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h i g h l i g h t s

• Robust topology optimisation of bi-modulus material is developed.
• Multiple loading conditions are considered in simulation.
• Material replacement method is adopted for simplifying structural analysis.
• Sensitivity of robust compliance is derived.
• Optimal topology is found to be force-direction dependent when materials display bi-modulus behaviour.
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a b s t r a c t

This study proposes a robust topology optimisationmethod for the design of bi-modulus structures under
uncertain multiple loading conditions (MLC). The objective of the design optimisation is to minimise
the standard deviation of the weighted structural compliance. The gradient-based method is applied to
perform a sensitivity analysis for the identification of optimal design variables. A material replacement
method is used to overcome difficulty in the sensitivity analysis due to the stress-dependent behaviour
of the original bi-modulus material. In the material replacement operation, two new isotropic materials
are identified to replace the original bi-modulus material according to its two moduli. To reduce the
side effects of the material replacement operation on the final design, the local stiffness is modified in
terms of the stress state. Typical numerical examples are used to demonstrate the effectiveness of the
proposed method to the final design, including the load uncertainty on the optimal bi-modulus layout, as
well as other factors, such as loading direction and the ratio between the two moduli of the bi-modulus
material. The comparison between layouts of isotropic and bi-modulusmaterials also shows that the final
bi-modulus material distribution is sensitive to loading directions in practical designs.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Topology optimisation is a powerful computational tool for the
conceptual design stage of structural optimisation. Optimising the
topology of a structure is highly challenging because it is required
to automatically determine an optimal material layout in the de-
sign domain. Topology optimisation has undergone considerable
development over the past two decades with a variety of appli-
cations [1]. Topology optimisation can essentially be regarded as
a numerical procedure to iteratively re-distribute a given amount
of material to optimise a prescribed objective function under spe-
cific constraints in a reference domain subject to supports and
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loads. Thus far the typical topological optimisation methods in-
clude the ground structure-basedmethod [2], the homogenisation-
based method [3], the SIMP method (solid isotropic material with
penalisation) [4,5], the ESO (evolutionary structural optimisation)
method [6–8], and the level set method, which has emerged re-
cently [9–11].

There are a number of uncertainties in the design of structures,
including the operating environment, which can be modelled
using various methods [12] such as the reliability-based optimisa-
tion (RBO) [13,14] and the robust design optimisation (RDO)meth-
ods [15–17]. In engineering, variations as a result of uncertainties
can lead to significant performance changes for the structural sys-
tem. Thus, there is increasing demand to quantitatively consider
the impact of uncertainties in the optimisation to ensure safety and
to avoid the breakage and collapse of structural systems under ex-
treme working conditions.

In topology optimisation, uncertain variations of structural
parameters, material properties and external loads will have
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considerable effects on optimised structural performance. The un-
certain parameters are primarily taken into account in the op-
timisation to establish robust and reliability-based topological
designs. There have been a large number of researchers who
have focused their study on reliability-based topology optimi-
sation problems. For instance, Kharmanda and Olhoff [18] stud-
ied a reliability-based topology optimisation (RBTO) method to
seek the optimal structural layout by satisfying probabilistic con-
straints, which considered the topology optimisation of contin-
uum structures with stochastic distribution of the material elastic
modulus, geometrical thickness and externally applied loads [19].
Probabilistic reliability constraints were also considered in the
topology optimisation of micromechanical systems (e.g., [20–22]).
Jung and Cho [23] proposed a reliability-based method for the
topology optimisation of geometrically nonlinear structures. Luo
et al. [24] proposed a non-probabilistic reliability topology optimi-
sationmethod using ellipsoid convexmodels. Guest and Igusa [25]
proposed a structural topology optimisation method that consid-
ered uncertainty loads (both in the magnitude and location) and
small uncertainty in the nodal location. Silva et al. [26] investigated
the reliability topology optimisation of structures under compo-
nent and system reliabilities. Nguyen et al. [27] presented a single-
loop System Reliability-based Topology Optimisation method,
accounting for the statistical dependence of multiple limit-states.

Robustness has also recently been considered in topology op-
timisation problems. Kang and Luo [28] provided a geometrically
nonlinear structural topology optimisation with non-probabilistic
reliability. Chen et al. [29] investigated a level-set based robust
topological shape optimisation method considering random field
uncertainties in loading and material properties. Kogiso et al. [30]
discussed a robust topology optimisation method for compliant
mechanismsunder uncertain external loading. Seepersad et al. [31]
proposed a robust topology optimisation method for evaluating
the impact of dimensional tolerances and topological imperfec-
tions. The imperfections deviate from the intended prismatic cellu-
lar structure and customised elastic material properties with local
Taylor-series approximations. In addition to the reliability and ro-
bust topology optimisation, Luo et al. [32] proposed an uncertain
topology optimisation method for multi-stiffness structures using
a fuzzy set theory to account for the uncertainty of the system.

It can be observed that most current topology optimisation
problems, especially topology designs under uncertain conditions,
are based on isotropic material models, which are applicable in
most cases for a wide range of practical designs. However, there
exists a large family of structures with bi-modulus materials that
are popular in many engineering designs, e.g., concrete, plastic,
synthetic rubber, cast iron, etc. Suchmaterials exhibit different be-
haviours along the same direction, i.e., the tension modulus is dif-
ferent from the compressionmodule. For the design of bi-modulus
structures,most conventional topology optimisationmethodsmay
not be computationally effective because the mechanical be-
haviour of bi-modulus materials is stress-dependent. Briefly, the
principal directions of a bi-modulus material align with the local
stress state; thismeans that they alignwith the principal directions
of the stress tensor. For common orthotropic material, the mate-
rial principal directions are fixed and the difference between the
moduli occurs between different directions. Due to the nonlinear-
ity ofmechanical properties of bi-modulus structures [33–35], iter-
ative re-analysis of structures is required for accurately evaluating
the stress field of bi-modulus structures, which will lead to several
repetitions of numerical analysis to find the accurate displacement
solutions before updating the design variables at every loop.

There are only a very limited number of research studies con-
cerned with topology optimisation of structures with bi-modulus
materials [36–41] or bi-strength materials [42–45], and most of
the previous investigations have not considered uncertainty in
their designs [7,8,36–45]. Although RDO has been widely stud-
ied in a border range of design applications [16], it has not been
applied to topology optimisation of bi-modulus structures due
to the difficulty of sensitivity analysis for updating design vari-
ables via gradient-based approaches. Meanwhile, in a practical de-
sign, a structure is primarily subjected to multiple loading cases
(MLC) [32,46–48]. Hence, this study aims to present a new robust
topology optimisation method for the design of bi-modulus struc-
tures undermultiple uncertain loading cases and to investigate the
effects of load directions on material layout.

It is noted that there are two categories of methods of structure
topology optimisation: the first is the stiffness design that aims
to minimise the structural mean compliance subject to an overall
volume constraint (e.g., [1,3,4,9–11,41]), and the second is the
strength design that aims to minimise the weight of the structure
subject to local stress constraints (e.g., [42–45,49,50]). These are
two methodologies for topology optimisation of structures from
two different aspects of structural stiffness and strength design
philosophies. However, this research mainly focuses on topology
optimisation problems in the context of structural stiffness design.

2. Methodology

2.1. Formulation of robust optimisation

2.1.1. General probability model
Generally, the characters of most random uncertainties can be

represented using appropriate probability models. In the probabil-
ity model frame, uncertainty is expressed in terms of random vari-
ables or a random field that conforms to a specified distribution,
such as a normal or Gaussian distribution. At the same time, the
target function will be expressed as a random variable or random
field. In this study, probability analysis is adopted to estimate the
distribution of the target function. For example, assuming that s =

[s1, s2, . . . , sM ]
T is formulated with independent random vari-

ables that conform to a Gaussian distribution (marked with N(·)),

si ∼ N

si, σ 2

i (si)

, i = 1, 2, . . . ,M (1)

where s̄i and σi are the expectation (or mean value) and the stan-
dard deviation of si, respectively. The target function can be ex-
pressed as a random variable according to a Gaussian distribution,
shown as follows:

f (s) ∼ N

f , σ 2(f )


(2)

where f and σ(f ) are the expected value and the standard devia-
tion of f , respectively. Commonly, numerical methods such as the
Monte Carlo method can be used to search the parameters of the
target function; however, the computational cost is excessive for
topology design problems. Therefore, in the present study, a ran-
dom FEMmethod is adopted to calculate the parameters of the tar-
get function.

2.1.2. Equivalent elasticity of bi-modulus material
The elasticity of a bi-modulus material is stress-dependent, as a

bi-modulus material has a tension modulus ET and compression
modulus EC . For convenience, the ratio between ET and EC is
defined as:

RTCE =
ET
EC

. (3)

Clearly, the bi-modulus material is considered to be purely
isotropic if RTCE = 1.

Table 1 shows equivalent elasticitymodels of a bi-modulus unit
volume under plane stress/strain states. As a material under pure
compression or pure tension, the bi-modulus material exhibits
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Table 1
Mechanical behaviour of bi-modulus material under different plane stress states.

Stress state Bi-modulus material True elasticity

Pure tension

Pure compression

Complex state

σ1 the first principal stress, σ3 the third principal stress, σ1 ≥ σ3 .
isotropic behaviour. Under complicated stress states, however,
the elasticity of the bi-modulus material is orthotropic (strictly,
transversely isotropic) and the principal material directions align
with the principal stress directions. Structural re-analysis is
required due to the material’s bi-modulus behaviour. The accurate
deformation of continuawith bi-modulusmaterial can be obtained
using structural re-analysis [33,34]. In re-analysis, both the elastic
matrix and the principal directions of the material are required to
change.

Double loops are generally part of structural topology optimisa-
tions. The inner loop is for structural analysis and the outer loop is
for the update of design variables, increasing the duration of time
required for numerical computation. We can observe in Table 1
that the material exhibits isotropic behaviour under pure tension
or pure compression. As isotropicmaterial is not stress-dependent;
replacing the original bi-modulus material with an isotropic mate-
rial can avoid the inner loop in the optimisation. However, the local
stiffness should be adjusted, as the local stress state is complex. The
adjustment scheme is described in Section 2.4.

2.1.3. Optimisation model under deterministic loads
As mentioned, topological design problems of structures can

be formulated from two different aspects: the stiffness design
and the strength design. This study focuses on stiffness design to
minimise the structural mean compliance under a global volume
constraint. Hence, in the context of structural stiffness design, the
topology optimisation problem can be established as follows under
deterministic multiple loading cases: [1]

Find {ρm} on Ω

min cw =

NLC
l=1

wlcl

s.t.

m

vmρm − fv · V0 = 0

Kl · Ul = Pl, (l = 1, 2, . . . ,NLC )

ρm ∈

ρmin 1.0


(4)

where the design variablesρm are the relative densities of elements
in the design domain. The objective function, cw , is structural total
compliance under MLC; wl is the pre-defined positive weighting
coefficient; cl = PT

l · Ul is structural compliance under the l-th
loading condition; c̄l is themodified value of structural compliance
(cl)with new isotropicmaterials replacing the original bi-modulus
material; Kl is the global stiffness matrix of a structure under the l-
th loading condition, which are determined using well-established
finite element method [51,52]; and Ul and Pl are the global nodal
displacement vector and nodal force vector, respectively. Kl and Pl
can be calculated using the finite element approach. ρmin = 0.001
is used to avoid singularity of Kl.
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2.1.4. Optimisation model under uncertain loads
If themagnitudes of loads ormaterial parameters are uncertain,

the stiffness design of the structure becomes complex. According
to the principle of robust design optimisation [53], i.e., to select
reasonable design variables in reducing the sensitivity of objec-
tive function to the uncertainties, in robust stiffness design, the ob-
jective function is not to find a structure with minimum expected
compliance (using RBO) but to identify a structure whose compli-
ance varies with uncertain loads as little as possible within the fea-
sible space.

In the present study, the uncertainties are assumed to be the
external load applied on the structure only, and we present a RDO
method to solve the continuum topology optimisation under MLC.
This means that, in the conceptual design phase, the uncertainty of
loads is considered to give the optimal material layout to idealise
the structure’s reliability and stability. In this study, for the sake of
simplicity, only an overall volume constraint is considered in the
RDO formulation.

Under uncertain loads, the volume-constrained robust stiffness
design of a continuum with bi-modulus material under weighted
MLC is defined as follows:

Find {ρm} on Ω

min σ {cw} = σ


NLC
l=1

wlcl


s.t.


m

vmρm − fv · V0 = 0

Kl({ρm}) · Ul({ρm}, pl) = Pl(pl),
(l = 1, 2, . . . ,NLC )

ρm ∈

ρmin 1.0


(5)

where σ {cw} is the standard deviation of weighted structural com-
pliance under MLC; pl = [pl,1, pl,2, . . . , pl,n(l)]T is the vector with
uncertain parameters of the l-th load as components, and each
variable has a Gaussian distribution; n(l) is the number of uncer-
tain parameters of the l-th load; and c̄l is the modified structural
compliance (cl = PT

l · Ul) under the l-th loading.
To use the mathematical programming method for solving the

optimisation problem, the binary design with discrete variables of
0 and 1 is generally relaxed and intermediate values from 0 to 1 are
considered as a continuous design, i.e., ρm ∈ [ρmin 1.0]. How-
ever, the amount of mid-density elements should be reduced. The
power-law rule [5] is commonly adopted to manage this difficulty.
Using this rule, the elastic matrix of porous material with the rela-
tive density of ρm can be expressed as follows:

Dm, ρ = ρp
m · Dm,S (6)

where the subscript ‘‘S’’ in Dm,S means solid element.

2.2. Strain energy densities (SED)

In numerical simulation, the material in each element exhibits
isotropic behaviour even under complicated stress states after the
material replacement operation has been completed. The SED of
each element is calculated for each iteration to select the modulus
of the material and to consider the bi-modulus behaviour of the
original material.

Here, we define the average tension SED and compression SED
of an element (e.g., them-th element) as follows:

(a) Tension SED

TSEDm =
1

2NG

NLC
l=1

NG
Gaus=1

3
j=1

wl

2

×

σj,Gaus,l +

σj,Gaus,l
 · εj,Gaus,l (7)
whereNG is the number of Gauss integration points of element and
σj,Gaus,i and εj,Gaus,i are the j-th principal stress and strain of the
Gauss-th integration point under the i-th loading case, respectively.
This formula implies that only non-negative principal stresses
contribute to the tension SED.

(b) Compression SED is defined as follows:

CSEDm =
1

2NG

NLC
l=1

NG
Gaus=1

3
j=1

wl

2

×

σj,Gaus,l −

σj,Gaus,l
 · εj,Gaus,l. (8)

This formula implies that only non-positive principal stresses con-
tribute to the compression SED.

Therefore, the current total SED of the element is given as
follows:

SEDm = TSEDm + CSEDm. (9)

However, the SED in Eq. (9) is the total SED of the element with
replacement (isotropic) material. If the stress state is simple, the
values of SED either with bi-modulus material or isotropic re-
placement material should be equal. As the element under a com-
plex stress state, the local SED of an element with the original
bi-modulus material should be different from the value given ac-
cording to Eq. (9). We can therefore define the effective SED of an
element, which is amodification of the SED in Eq. (9), for a complex
stress state as follows:

SEDeffective
m =

1
2NG

NLC
l=1

NG
Gaus=1

3
j=1

wl

×

sign(σj,Gaus,l) · σj,Gaus,l · εj,Gaus,l


. (10)

The value of sign(·) in the above equation is determined by the cur-
rent material modulus and the stress state, which can be described
as follows:

(a) If the ‘‘current’’ material modulus of an element is ET , then
we have

sign(σj) =


1 for σj ≥ 0
RTCE for σj < 0. (11)

This means that only when the principal stress is negative and the
current modulus is ET , the value of the principal stress must be
modified to keep the local deformation (principal strains) the same
before and after the material replacement operation.

(b) If the ‘‘current’’ material modulus of an element is EC , then
we have

sign(σj) =


1 for σj ≤ 0
R−1
TCE for σj > 0. (12)

If the stress state is simple, namely, under a pure tension or a pure
compression state, the effective value of SED in Eq. (10) will be
equal to that of SED in Eq. (9).

2.3. Modification factor of local stiffness

Eqs. (9) and (10)may lead to different values of SEDwith respect
to the tension or compression stress. To consider the difference in
local stiffness caused bymaterial replacement, the amount of local
material should be adjusted before updating the design variable
of an element. Using the current total SED and the effective SED,
the modification factor of the local (m-th element) stiffness can be
evaluated according to the following equation:

fm = max

10−6,

SEDeffective
m

max(10−30, SEDm)


. (13)
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Eqs. (9) and (10) show that the value of SEDeffective
m must be no

higher than SEDm. Since the value of SEDm is very low, less than
10−30, them-th element has no contribution to the stiffness of the
structure and can therefore be neglected. The value of fm, less than
the ratio of SEDeffective

m on SEDm, has a slight effect on the updated
density of them-th element.

2.4. Update of modulus of replacement (isotropic) material

Eqs. (9) and (10) present the effects of tension stress(es) and
compression stress(es) on local stiffness. Intuitively, to approx-
imate the original bi-modulus behaviour of an element, the lo-
cal material behaviour of the element should be determined by
whichever value is greater between TSED and CSED. The modu-
lus of local material should be ET if the tension SED is greater than
compression SED, and vice versa. The selection can be expressed as
follows:

Em =

ET , for TSEDm > CSEDm
EC , for TSEDm < CSEDm
max(ET , EC ), others.

(14)

2.5. Sensitivity analysis of objective function

To solve the optimisation problem in Eq. (5) effectively, the
gradient-based programming method is adopted to update the
design variables. Below is the sensitivity analysis.

For the l-th loading condition, the mean structural compliance
is

cl = UT
l · Pl =


NEl
m=1

uT
m · km · um


l

(15)

and the modified mean structural compliance is the following:

c̄l = Ml · PT
l · Ul =


NEl
m=1

uT
m · (fm · km) · um


l

(16)

whereMl is themodification function of fm in the l-th load case;NEl
is the total number of elements in the structure; and um is the nodal
displacement vector of the m-th element with stiffness matrix km.
fm is the modification factor of the m-th element due to material
replacement and is given in Eq. (13).

As the loads are deterministic, the sensitivity of the objective
function can be expressed as

∂cw
∂ρm

=
∂

∂ρm


NLC
l=1

wlMl · PT
l · Ul



=

NLC
l=1

wlMl ·
∂

PT
l · Ul


∂ρm

=

NLC
l=1

wlMl ·


−UT

l ·
∂Kl

∂ρm
· Ul



= −
fmp
ρm

·

NLC
l=1

wl ·

uT
m · km · um


l (17)

where um represents the nodal displacement vector of the m-th
element.

As the loads show uncertainty, the Rosenblatt transforma-
tion [54] is adopted to transform them into a set of uncorrelated
normal variables. The first order Taylor series expansion of struc-
tural compliance at mean values of uncertain loads (normalised) is
calculated as follows:

cw = cw({ρm}, {p̄ni}) +

NLC
l=1

F(l)
i=1

∂(wlc̄l)
∂pl,i


p̄l,i

(pl,i − p̄l,i) (18)

where pl,i is the i-th uncertain force under the l-th loading case. p̄l,i
is themean value of pl,i. F(l) is the total number of uncertain forces
under the l-th loading condition.

Under each loading condition, the partial differentiation of the
discretised equilibrium equation of the structure is given as fol-
lows:
∂(Kl · Ul)

∂pl,i
=

∂Pl
∂pl,i

,


l = 1, 2, . . . ,NLC
i = 1, 2, . . . , F(l)


(19)

where F(l) represents the number of uncertain forces in the l-th
loading condition.

As the global stiffness matrix is not relevant to loading, for each
loading condition, the following discretised function is sufficient:

Kl ·
∂Ul

∂pl,i
=

∂Pl
∂pl,i

,


l = 1, 2, . . . ,NLC
i = 1, 2, . . . , F(l)


. (20)

Using Eq. (20) in Eq. (18) leads to the following:

cw = cw({ρm}, {p̄ni}) + 2
NLC
l=1

F(l)
i=1


∂(wl · Ml · Pl)

∂pl,i
· Ul


pl,i

× (pl,i − p̄l,i). (21)
Here, the unit virtual load vector is defined as follows:

δPl,i =
∂Pl
∂pl,i

. (22)

Therefore, the objective function, a form of the standard deviation
of the weighted compliance of the structure, is expressed as
follows:
σ {cw}

= 2

 NLC
l=1

F(l)
i=1


wl · Ml · δPl,i · Ul

2
p̄l,i

σ 2
pl,i

= 2

 NLC
l=1

F(l)
i=1

NEL
e=1


wl · fe · (δue

l,i)
T · ke · ue

l

2
p̄l,i

σ 2
pl,i

= 2

 NLC
l=1

F(l)
i=1

NEL
e=1


wl · fe · δΠ e

l,i

2
p̄l,i

σ 2
pl,i (23)

where fe is the modification factor of the e-th element; ke is the
stiffness matrix of the e-th element; δue

l,i is the nodal virtual
displacement vector of the elementwith respect to the virtual load;
δPl,i. ue

l is the nodal true displacement vector of the element under
the l-th loading condition; and σpl,i is the standard deviation of pl,i.

For the equilibrium state, the following equation is sufficient:

∂ (Kl · Ul)

∂ρm
=

∂Kl

∂ρm
· Ul + Kl

∂Ul

∂ρm
=

∂Pl
∂ρm

= 0. (24)

Hence,

∂Ul

∂ρm
= −K−1

l
∂Kl

∂ρm
· Ul. (25)

According to Eqs. (24) and (25), we can obtain the following
equation:

∂

δPT

l,i · Ul


∂ρm
= −


δPT

l,i · K
−1
l

 ∂Kl

∂ρm
· Ul

= −δUT
l,i

∂Kl

∂ρm
· Ul. (26)
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It is necessary to mention that the additional loading conditions
with respect to δPl,i should be considered to efficiently obtain the
sensitivity of the objective function.

At the mean value of the load, p̄l,i, Eq. (26) can be expressed as
follows:

∂

δPT

l,i · Ul


∂ρm


p̄l,i

= −


NEl
e=1

(δue)
T

·
∂ke
∂ρm

· ue


p̄l,i
ke=ρpke0

= −
p
ρm


(δum)T · km · um


p̄l,i

= −
p
ρm

δΠm|p̄l,i . (27)

Therefore, the sensitivity of the objective function is expressed as
follows:
∂σ {cw}

∂ρm
=

1
σ {cw}

∂

∂ρm

×


NLC
l=1

F(l)
i=1


wlMl · δPT

l,i


· Ul
2
p̄l,i

σ 2
pl,i



=
2

σ {cw}


NLC
l=1

F(l)
i=1


NEL
m=1

wlfm · δΠm



·
−pwl · fm · δΠm

ρm


p̄l,i

σ 2
pl,i



=
−2p · fm

σ {cw} · ρm


NLC
l=1

w2
l ·

F(l)
i=1


NEL
e=1

fe · δΠe



· δΠm


p̄l,i

σ 2
pl,i

 . (28)

2.6. Update of design variables

The optimal criterion (OC) method [1] is adopted to update the
design variables. For them-th element at the k-th step, the update
scheme is given as follows:

ρ(k+1)
m =


max


ρmin, ρ(k)

m − δ


for ρ(k)
m Lm ≤ max


ρmin, ρ(k)

m − δ


ρ(k)
m Lm others

min

1.0, ρ(k)

m + δ


for ρ(k)
m Lm ≥ min


1.0, ρ(k)

m + δ
 (29)

where δ, or the maximum incremental of relative density, is 0.1
for this study. Lm can be calculated according to the following
equation:

Lm =

∂σ {cw}

∂ρ
(k)
m


λ

∂Vm

∂ρ
(k)
m

 (30)

where the popular bi-sectioning algorithm [55] is used to obtain
the value of the Lagrangian multiplier λ in Eq. (30). It should be
noted that the above equation involves a square root that is al-
ways positive. More details regarding the above equation can be
found in the report by Sigmund [55]. Several methods can be used
to eliminate the numerical instabilities in the SIMP-based topol-
ogy optimisation problems, such as sensitivity and density filter-
ing schemes [55,56]. In this study, the standard sensitivity filter
is included to avoid chequerboard patterns in the topological de-
sign [55].
Fig. 1. Design domain.

2.7. Flow chart of the optimisation algorithm

Step 1: Create the FE model of structure and give an initial design, let
k = 1;

Step 2: Analyse structural deformation and obtain stress and strain
fields of all of the loading conditions (in total, NLC +

NLC
l=1

F(l));
Step 3: Calculate TSED, CSED, total SED and effective SED of each

element (Eqs. (7)–(10));
Step 4: Calculate modification factor of each element (Eq. (13));
Step 5: Select the modulus of replacement material of each element

(Eq. (14));
Step 6: Calculate objective function, sensitivities of objective function

and constraint function(s) (Eq. (28));
Step 7: Update design variables (Eq. (29));
Step 8: k = k+ 1; If Eq. (31) is satisfied or k > 50, then go to Step 9;

else go to Step 2;
Step 9: Stop.

The termination criterion in Step 8 is given as follows: cw,k − cw,j

cw,k

 ≤ η, 1 < j = k − n, k − n + 1, . . . , k − 1 (31)

where the algorithm tolerance is η = 0.001 and the integer n = 5,
meaning that within five continuous steps, the maximum relative
error of the objective function has a higher tolerance.

3. Numerical examples and discussions

The commercial software ANSYS [57] which is connected with
the self-developed MATLAB codes for design optimisation, is used
for finite element analysis of structures.

3.1. Example 1

Fig. 1 shows the design domain, a rectangle plate (20 m ∗ 10 m,
thickness is 0.05m)with the upper and right sides fixed. Thewhole
design domain is discretised with 800 eight-nodal plane stress
elements. For the artificial material model: The Young’s modulus
is 200 GPa, and Poisson’s ratio is 0.3. The structure is subject to
two uncertain loads: (1) The horizontal concentrated force is P1 ∼

N(50 kN, σ 2
P1

) applied at the centre of the bottom, and (2) The
concentrated force is P2 ∼ N(200 kN, σ 2

P2
) applied vertically as

the second load. The weighting coefficients are the same for each
case (w1 = w2 = 0.5). The volume fraction is 15%. Both cases are
considered under σP1 = 2 kN, 5 kN and σP2 = 2 kN.

Fig. 2 gives the optimal topologies of the structure in Fig. 1 under
MLC. Fig. 2(a) is the deterministic design by SIMP [55]. The other
two plots, Fig. 2(b) and (c), show the robust designs. The results are
the same as those given by Luo et al. [17]. Therefore, the proposed
method is valid to complete a robust design of isotropic material.
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(a) Deterministic loads. (b) σP1 = σP2 = 2 kN. (c) σP1 = 5 kN, σP2 = 2 kN.

Fig. 2. Isotropic material optimal layouts under uncertain loads.
Fig. 3. The initial design domain under two uncertain loading cases.

3.2. Example 2

The design domain of the structure, with two vertical sides
fixed, is shown in Fig. 3, which is a l × l (l = 1.0 m) square
plate with a thickness of 0.01 m. The design domain is discretised
with 2500 four-nodal plane stress elements, subject to two loading
conditions. In the first case, the concentrated upward force F1 ∼

N(1000 N, 202) is applied at the centre of the top with a weighting
coefficient w1. In the second case, the concentrated force F2 ∼

N(1000 N, σ 2
F2

) is applied at the bottom of the right side with
the weight coefficient w2. The direction of F2 is vertical but not
determined to be upward (↑) or downward (↓). The tension
modulus of material is 200 GPa, and its Poisson’s ratio is 0.3. The
material volume is constrained to 40%.

The following effects on the optimal material layouts are
considered:

(1) Different directions (↓ or ↑) of F2;
(2) Different values of standard deviation of F2, i.e., σF2 ;
(3) Different values of RTCE .

In the following discussions, (a) the isotropicmaterial in the fol-
lowing casesmeans the structurewith isotropicmaterial (modulus
200 GPa and Poisson’s ratio 0.3); (b) For bi-modulus material, the
value RTCE gives the difference between tension and compression
moduli of thematerial; (c) Given thatwedonot consider the effects
ofweighting schemes on optimal topologies, the twoweighting co-
efficients are equal in this numerical case, i.e., w1 = w2 = 0.5.

Fig. 4 shows the deterministic design of the structure under two
loading cases. Based on Fig. 4(a) and (b), it can be seen that the two
results are the same, indicating that the isotropic material layout
is not sensitive to the loading directions. However, Fig. 4(c) and
(d) show different material layouts, as the material in the design
domain is bi-modulus. All four figures have one symmetric plane,
which may be the major difference that distinguishes them from
the robust designs discussed in the following section.

3.2.1. The effects of F2 directions on material layouts
In this section, the value of σF2 is set to 50 N. For purposes of

comparison, the structures under deterministic loads or uncertain
loads will be displayed.

Fig. 5 shows the robust design of materials in the structure.
Fig. 5(a) and (b) show the optimal distributions of isotropic mate-
rial under uncertain loads. The distributions are identical, implying
that the isotropic material layout is not sensitive to the direction
of F2. Fig. 5(c) and (d) show the bi-modulus material layouts un-
der uncertain loads, which are clearly different. The material dis-
tributes differently on the left side of the structure; thus, it can be
inferred that bi-modulus material layout is sensitive to the direc-
tion of F2.

3.2.2. The effects of SD (σF2 ) on material layouts
The direction of F2 is always downward in this section. For bi-

modulus material, RTCE = 0.5. The two weighting coefficients are
equal, i.e., w1 = w2 = 0.5. Three numerical cases for structures
with either isotropic material or bi-modulus material are given as
follows: (I) σF2 = 10 N; (II) σF2 = 20 N; (III) σF2 = 100 N.

Fig. 6 gives the optimal material (isotropic or bi-modulus
material) distributions under different uncertain loads. It can be
seen that the material tends to support F1 when σF2 = 10 N (less
than σF1 = 20 N) (see Fig. 6(a) and (b)). For σF1 = σF2 = 20 N, the
topologies are symmetric (see Fig. 6(c) and (d)). When σF2 = 100
is much greater than σF1 = 20, the amount of material required to
support F1 in the final structure is very low (see Fig. 6(e) and (f)).
Therefore, the optimal layout of a structure under uncertain loads
is determined using standard deviation values rather than directly
by the values of forces.

3.2.3. The effects of RTCE on material layouts
The direction of F2 is always downward in this section. The

two weighting coefficients are equal, i.e., w1 = w2 = 0.5. σF2 is
50 N. Two cases with bi-modulus materials in the structure are
considered, e.g., (I) RTCE = 0.2 vs. RTCE = 5; (II) RTCE = 0.5 vs.
RTCE = 2.

Fig. 7(a) displays the optimal layout for bi-modulus material
(RTCE = 0.2) and indicates that the tension modulus is far less
than the compression modulus. Therefore, the material under
compression (in the second loading case) is much greater than that
in the final structure, as shown in Fig. 7(b)–(d). The differences
between Fig. 7(a) and (b) and between Fig. 7(c) and (d) are clear.
There is no symmetry between these topological plots. It can also
be noted that as the value of RTCE increases, the inner part of the
final structure strengthens.

4. Conclusions

The effects of uncertainty are naturally a consideration for prac-
tical engineering design, especially for structures under uncertain
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(a) F2 (↓), isotropic. (b) F2 (↑), isotropic.

(c) F2 (↓), bi-modulus (RTCE = 0.5). (d) F2 (↑), bi-modulus (RTCE = 0.5).

Fig. 4. Optimal material layouts under deterministic MLCs (w1 = w2 = 0.5).
(a) F2 (↓), isotropic. (b) F2 (↑), isotropic.

(c) F2 (↓), bi-modulus (RTCE = 0.5). (d) F2 (↑), bi-modulus (RTCE = 0.5).

Fig. 5. Optimal material layouts under uncertain MLCs.
multiple loading conditions. Based on material replacement op-
eration, a sensitivity analysis for the topology optimisation of
bi-modulus structures is implemented in this study. Numerical
examples are given to discuss the effects of various parameters
on the final material distributions. These parameters include force
directions, weighting schemes of loads, standard deviations and
the difference between twomoduli of a bi-modulusmaterial. From
the numerical results, we can assert the following conclusions:

(1) Under either deterministic loads or uncertain loads, the final
layout of bi-modulus material is sensitive to force directions (i.e.,
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(a) Isotropic, σF2 = 10 N. (b) Bi-modulus, σF2 = 10 N. (c) Isotropic, σF2 = 20 N.

(d) Bi-modulus, σF2 = 20 N. (e) Isotropic, σF2 = 100 N. (f) Bi-modulus, σF2 = 100 N.

Fig. 6. Optimal material layouts under various uncertain loads.
(a) RTCE = 0.2. (b) RTCE = 5.

(c) RTCE = 0.5. (d) RTCE = 2.

Fig. 7. Optimal bi-modulus material layouts under uncertain loads.
F v.s. −F), which is compared to isotropic material layouts, which
are not sensitive to force directions; (2) The values of the standard
deviations of uncertain forces rather than the forces themselves
influence the final material distributions; (3) The effects of the
two moduli of a bi-modulus material on the final optimal design
are clear. In the final structure, the amount of material that
absorbs greater strain energy will be implemented as much as
possible.
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