 -7.69 -0.28 -9.90 -0.01 
8x8 -0.02 0.24 -1.39 0.02 -3.22 -0.01 -4.00 0.00 

16 x 16 0.01 0.22 -0.57 0.00 -1.30 0.00 -1.89 

AMYB % 1 x 1 4.23 126.54 29.17 65.14 3.88 -123.48 -50.64 -237.09 
2x2 1.53 15.49 13.66 18.45 3.63 -36.20 -43.52 -21.36 
4x4 0.88 3.47 5.50 4.52 2.14 -4.58 -37.49 -0.47 
8X8 0.54 1.13 1.87 0.69 0.67 -0.44 -17.57 0.10 

16 x 16 0.32 0.51 0.75 0.08 0.05 0.16 -5.58 0.02 

AQ,, % 1 x 1 -32.77 -415.42 66.24 1204.11 145.78 1964.14 -611.82 -4950.88 
2x2 -8.87 - 141.08 -0.40 82.49 -3.19 132.00 -6.87 -9.95 
4x4 -6.17 -16.17 -1.47 2.35 -1.41 0.02 -1.77 0.01 
8x8 -3.29 -3.71 -0.53 -0.13 -0.56 0.00 -0.70 0.00 

16 x 16 -1.64 -1.63 -0.15 -0.07 -0.22 -0.33 
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exhibits along the two free edges a strong boundary layer effect of a similar nature to that experienced 
in the case of the soft simple support, SSl, in Section 3.3.2. It is therefore not surprising that the 
properties of the Gab-c and Gab-c/d solutions, as reported for the soft simple support, also apply to 
the present case. Indeed, the p-extension process based on the Gab-c/d T-complete set elements 
converges toward the exact solution provided that the FE mesh has a certain minimum density (1 X 1 
for L/h = 10 and 4 x 4 for L/h = 40 in the present case). Furthermore, the h-extension process with 
either of the two element types converges toward the exact solution and once more, if the Gab-c 
elements are used, the simplest of them, the 621-11 element, yields the best results. 

4. Concluding remarks 

The basic contributions of the reported research on HT thick plate elements are: 
l the implementation of a new type of the auxiliary frame field where the interpolation of the 

displacement 6 has been linked with that of the tangent rotation 6*; 
l the development of a T-complete set of Trefftz functions for representation of the internal 

displacements and rotations fields of the element. 
As compared with the customary independent interpolations of displacements G and rotations GXi,, @ 

[14], the main advantage of the new frame field is that the polynomial degree of 6 and the accuracy of 
the solution have been increased without augmenting either the number of DOF or the number of 
Trefftz functions of the element. 

The main importance of the T-complete set of Trefftz functions (whereby the Petrolito’s polynomial 
functions have been completed by additional modified Bessel functions) resides, however, in the fact 
that their application is necessary for warranting the convergence of the p-extension process toward the 
exact solution. 

The element subroutine of the reported new elements in the FE program SAFE [31] e_nables one to 
c_hoose either of the two alternative Trefftz functions sets and thus generate both the Qab-c and the 
Qab-c/d elements. Based on extensive numerical studies (of which a part has been presented in Section 
3), the h- and p-method convergence properties of these two element types have been summarized in 
Table 24. Either of them exhibits a remarkable insensitivity to mesh distortion (since no mapping has 
been involved in the formulation). Both the p-extension process based on the Gab-c/d element family 
and h-extension process based on either of two families converge to the exact solution of the 
Reissner-Mindlin theory and tend in the thin limit, without locking, to the exact results of the classical 
thin plate (Kirchhoff) theory. 

The only drawback of the T-complete Trefftz functions set over the incomplete polynomial one is the 
computational effort associated with numerical integration of the expressions involving the modified 

Table 24 
Convergence properties of HT thick plate elements with incomplete (dab-c) and T-complete (oab-c/d) Trefftz functions 

Convergence 
process 

T-functions Element 
designation 

Convergence/Divergence 

ss2 C F SSl 

h-extension polynomials 
polynomials + 
modif. Bessel f. 

Gab-c 
dab-c/d 1 

p-extension polynomials Gab-c 1 2 3 3 
polynomials + dab-c/d 
modif. Bessel f. 1 

1. Convergence toward exact solution. 
2. Convergence toward a solution close to the exact one. 
3. Divergence. 
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Bessel functions. H[owever, this effort can considerably be reduced if one observed that-except for the 
band of elements aldjacent to the boundary-the non-polynomial part of the T-complete set of Trefftz 
functions in all remaining elements is not activated. Indeed, whenever the coefficients c of these 
functions were evaluated (relation (ll)), then those of them corresponding to the non-polynomial 
functions in the T-complete sets were found negligible or vanishing. As a consequence (Tables 25-28) 

Table 25 
Uniformly loaded simply supported (SSl) square plate (L/h = 40). Comparison of solutions obtained with different combinations 
of Gab-c and dab-c/d elements in 4 x 4 FE mesh over symmetric plate quadrant 

Quantity Exact 

103Dw,:pL4 
4.16283 

10zMx,:jL2 
4.86616 

Elements Remaining 
adjacent to elements 
boundary 

Gab-c/d 
Gab-c/d 1 Gab-c 

Gab-c 

Qab-c/d 
Qab-c/d 1 dab-c 

Gab-c 

M=3 M=6 M=9 

4.18637 4.18374 4.16336 
4.18640 4.18387 4.16337 
4.23521 4.54037 4.54401 

4.88813 4.88451 4.86664 
4.88787 4.88467 4.86662 
4.93257 5.20101 5.20413 

Table 26 
Uniformly loaded simply supported (SSl) square plate (L/h = 40). % errors obtained with different combinations of Gab-c and 
Qab-c/d elements in 4 x 4 FE mesh over symmetric plate quadrant 

Quantity Elements Remaining M=3 M=6 M=9 
adjacent to elements 
boundarv 

Aw, % Gab-c/d 0.57 0.50 0.01 
Gab-c/d 1 Gab-c 0.57 0.51 0.01 

Qab-c 1.74 9.07 9.16 

AM,, % Gab-c/d 0.45 0.38 0.01 
Gab-c/d 1 Gab-c 0.45 0.38 0.01 

bab-c 1.36 6.88 6.95 

Table 27 
Uniformly loaded thick square plate (L/h = 10) with clamped edges. Comparison of solutions obtained with different 
combinations of Gab-c and Gab-c/d elements in 4 x 4 FE mesh over svmmetric mate auadrant 

Quantity lElements 
iadjacent to 
Iboundary 

Remaining 
elements 

M=3 M=6 M=9 Exact 

10’Dw,:pL4 Gab-c/d 1.5045 1.5046 1.5046 
Gab-c!d 1 Gab-c 1.5045 1.5046 1.5046 1.5046 

Qab-c 1.5066 1.5069 1.5069 

Qab-c/d 2.3201 2.3201 2.3200 
Gab-c/d ( Gab-c 2.3193 2.3200 2.3200 2.3200 

Gab-c 3.3214 2.3222 2.3222 

Qab-c/d -4.9574 -4.9428 -4.9355 
Gab-c/d I Gab-c -4.9571 -4.9236 -4.9355 -4.9370 

Gab-c -4.8607 -4.9140 -4.9134 
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Table 28 

Uniformly loaded thick square plate (L/h = 10) with clamped edges. % errors obtained with different combinations of Gab-c and 

Qab-c/d elements in 4 x 4 FE mesh over symmetric plate quadrant 

Quantity Elements 

adjacent to 

boundary 

Remaining 

elements 

M=3 M=6 M=9 

Aw, % Gab-c/d 

Qab-c/d 1 Gab-c 

Gab-c 

-0.01 

-0.01 

0.13 

0.00 
0.00 
0.15 

0.00 
0.00 

0.15 

AMxc % Gab-c/d 0.00 0.00 0.00 

dab-c/d 1 Gab-c -0.03 0.00 0.00 

dab-c 0.06 0.09 0.09 

AM,, % Gab-c/d 0.41 0.12 -0.03 

Gab-c/d 1 Gab-c 0.41 -0.27 -0.03 

dab-c -1.55 -0.47 -0.48 

the use of the more expensive Gab-c/d elements may be restricted, without any loss of accuracy, to 
those adjacent to plate edges with SSl, F or C boundary conditions. 

A recent comparative study [13] of conventional and HT thin plates, plane elasticity and Poisson’s 
equation h- and p-elements has clearly shown the superiority of these elements over the conventional 
ones. In the present paper, similar studies have been confined (Section 3.2.5) to a comparison of the 
isoparametric quadratic elements (CIQ) with the 632-31 and Q32-17/5 HT elements. All of these 
elements have the same external appearance and the same number, 24, of DOF. As shown in Tables 12 
and 13, the use of the HT elements makes it possible to reduce the errors mostly by more than one or 
two orders of magnitude as compared with the CIQ elements solution. This comparison is, however, 
biased, since the CIQ results for moments and shear forces have been obtained by the application of the 
well-known technique of local smoothing [38], while no such improvement of accuracy has been applied 
to the HT element solution. Indeed, here the results have been evaluated directly from the internal 
Trefftz function field at element corners, points where the error is the largest, while the use of the 
special smoothing technique, as devised for HT p-elements in [40], would probably make it possible to 
decrease these errors by at least one order of magnitude. Such an improvement is possible due to the 
known tendency of the HT elements to concentrate the errors in a narrow band along the element 
boundary and leave inside the element a large zone of superconvergence with errors one or two orders 
of magnitude smaller than at the element corners. 

The application-of uniform meshes is uneconomical for boundary conditions with unconstrained 
tangent rotations 0, (plates with soft simply supported or free edges), which lead to a strong boundary 
layer effect. It can be expected that the use of a narrow band of small Qab-c/d elements along the SSl 
or F boundary and crude mesh of Qab-c elements inside the plate (Fig. 7(c)) will be the optimal 
solution. One of the advantages of the HT approach is that such refinement is easy to perform. Indeed, 
since the auxiliary conforming frame functions fi’, @ and GY need to be defined and the integration of 
the element matrices performed only along the element boundary, a typical HT p-element subroutine 
assumes elements with an optional number of sides. This makes it possible to use the combinations of 
large and small elements, such as shown in Fig. 7(a) and (b), and so to avoid the use of unnecessarily 
dense FE meshes in regions with a low gradient type of solution. 

As in the past for the thin plate elements [8, 411, the planned extensions of the present thick plate 
elements will include the implementation of curved side geometry and the development of special 
global or semi-global load terms, C = (6, @, &$}, for discontinuous loads (patch loads, line loads, . . . , 
etc.). The usefulness of the latter resides in the fact that the mesh design and solution accuracy become 
virtually independent of the loading [13, 411. 
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(a) (b) 
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Fig. 7. Local mesh refinement in HT p-element approach (a, b) with application to analysis of boundary layer effect (c). 
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