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ABSTRACT Chemo-mechanical coupling exists in a lot of intelligent materials including hy-
drogels, biological tissues and other soft materials. These materials are able to respond to ex-
ternal stimulus, such as temperature, chemical concentration, and pH value. In this paper, a
one-dimensional theoretical model for chemo-mechanical coupling is proposed for analyzing the
uniaxial stress/strain state of coupling materials. Based on the chemo-mechanical coupled gov-
erning equation, the displacement function and concentration function are derived and the stress
and chemical potential are obtained. It is shown that the present chemo-mechanical theory can
characterize the chemo-mechanical coupling behavior of intelligent materials.

KEY WORDS intelligent materials, chemo-mechanical coupling, analytical solution, theoretical
model, constitutive equations, hydrogel

I. INTRODUCTION
In modern industry and engineering practice, many materials employed have multi-field coupling

behavior and are often known as smart material. Commonly used smart materials include shape memory
alloys (SMA), mass-energy optical fibers, piezoelectric materials, pH-response hydrogels and their com-
posites. Applications of these smart materials are widely found in the automotive industry, telephony,
architecture, food and so on. Intelligent hydrogel is such a class of material that its properties can vary
significantly with the changes of external environmental conditions, including physical and chemical
stimuli. Physical stimuli are defined as physical environmental factors, including light, temperature,
sound, electric and magnetic field, whereas chemical stimuli include pH value of the solution and ionic
concentration.

It is noted that smart gels are generally swelling or shrinking in response to external chemical stimuli[1].
Such chemo-mechanical coupling phenomena also exist in other types of materials including clay[2–4],
cement paste[5,6], geomaterials[7] and biological soft tissues[8–10] and hard tissues[11–13]. Therefore, it
is important from the viewpoint of engineering application to evaluate the chemo-mechanical coupling
behavior of these multifield materials. During the past few decades, researchers have developed some
experimental methods, numerical simulations and theoretical models for analyzing chemo-mechanical
coupling of these widely used materials. For example, Ballhause et al.[14] investigated the mechanical
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mechanism of the chemical stimulation, and he indicated that the osmotic pressure of polymer and
solution would undergo a change in response to the variation of the external chemical condition. The
concentration, the chemical potential, and the displacement can be analyzed by the coupled chemo-
electro-mechanical model. Vallenton et al.[15] involved the material expansion caused by enzyme reaction
in consideration of the coupled effects of fluid flow, diffusion and chemical reaction. Doi et al.[16] studied
the colloid dynamic behavior under a static electric field. Thomas et al.[17] observed that the mechanical
properties of the gel were affected by electric charge in the electrophoresis solution. The anion and
cationic concentration and potential between the interior and exterior of the colloid can be calculated
according to the ionic concentration in the surrounding solvent, when chemical and electric simulation
sparks occurred at the same time. It is shown that, with the large expansion of colloid fibers, the
ion concentration variation along the positive direction of the anion colloid leads to relatively large
results. Recently, Lu et al.[18] designed a uniaxial tensile experiment to explore the critical strain of
polymer-supported metal. Yashin et al.[19] found that self-consistent vibration of the hydrogel depends
on its model size and external force. Loeffel et al.[20] dealt with the polymer surface properties of the
TBC material, including the diffusion of oxygen of surface materials and redox characteristics.

For studies on numerical simulation in chemo-mechanical coupling problems, Li et al.[21] developed
a Hermite-Cloud method to model chemo-mechanical deformation and ionic concentration of hygrogels
subjected to chemical and electrical stimulation, and numerical results are in good agreement with
experimental data. Kaasschieter et al.[22] applied the multiphasic theory and associated four-phase mixed
finite element to model the mechanical behavior of cartilages. Hong et al.[23] presented a finite element
method based on the Gibbs free energy and non-linear thermodynamics, and illustrated several examples
including swelling-induced deformation, contact and bifurcation. Macrombe et al.[24] investigated the
inhomogeneous swelling of pH-sensitive gels by implementing a finite element method. Furthermore, the
theory has been embedded in the commercial software ABAQUS by writing a user-supplied subroutine.
Yang et al.[25,26] formulated coupled constitutive equations for analyzing general thermo-electro-chemo-
mechanical coupling behavior of hydrogels by introducing the thermo-electro-chemo-mechanical effects
into the Gibbs free energy. Based on the Gibbs free energy functional, a coupled finite element procedure
is developed to model the swelling, shrinking and redistribution of ions with the smart hydrogels in
some chemo-mechanical environments.

For analytical solutions to chemo-mechanical problems, De et al.[27] derived steady- and transient-
state chemo-mechanical coupled equations where the ion transportation is described by the Nernst-
Planck flux equations, and the osmotic pressure of mechanical field was introduced by the extended
Darcy’s law. Li et al.[28,29] and Lai et al.[30] presented a MEC model for the glucose-stimulus hydro-
gel and pH-sensitive hydrogel considering the effects of enzyme catalysis. Giovanni et al.[31] derived
a one-dimensional distributed model based on the Euler-Bernoulli beam theory and a parallel-plate
approximation, and validated his theoretical findings through a series of experiments. Unlike the the-
oretical solutions mentioned above, this paper is focused on the theoretical stress/strain analysis of
intelligent materials with the objective of deriving a series of closed-form solutions. The solution can
then be used to obtain results of displacement, stress, concentration and chemical potential of smart
gels. In particular, we proposed a uniaxial stress/strain theoretical model by considering mechanical
equilibrium and mass conservation. Two numerical examples are considered to assess the effectiveness
of the model and applicability of the corresponding solution.

II. GOVERNING EQUATIONS OF CHEMO-MECHANICAL COUPLING
Consider a chemo-mechanical body of volume Ω bounded by surface S. The governing equations

are the equilibrium equations of stresses and diffusion equations of ions. The equilibrium equations are

σij,j + fi = ρüi (in Ω) (1)

and boundary conditions

ui = ūi (on Su), σijnj = t̄i (on St) (2)

where σij is stress tensor, fi is the body force, ui is displacement, ūi and t̄i are the prescribed surface
displacements and tractions on the surface S, nj is the unit outward normal vector to the surface S,
S = Su + St.
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The chemical field is described by the diffusion equation of ions

ċ+ ξi,i = 0 (in Ω) (3)

and corresponding boundary conditions

c = c̄ (on Sc), ξini = ξ̄n (on Sξ) (4)

where c are increments of concentrations. ξi is ionic flux, μ is chemical potential, and ξ̄n is the specified
ionic flux on the surface of the domain.

To consider the chemo-mechanical coupling, a modified form[26] of Eq.(3) is used:

μ̇+ τξi,i = 0 (5)

where τ = R∗T/c0, R
∗ is the universal constant of ideal gas and T is the absolute temperature, c0 is

the reference concentration, and μ is the standard chemical potential.
The constitutive equations of chemo-mechanical coupling can be expressed by[26]

σij = Dijklεkl +Rijc, μ = Rklεkl + sc (6)

where Dijkl are elastic coefficients, Rij are the mechanical-chemical coefficients, s is the chemical
potential constant. It is noted that the coupled stress in the constitutive equation (6) contains two
parts, one is elastic stress, the other is induced by the chemical effect due to ionic unbalance.

The gradient equations describing the relations between displacements ui and strains εij for elastic
field, ionic flux ξi and concentration change c for chemical field, are given as follows:

εij =
1

2
(ui,j + uj,i) , ξi = −Φijc,j (7)

where Φij denotes the diffusion coefficient, depending on the intrinsic features of the medium. It is noted
that the theory described above is restricted to small deformation and small change in ion concentration.

III. SOLUTION FOR UNIAXIAL STRESS STATE

Fig. 1 One-dimensional model.

Let us consider a one-dimensional bar or a fiber sub-
jected to coupled chemo-mechanical loads as shown in
Fig.1. This model can be used to consider the one-
dimensional coupling problem of chemistry and mechan-
ics. The basic equations for chemo-mechanical coupling
are

E
∂2w

∂z2
+R

∂c

∂z
= ρ

∂2w

∂t2
(8a)

(1 − 2ν)R
∂2w

∂z∂t
+ s

∂c

∂t
− Φ
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c0

∂2c

∂z2
= 0 (8b)

where w is axial displacement, ν is the Poisson’s ratio.
Consider a one-dimensional problem under time-dependent mechanical load q = q0e

αt. The dis-
placement w and concentration c have the following forms:

w (z, t) = w̄ (z) eαt, c (z, t) = c̄ (z) eαt (9)

For this case, substitution of Eq.(9) into Eqs.(8a) and (8b) yields(
E
∂2

∂z2
− ρα2

)
w̄ (z) +R

∂c̄ (z)

∂z
= 0
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(
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)
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(10)

Application of Cramer Rule to Eq.(10) leads to an equation for w̄ (z) as{
−
ER∗TΦ

c0α

∂4

∂z4
+
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Es+

R∗TΦρα

c0
− (1 − 2ν)R2

]
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}
w̄ (z) = 0 (11)
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Its characteristic equation is

−
ER∗TΦ

c0α
r4 +

[
Es+

R∗TΦρα

c0
− (1 − 2ν)R2

]
r2 − ρsα2 = 0 (12)

Solution of Eq.(12) gives

r1,2 = ±η = ±

√√
k2
2 − 4k1k3 − k2

2k1
, r3,4 = ±iβ = ±i

√√
k2
2 − 4k1k3 + k2

2k1

where k1 = −ER∗TΦ/(c0α), k2 = Es+RTΦρα/c0 − (1 − 2ν)R2, k3 = −ρsα2. Then the general form
of displacement solution w (z, t) can be given by

w (z, t) =
[
C1e

ηz + C2e
−ηz + C3 cos(βz) + C4 sin(βz)

]
· eαt (13)

By substituting Eq.(13) into Eq.(10), we find the solution of concentration c (z, t) as

c (z) =

{(
ρα2

Rη
−
Eη

R

)(
C1e

ηz − C2e
−ηz

)
+

(
ρα2

Rβ
+
Eβ

R

)
[C3 sin (βz) − C4 cos(βz)]

}
· eαt (14)

Finally, by substituting Eqs.(13) and (14) into Eq.(6), the solutions of stress and chemical potential
are obtained as

σ =

{
ρα2

η

(
C1e

ηz − C2e
−ηz

)
+
ρα2

β
[C3 cos(βz) − C4 sin(βz)]

}
· eαt (15a)

μ =

{
ρα2s− Esη2 +R2η2

Rη

(
C1e

ηz − C2e
−ηz

)
+
ρα2s+ Esβ2 −R2β2

Rβ
[C3 sin(βz) − C4 cos(βz)]

}
· eαt (15b)

where the parameters C1, C2, C3 and C4 are integration constants.
The boundary conditions of the present problem are

w̄|z=0 = 0, μ̄|z=0 = 0, σ̄z |z=h = −q, ξ̄n
∣∣
z=0

= 0 (16)

Applying the boundary conditions to Eqs.(15a) and (15b), the constants can be determined as

C1 = −C2 = −q0
η

ρα2

/[(
eηh + e−ηh

)
− 2

ρα2s− Esη2 +R2η2

ρα2s+ Esβ2 −R2β2
sin(βh)

]
, C3 = 0

C4 = −2q0 ·
β

ρα2
·
ρα2s− Esη2 +R2η2

ρα2s+ Esβ2 −R2β2

/[(
eηh + e−ηh

)
− 2

ρα2s− Esη2 +R2η2

ρα2s+ Esβ2 −R2β2
sin(βh)

] (17)

Thus the exact solutions, i.e. displacement, concentration, stress and chemical potential, of the present
model have been obtained.

IV. SOLUTIONS FOR UNIAXIAL STRAIN PROBLEM

It is assumed that the semi-infinite material is subjected to uni-
form pressure on the surface. This is a three-dimensional solid with
infinite boundary. Because of the symmetry of the problem, it can
be dealt with a uniaxial strain model. For simplicity, a coordinate
(o, z) is used in the present analysis, as shown in Fig.2. The num-
ber of independent coefficients in Eq.(6) depends on the material
symmetry. The constitutive equations for z axis can be given as fol-
lows:

σz = Dεz +Rc, μ = Rεz + sc (18)
The field equations for uniaxial strain state can be rewritten as

Fig. 2 Uniaxial strain state model.
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∂σz

∂z
= 0,
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∂z
−
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∂z
= 0 (19)

and the gradient equations can be given by

εz =
∂w

∂z
, ξ = −Φ

∂c

∂z
(20)

where D = E (1 − ν)/[(1 + ν) (1 − 2ν)]. Then the coupled equations can be given as

D
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Consider a one-dimensional problem under time-dependent mechanical load q = q0e
αt. It is assumed

that displacement w and concentration c are in the following forms:

w (z, t) = w̄ (z) eαt, c (z, t) = c̄ (z) eαt (22)

For this case, substituting Eq.(22) into Eq.(21) , we obtain(
D
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By introducing Cramer Rule into Eq.(23), the equation for w̄ (z) is obtained[
−
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Its characteristic equation is

−
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)
r2 − ρα2s = 0 (25)

Solutions of Eq.(25) give
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where k4 = −DR∗TΦ/(c0α), k5 = Ds+ ρR∗TΦ/(c0α)−R2, k6 = −ρα2s. Then the general solution of
displacement w (z, t) can be given as

w (z) =
[
C5e

η′z + C6e
−η′z + C7 cos(β′z) + C8 sin(β′z)

]
· eαt (26)

By substituting Eq.(26) into Eq.(23), we find the solution of concentration c (z, t)

c (z) =
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}
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(27)
Finally, substituting Eq.(26) and Eq.(27) into Eq.(18), we can find the solution of stress and chemical
potential
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{
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)
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where C5, C6, C7 and C8 are the integration constants, which can be determined by the boundary
conditions.
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Table 1. Material parameters used in the two numerical examples

Parameters Value

Reference concentration c0 15 mol/m3

Universal ideal gas constant R* 8.31 J/molK
Chemo-mechanical coupling coefficient R 1.75×105 Nm/mol
Young’s modulus E 3.5×105 Pa
Poisson’s ratio ν 0.45
Coefficients of the chemical potential s 1×106 Nm/mol
Diffusion coefficient Φ 4.5×10−10 m2/s
Absolute temperature T 293 K

V. NUMERICAL EXAMPLES AND DISCUSSIONS
As application of the above solutions, we will give some numerical examples to demonstrate the

coupled chemo-mechanical effect of polymer gel.

5.1. One-Dimensional Bar Subjected to An Axial Time-Dependent Load

A bar subjected to an axial time-dependent load is considered in this example, as shown in Fig.1. The
length of the bar h = 100 mm and the constant load q0 = 400 N/m2 are used in the present calculation.
The material parameters of the model are listed in Table 1. Numerical results of displacement, stress,
concentration, and chemical potential are, respectively, illustrated in Figs.3∼6. It can be seen that the
mechanical load can lead to a rapid change of the response of the intelligent hydrogel. Figure 3 gives
the variation of the axial displacement with length of the bar at different times. It is shown that the
compression deformation of the bar occurs under load q = q0e

αt and boundary condition (16), and
therefore a compression stress is generated in the bar, as shown in Fig.4. It is more important that
the deformation induces the variation of ionic concentration and chemical potential in the bar due to
the chemo-mechanical coupling, as shown in Figs.5 and 6. As the external force is time-dependent, the
response of the concentration and chemical potential varies with time. It is obvious that for a constant
external force, the concentration and chemical potential will reach a balanced state.

5.2. Semi-Infinite Body Subjected to Time-Dependent Traction Load

A semi-infinite hydrogel subjected to time–dependent load in exponential form on the surface is
considered in this example. The material parameters in this example are still given in Table 1. The
general solutions of this problem are given by Eqs.(26)-(28). Figures 7 and 8 show that the displacement
and stress in terms of the position z have the nonlinear parabolic-type evolution. It is noted that both
displacement and stress reach their peak value at the surface boundary. As shown in Fig.9, with the
passing of time, the changes of concentration are greater and greater. Figure 10 illustrates that the
chemical potential presents a continuous sinusoidal variation at different times. These results are of
value in studying the interaction between the displacements at any position and load applied to the
boundary of a hydrogel.

Fig. 3. Variations of the displacement versus length. Fig. 4. Variations of the stress versus length.
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Fig. 5. Variations of the concentration versus length.
Fig. 6. Variations of the chemical potential versus length.

Fig. 7. Variation of displacement versus depth. Fig. 8. Variation of stress versus depth.

Fig. 9. Variation of concentration versus depth.
Fig. 10. Variation of chemical potential versus depth.

VI. CONCLUSIONS
This paper presents a theoretical model for analyzing chemical and mechanical interaction in in-

telligent materials. The analytical solutions of a one-dimensional chemo-mechanical coupling problem
of intelligent hydrogel under the constant chemical stimulus and time-dependent mechanical load were
deducted. These solutions can be used to analytically describe the chemo-mechanical coupling charac-
terization of the materials. As typical applications, the numerical examples were used to illustrate the
chemo-mechanical couplings of an intelligent hydrogel under steady and time-dependent loads.
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