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Abstract-A modified variational functional for the analysis of Reissner plates with the Trefftz method 
is presented. The existence theorem of the variational solution for the functional has also been deduced. 
It is found that the new functional is nonconvex. Finally a hybrid Trefftz finite element formulation is 
developed based on the functional. Two numerical examples of: rectangular plate are considered and their 
results are in good agreement with the known ones. 

NOTATION 

5Eh/l2(1 + v), a transverse shear rigidity 
a part of boundary dfi of the solution domain 0, on 
which deflection w is prescribed; C,,,“, Cc, etc. are 
defined similarly 
Eh3/12(l - v*), the plate flexural rigidity 
modulus of elasticity 
thickness of plate 
bending moment 
twisting moment (i #j) 
component of the outward normal to the boundary 
ac2 
lateral distributed load 
transverse shear force 
(x2 + y2)“2 
component of the tangent to boundary 3Q 

O.W&,,,tik,~ +_t,(w,, z I(I,)(wd - Ic,)l, vstrain energy 
densitv 
latera< deflection 
variational symbol 
Kronecker delta 

E?ny+)tio 

average rotations of the normals to the plate mid-sur- 
face 
over a symbol denotes prescribed value 

1. INTRODUCTION 

Elastic moderately thick plates occur in numerous 
technological applications, and the solution of 
plate bending problems has received a great deal 
of attention. The application of the finite 
element method to the analysis of moderately thick 
plates can be traced back to the late 1960s [l]. 
Reddy studied the Mindlin plate elements using 
the Lagrange multiplier and penalty method [2], 
Hinton and Huang[3] investigated Mindlin plate 
elements with substitute shear strain fields. Later, 

Qin [4] and Jin and Qin [5] proposed a family of 
variational functional and related hybrid and 
boundary element models which are suitable for 
the nonlinear analysis of Reissner plates. An exten- 
sive list of references on the subject may also be found 
in Ref. [6]. 

On the other hand, the applications of the 
hybrid Trefftz finite element (HTFE) can be traced to 
the late 1970s [7]. The HT approach has been applied 
to plane elasticity [8], to isotropic [9] and or- 
thotropic [lo] Kirchoff plates, thin shells with con- 
stant principal curvatures [ 1 I] and to Poisson’s 
equation [ 12, 131. 

The present study deals with the derivation to 
analyze the bending problems of Reissner plates with 
the Trefftz method. To this end, a modified vari- 
ational functional is proposed, and the sufficient 
condition for the local extreme of the functional is 
derived. A quadrilateral HTFE model is established 
based on the functional. The numerical results 
demonstrate good performance of the proposed tech- 
niques. 

2. VARIATIONAL PRINCIPLE 

Consider an anisotropic Reissner plate of thick- 
ness h, occupying a two-dimensional arbitrary 
shaped region R, bounded by a curve boundary aR. 
Indices i and j take values in the range (1,2). The 
bending behavior of the plate is governed by the 
differential equations and boundary conditions 
as [14] 

&&,,k, -l;i(cl, - wJ) = 0 in fi (la) 

A,(+,., - w,,,) = 4 in R (lb) 
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M, = M,n,n, = II?” (on C, ); 

M,, = M,n,s, = A,, (on CMnY) 

Qn = QA = Ci! (on Ce) 

$n = $A = 6, (on Cen 1, 

ti, = I(l,s, = G3 (on Ctir 1 

(2a, b) 

(24 

(24 e) 

w=W (on C,,.) (2f) 

(an = ten UC,~ = c++xMnT = c,,.uc~), 

where bqk, andf, are the components of the tensor of 
elasticity defined, for example for isotropic materials, 
by the following formulae 

hi/k, = D((l - “)(6,,S,, f Sz,hjk)/2 + “SgS,,), 

i,.j, k, I = 1, 2 

.A, = b,,,, = C4,. 

In the present study, we assume that following consti- 
tutive relationships are identically satisfied 

M, = - b,,, th,, > Q, =_L,(wj - $,I,,. (3a, b) 

For the boundary-value problem (l)-(3), a modified 
functional used for deriving HTFE model can be, 
then, given by 

-1 w@-QJdc 
CQ 

(4) 

in which we assume that eqns (1) are satisfied in 
advance. 

For the functional (4) we obtain the following. 

Theorem 1 

If the expression below 

+ s 6$,6M,, dc + 
s 

6w6Q, dc (5) 
CM”. cQ 

is uniformly positive (or negative) around the exact 
solution of (1) and (2) one has 

where To represents the stationary value at (tie, w,), 
where I(lio and w,, are the exact solution of the 
boundary-value problem (I), (2), and the equal sign 
in (6) holds if the arguments ll/; and w are at the critic 
point. 

Proof 

From the first we prove that solution of the 

boundary-value problem (l)-(3) is the stationary 
conditions of r. In doing this, taking variation of r 
and using (1) we see 

- s (w - W)SQ, dc - 
s 

(fin - M,)W, dc 
CL< CM” 

- s @, - Q,Mw dc (7) 
C‘Y 

= 0 * (2), (8) 

where the symbol “2 ’ means that the constraint 
equations (la, b) are satisfied, a priori. Therefore the 
exact solution of (1) and (2) is the stationary con- 
dition of the functional (4). 

Second, attention will be focused on proving the 
property of r at the neighborhood of critical point. 
Taking the variation of 6r [eqn (7)] in this connec- 
tion, we obtain 

6 ‘T E expression (5). (9) 

Thus the theorem is proved by using the sufficient 
condition on the existence of local extreme value of 
a functional [ 151. 

3. FINITE ELEMENT FORMULATION 

3.1. Complete systems 

In the Trefftz methods, one needs to choose from 
the trial and/or weighted functions in such a manner 
that the differential equations are satisfied, through- 
out the domain R a priori. Usually they are the 
terms chosen from the complete solutions of the 
homogeneous differential equations. The complete 
system of Reissner plate bending equations was ob- 
tained by Qin et al. [ 161 through introducing two 
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Table 1. A suitable match of is and is 
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k 1 2 3 4 5 6 7 8 9 10 11 etc. 

i 1 o 2 3 0 4 5 0 6 7 0 etc. 
j 0 I 0 0 2 0 0 3 0 0 4 etc. 

In the table: g,,=O, g, =r2, g,=r2cos(28), g,=r* sin(28), . . . ,fo = &A = &#hf, = 11 @r)coS 6.h = 
I, (Ir)sin 6, . . 

auxiliary functions, g andf, which have the following 
relations 

tiX = g,, +&’ 1 *y = g,, --xx. (10) 

Thus the resulting governing equation for an 
isotropic Reissner plate becomes [ 161 

vtf-ny=o 

DV’g = q 

together with the relationships 

(11) 

(12) 

w = g - DV=gjC; *x = g,x +& ; 

*y = g,y - f,x > (13) 

where eqns (11) and (12) are, respectively, known as 
the modified Bessel equation and a biharmonic 
equation. Their homogeneous solutions may be 
formed by [ 161 

Ik (Ir)cos(M); 

and 

I,(Ir)sin(k@, k = 0, 1,2, . . 

(14) 

r2Zk and Zk+’ , k=0,1,2 ,... (15) 

where r2 = x2 + y2; Ik(.) is a modified Bessel function 
of first kind with order k; Z = x + iy and i = &-! 
is an imaginary number. 

3.2. Modification of the basic functional r 

As indicated in [7], the basic variational functional 
r cannot directly be used as the basis for a finite 
element formulation since the approximate displace- 
ment fields ($,, w), if defined independently for each 
element 

u = 6 + [N](e) (16) 

violates the interelement continuity requirements in 
general, where u = {w, $,, Ic/,} and G = {+, $,Y, GJ} 
are a set of particular solutions which satisfy the 
following relationships: 

V’g = q/D 

G =d - DV’i/C 4x =&, 

(17a) 

I& =& 

(17M) 

whilst 

[N](e) = [N, N2. . . N,]{e, e,. . e,,,}’ (18) 

with 

Nk = {gi - DV*gK g,, +& g,,, -f;.,)‘, (19) 

where gi andf; are chosen from the complete systems 
(14) and (15). 

Generally speaking, indexes is andjs in expression 
(19) may be independently selected. In the paper we 
match them in the way shown in Table 1. 

The advantage of the above-mentioned ordering is 
to make it easy to preserve the invariment properties 
of element under the rotation of its coordinate axis 
when the set is truncated. 

To enforce the compatibility (in a variational 
sense), an additional boundary displacement vector, 
ri = {I?, qX, $rj, is independently assumed along 
each particular element boundary dA,. Hence, the 
basic variational functional I- modified for relaxed 
element compatibility condition can be given in the 
form 

(20) 

For a particular element j, a conforming frame 
displacement vector t7, can be expressed in terms 
of generalized nodal parameters. The customary form 
is 

l2, = IiQ$ (21) 

where dj is the vector of generalized nodal displace- 
ments of the element j and fij is a matrix of conven- 
tional FE shape functions. For example, along the 

(1 DOF w) 

(3 DOE Ur, ‘t’, w) 

Fig. I. A typical element j. 
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Table 2. Uniformly loaded, simply supported square plate 

QUAD4S (ref. [3]) HTFE (present) 

Mesh P M0 B M0 

2x2 0.421 0.477 0.422 0.478 
3x3 0.425 0.479 0.425 0.479 
4x4 0.426 0.479 0.427 0.479 

Exact 0.427 0.479 

the plate will be modelled by a series of meshes of 
N x N elements for a span/thickness ratio of b/h = 10 
in the HTFE analysis. 

Table 3 shows the results of central deflection co- 
efficient /? (w, = p x lo-*qb4/D) and central moment 
one M, (M =O.lM,,qb*), and comparison is made 
with those obtained in Ref. [3]. 

side A-C-B of a typical HT element j (Fig. l), the 
frame displacement can be further given in the form 

(22a-c) 

This paper presents a modified functional for the 
analysis of Reissner plates with the Trefftz method and 
the sufficient condition of the local extreme for the 
functional is originally given. The study indicates that 
the functional is nonconvex. The numerical results 
obtained here show that the HTFE model is very 
effective for thick plate bending problems, 

where N, = r(< - 1)/2, N2 = c(< + 1)/2, N, = 1 - <*, 
N4 = (1 - 5)/2 and N, = (1 + 5)/2. 

Finally substituting eqns (16) and (21) into eqn (20) 
and by taking variation of r” with respect to {e}, one 
can express {e} in terms of {d}, therefore r” depends 
only on variable {d}. Again for dT”‘/a(d) = 0, we 
obtain 

It should be mentioned that the important advan- 
tage of the approach is ease of handling the local 
effects, such as load-dependent singularity, singular 
corners, and so on, by using various special-purpose 
elements, these special elements will be reported in 
another paper [ 161. 

CK’d, = G, (23) 

where K’ is the element stiffness matrix and G the 
equivalent nodal force. 

1. 

2. 

4. NUMERICAL EXAMPLES 

Example 1 3. 

Consider a simply supported square plate under 
uniform load q with a span/thickness ratio of b/h = 10 
and v = 0.3, where b is the side length of the plate. 

4. 

A symmetric quadrant of a uniformly loaded, 
simply supported, square plate is modeled by a series 
of meshes of N x N elements. Table 2 compares results 
of central deflection coefficient p (I+‘, = /3 10m2qb4/D) 
and the central moment coefficient M, 
(M = O.lM,qb*) obtained using the HTFE and the 
approaches given in [3]. 

5. 

6. 

Example 2 

As the second example we consider a clamped 
square plate with v = 0.3 which is subjected to a 

uniform load. 
With the same way as in Example 1, a quadrant of 

7. 

8. 

Table 3. Uniformly loaded, clamped supported square plate 

QUAD4S (ref. [3]) HTFE (present) 

Mesh P M0 B M0 

2x2 0.146 0.226 0.147 0.227 
3x3 0.148 0.241 0.148 0.229 
4x4 0.149 0.234 0.149 0.230 

Exact 0.150 0.23 1 

9. 

10. 

II. 

12. 

5. CONCLUDING REMARKS 
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