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Abstract In this paper, a new type of hybrid fundamental solution-based finite element method (HFS-FEM)
is developed for analyzing plane piezoelectric problems with defects by employing fundamental solutions (or
Green’s functions) as internal interpolation functions. The hybrid method is formulated based on two indepen-
dent assumptions: an intra-element field covering the element domain and an inter-element frame field along
the element boundary. Both general elements and a special element with a central elliptical hole or crack are
developed in this work. The fundamental solutions of piezoelectricity derived from the elegant Stroh formalism
are employed to approximate the intra-element displacement field of the elements, while the polynomial shape
functions used in traditional FEM are utilized to interpolate the frame field. By using Stroh formalism, the
computation and implementation of the method are considerably simplified in comparison with methods using
Lekhnitskii’s formalism. The special-purpose hole element developed in this work can be used efficiently to
model defects such as voids or cracks embedded in piezoelectric materials. Numerical examples are presented
to assess the performance of the new method by comparing it with analytical or numerical results from the
literature.

1 Introduction

Piezoelectric materials have the property of converting electrical energy into mechanical energy and vice versa.
This reciprocity in energy conversion makes them very attractive for applications in electromechanical devices
such as sensors, actuators, transducers, and frequency generators. It has been demonstrated that the presence of
defects such as voids and cracks results in degeneration of the service performance of piezoelectric materials
[1,2]. An analysis of electroelastic fields around defects in piezoelectric materials is of paramount importance
for evaluating the failure behavior of such materials. To understand the electromechanical coupling mecha-
nism of piezoelectric materials, much research has been conducted over recent decades, both analytically and
numerically [3–10]. Because analytical solutions can only be obtained for problems with simple geometry
and boundary conditions, numerical methods such as the finite element method (FEM) and boundary element
method (BEM) are employed in solving most practical problems [11,12].

It should be mentioned that mesh refinement near a hole or crack is required for FEM to achieve mean-
ingful results, which is a very time-consuming and complex task [13]. Compared with the FEM, the BEM is
computationally efficient and highly accurate in dealing with linear fracture analyses. Lee and Jiang [14] devel-
oped a boundary element formulation for piezoelectric solids using the method of weighted residuals. Pan [15]
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presented a boundary element model for analyzing the fracture behavior in two-dimensional anisotropic piezo-
electric solids based on the Green’s functions derived by Stroh’s formalism. Xu and Rajapakse [16] performed a
BEM analysis of crack problems based on Green’s functions derived by Lekhnitskii formalism. Sheng et al. [17]
developed a multi-domain Trefftz boundary collocation method for plane piezoelectricity with defects accord-
ing to the plane piezoelectricity solution derived by Lekhnitskii formalism. To avoid mesh refinement, special
Green’s functions for two-dimensional anisotropic and piezoelectric materials were proposed in [18,19] and a
linear boundary element was developed to analyze problems involving multiple holes and cracks by utilizing
special Green’s functions [19,20]. In the present work, a special Green’s function for an infinite piezoelectric
body containing an elliptic hole is employed to satisfy, a priori, the proper singularity at the source point and the
traction-free-hole boundary conditions along the rim of the elliptic hole, rendering meshing refinement around
the hole boundary unnecessary. Thus, a vast amount of computer time and storage for numerical calculations
can be saved. Moreover, due to the exact satisfaction of the traction-free-hole boundary condition, the results
are more accurate than those obtained using conventional boundary elements [20].

On the other hand, during the past three decades, the Hybrid-Trefftz finite element method (HT-FEM) has
been considerably improved and has now become a highly efficient computational tool for the solution of
complex boundary value problems [21–24]. The concept of special-purpose functions has been found to be
highly efficient for dealing with various geometry or load-dependent singularities and local effects such as
obtuse or reentrant corners, cracks, circular or elliptic holes, and concentrated loads [7,25–27]. However, spe-
cial attention must be given to the derivation and selection of a truncated T-complete solution set for HT-FEM
to ensure that the completeness of solutions is retained and the corresponding rigid-body motion terms are
discarded to avoid singularity during the process of matrix inversion. Furthermore, to ensure good numerical
condition during the inversion of the matrix H, a coordinate transformation is usually required, because the
order of coordinates or distance variables will increase along with an increase in the terms of T-complete
solutions. Recently, a novel hybrid finite element formulation, called HFS-FEM, was developed based on the
framework of HT-FEM [28–31]. In this new method, the major improvement over the HT-FEM is the use of
the linear combination of fundamental solutions for modeling the intra-element field. The fundamental solu-
tion employed satisfies analytically the related governing equation. The resulting system of equations from
the modified hybrid variational functional is expressed in terms of a symmetric stiffness matrix and nodal
displacements only, which is easy to implement into the standard FEM. It is noted that, by locating the source
point outside the element of interest to avoid overlapping with any field point during the computation, no
singular integrals are involved in the HFS-FEM [28].

The proposed HFS-FEM inherits all the advantages of HT-FEM over the traditional FEM and the BEM,
namely domain decomposition and boundary integral expressions, while avoiding the major weaknesses of
BEM, namely the singular element boundary integral and loss of symmetry and sparsity [3]. The employment
of two independent fields also makes it easier for the HFS-FEM to use arbitrary polygonal or even curve-sided
elements. It also obviates the difficulties that occur in HT-FEM [27] in deriving T-complete functions for
certain complex or new physical problems [27]. The HFS-FEM has simpler interpolation kernel expressions
for intra-element fields (fundamental solutions) and avoids the coordinate transformation procedure required
in the HT-FEM to keep the matrix inversion stable. Moreover, this approach also has the potential to achieve
high accuracy using coarse meshes of high-degree elements, enhancing insensitivity to mesh distortion, which
allows great liberty in element shape and accurate representation of various local effects (such as hole, crack,
and inclusions) without troublesome mesh adjustment [7,26].

In this paper, a new hybrid fundamental solution-based FEM is developed for modeling plane piezoelectric-
ity with defects (holes or cracks) based on extended Stroh formalism [6]. The fundamental solution expressed
in the form of the extended Stroh formalism is employed to approximate the intra-element displacement and
electrical potential field (DEP). A new modified variational functional is proposed to facilitate the implement
of the HFS-FEM for piezoelectric materials. This new scheme is much simpler and more elegant than that
based on Lekhnitskii formalism for transversely isotropic piezoelectric materials [3]. It is demonstrated from
numerical examples that the new HFS-FEM is capable of analyzing the coupling behavior of piezoelectric
materials and structures. More importantly, a special-purpose element for handling problems with elliptic holes
is proposed.

This paper is organized as follows: in Sect. 2, the basic equations and the extended Stroh formalism
for plane piezoelectricity are presented. The fundamental solutions for a normal element and a special-pur-
pose hole element are presented by the way of Stroh formalism. Section 3 presents detailed formulations
of the HFS-FEM for plane piezoelectricity, including the establishment of a modified variational func-
tional and element stiffness matrix. In Sect. 4, the HFS-FEM is assessed by four numerical examples in



A new hybrid finite element 43

which comparisons are made with results from the literature. Concluding remarks are briefly presented in
Sect. 5.

2 Basic equations and Stroh formalism for piezoelectric materials

2.1 Basic equations

In the Cartesian coordinate system (x1, x2, x3), the differential governing equations for a linear piezoelectric
material are given by

σi j, j + fi = 0, Di,i − q = 0 in �, (1)

where σi j is the stress tensor, Di the electric displacement vector, fi the body force, q the free charge densi-
ties, and � the solution domain. The subscript comma denotes the partial differentiation with respect to the
coordinates after the comma. The summation convention is invoked over repeated indices.

With strain εi j and electric field Ei as the independent variables, the constitutive equations are

σi j = Ci jklεkl − eki j Ek, Di = eiklεkl + κik Ek, (2)

where Ci jkl is the elasticity tensor measured under constant electric field (E = 0), eikl and κi j are, respectively,
the piezoelectric tensor and dielectric tensor measured under constant strain (ε = 0). The strain–displacement
and electric field–electric potential relations are given as

εi j = 1

2
(ui, j + u j,i ), Ei = −φ,i , (3)

where ui and φ are the displacement and the electric potential, respectively.
The boundary conditions of the boundary value problem (1)–(3) are given by

ui = ui on �u, (4)

ti = σi j n j = ti on �t , (5)

φ = φ on �φ, (6)

Dn = Di ni = −q on �D, (7)

where ti is the traction, q is the surface charge, and ni is the unit outward normal vector. A bar over a variable
indicates that its value is prescribed. � = �u + �t = �D + �φ is the boundary of the problem domain �.

2.2 Extended Stroh formalism

If we neglect the body force fi and surface charge q and let [18]

CI J K L =

⎧
⎪⎨

⎪⎩

Ci jkl i, j, k, l = 1, 2, 3,
eli j k = 4, i, j, l = 1, 2, 3,
e jkl i = 4, j, k, l = 1, 2, 3,
−κ jl i = k = 4, j, l = 1, 2, 3,

(8)

D j = σ4 j , −E j = u4, j = 2ε4 j , j = 1, 2, 3, (9)

the basic equations (1)–(3) can be expressed in terms of expanded tensor notation by

σI J,J = 0, σI J = CI J K LεK L , εI J = 1

2
(uI,J + u J,I ), I, J, K , L = 1, 2, 3, 4, (10)

where CI J K L has the following symmetry property:

CI J K L = CJ I K L = CI J L K = CK L I J . (11)

It is noted that the governing equations (10) and (11) for piezoelectric anisotropic materials have the same
form as those of pure anisotropic elasticity. For the generalized two-dimensional deformation (ui depends on
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x1 and x2 only), an extended version of Stroh formalism satisfying the governing Eq. (10) was proposed by
Kuo and Barnett as [18,32]

u = 2Re{Af(z)},ϕ = 2Re{Bf(z)}, (12)

where u = [u1, u2, u3, φ]T is the displacement vector, ϕ = [ϕ1, ϕ2, ϕ3, ϕ4]T is the stress function vector,
f(z) = [ f1(z1), f2(z2), f3(z3), f4(z4)]T is a function vector composed of four holomorphic complex functions
fα(zα), α = 1, 2, 3, 4, which is an arbitrary function with argument zα = x1 + pαx2 and will be determined
by satisfying the boundary and loading conditions of a given problem. In Eq. (12), Re stands for the real part
of a complex number, pα are the material eigenvalues with positive imaginary part, A = [a1,a2,a3,a4

]
and

B = [b1,b2,b3,b4] are 4 × 4 complex matrices formed by the material eigenvector associated with pα , which
can be obtained by the following eigen relations [18]:

Nξ = pξ , (13)

where N is an 8 × 8 fundamental elasticity matrix and ξ is an 8 × 1 column vector defined by

N =
[

N1 N2

N3 NT
1

]

, ξ =
{

a
b

}

, (14)

where N1 = −T−1RT, N2 = T−1 = NT
2 , N3 = RT−1RT−Q = NT

3 , and the matrices Q, R and T are 4 × 4
matrices extracted from CI J K L as follows:

Qik = Ci1k1, Rik = Ci1k2, Tik = Ci2k2 i, k = 1, 2, 3, 4; (15)

the detailed matrix components are shown below as

Q =
⎡

⎢
⎣

C11 C16 C15 e11
C16 C66 C56 e16
C15 C56 C55 e15
e11 e16 e15 −k11

⎤

⎥
⎦ , R =

⎡

⎢
⎣

C16 C12 C14 e21
C66 C26 C46 e26
C56 C25 C45 e25
e16 e12 e14 −k12

⎤

⎥
⎦ , T =

⎡

⎢
⎣

C66 C26 C46 e26
C26 C22 C24 e22
C46 C24 C44 e24
e26 e22 e24 −k22

⎤

⎥
⎦ . (16)

Since ξ = [a, b]T is the right eigenvector of matrix N, normalization is necessary to obtain unique values of
ak and bk . As in anisotropic elasticity, the following orthogonality relation for material eigenvector matrices
A and B can be used for this purpose:

[
A A
B B

][
BT AT

B
T

A
T

]

=
[

I 0
0 I

]

. (17)

It should be noted that when using transversely piezoelectric materials (e.g., x1–x2 as the isotropic plane),
and taking the x3 as the poling direction, Stroh formalism will fail for such degenerate materials, namely
μ1 = μ2 = μ3 = μ4 = i . In this case, a small perturbation must be added to enable the Stroh formalism to
work. Based on the relation in Eq. (17), the Barnett–Lothe tensors L, S and H can be defined by [18]

H =i2AAT, L = −i2BBT, S = i(2ABT−I). (18)

The stresses and electric displacement can be obtained from the derivation of the generalized stress function
ϕ as follows:

σi1 = −φi,2, σi2 = φi,1, i = 1, 2, 3, (19)

σ41 = D1 = −φ4,2, σ, 42 = D2 = φ4,1. (20)



A new hybrid finite element 45

Fig. 1 Schematic of an infinite anisotropic plate with an elliptical hole

2.3 Fundamental solutions

The fundamental solution employed in this work can be found in [18]. To provide an introduction to the
solution and notation for later sections, we here summarize briefly the derivation given in [18]. Consider
an infinite homogeneous piezoelectric medium loaded by a concentrated point force or electric charge p̂ =
( p̂1, p̂2, p̂3, p̂4) applied at an internal point x̂ = (x̂1, x̂2) distant from the boundary. The boundary conditions
of this problem can be written as

∫

C
dφ = p̂ for any closed curve C enclosing x̂,
∫

C
du = p̂ for any closed curve C,

lim
x→∞ σi j = 0, lim

x→∞ Di = 0.

(21)

The function f in Eq. (12) satisfying the above boundary conditions has been found to be [18]

f (z) = 1

2π i
〈ln(zα − ẑα)〉ATp̂. (22)

Therefore, the fundamental solutions of the problem can be expressed as

u = 1

π
Im
{

A〈ln (zα − ẑα

)〉AT
}

p̂,

φ = 1

π
Im
{

B〈ln (zα − ẑα

)〉AT
}

p̂.

(23)

The corresponding stress components can be obtained from stress function φ as

σ ∗
i1 = −φ,2 = − 1

π
Im
{

B〈pα/
(
zα − ẑα

)〉AT
}

p̂,

σ ∗
i2 = φ,1 = 1

π
Im
{

B〈1/
(
zα − ẑα

)〉AT
}

p̂,

(24)

where p̂ is chosen to be (1, 0, 0, 0)T, (0, 1, 0, 0)T, (0, 0, 1, 0)T, and (0, 0, 0, 1)T, respectively, 〈·α〉 stands for
the diagonal matrix corresponding to subscript α, Im denotes the imaginary part of a complex number, and
superscript T denotes the matrix transpose.

2.4 Special fundamental solutions for a plate with hole

Consider an infinite anisotropic plate containing traction and an electric-charge-free elliptic hole under a
concentrated force or electric charge p̂ = ( p̂1, p̂2, p̂3, p̂4) applied at point x̂ = (x̂1, x̂2), as shown in Fig. 1.
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Fig. 2 Conformal mapping of an infinite plane with an elliptical hole

The Green’s function of this problem can be obtained by employing the conformal mapping technique as
shown in Fig. 2, which transforms the region outside the elliptical hole in the z-plane onto the exterior of a
unit circle in the ς -plane. The expressions of the Green’s function for this problem have been presented in
[18,20] as

u = 1

π
Im

{

A
〈
ln
(
ςα − ς̂α

)〉
AT +

4∑

k=1

A
〈
ln(ς−1

α − ς̂k)
〉

B−1BIkA
T
}

p̂,

φ = 1

π
Im

{

B ln
(
ςα − ς̂α

)
AT +

4∑

k=1

B
〈
ln(ς−1

α − ς̂k)
〉

B−1BIkA
T
}

p̂,

(25)

in which I1 = diag[1, 0, 0, 0], I2 = diag[0, 1, 0, 0], I3 = diag[0, 0, 1, 0], I4 = diag[0, 0, 0, 1], and the
variables ςα and ς̂α are expressed in terms of the arguments zα and ẑα as

ςα = zα +√z2
α − a2 − p2

αb2

a − i pαb
, ς̂α = ẑα +√ẑ2

α − a2 − p2
αb2

a − i pαb
, (26)

where 2a and 2b are the lengths of the major and minor axes of the elliptical hole, respectively,

zα = x1 + pαx2, ẑα = x̂1 + pα x̂2. (27)

The derivative of ςα with respect to zα can be expressed as

∂ςα

∂zα

= 1

a − i pαb

(

1 + zα
√

z2
α − a2 − p2

αb2

)

= 2ς2
α

(a − i pαb) ς2
α − (a + i pαb)

. (28)

Then, the derivative of ςα with respect to x1 and x2 is given in the form

∂ςα

∂x1
= ∂ςα

∂zα

.
∂zα

∂x1
= ∂ςα

∂zα

= 2ς2
α

(a − i pαb) ς2
α − (a + i pαb)

,

∂ςα

∂x2
= ∂ςα

∂zα

.
∂zα

∂x2
= ∂ςα

∂zα

.pα = 2pας2
α

(a − i pαb) ς2
α − (a + i pαb)

.

(29)

Using Eq. (29) and letting χ = (a − i pαb)ς2
α − (a + i pαb), the corresponding stress components can be

expressed as

σ ∗
i1 = −φ,2 = − 1

π
Im

{

B

〈
2ς2

α pα
(
ςα − ς̂α

)
χ

〉

AT

}

p̂ − 1

π

4∑

k=1

Im

⎧
⎨

⎩
B

〈
−2ςα pα

(
1 − ςας̂k

)
χ

〉

B−1BIkA
T

⎫
⎬

⎭
p̂,

σ ∗
i2 = φ,1 = 1

π
Im

{

B

〈
2ς2

α(
ςα − ς̂α

)
χ

〉

AT

}

p̂ + 1

π

4∑

k=1

Im

⎧
⎨

⎩
B

〈
−2ςα

(
1 − ςας̂k

)
χ

〉

B−1BIkA
T

⎫
⎬

⎭
p̂.

(30)
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The fundamental solutions for an infinite piezoelectric medium with a crack of length 2a can be obtained
easily by letting b = 0 in Eq. (25) [18]. For crack problems, it is always of interest to know the stress and
electric displacement fields near the crack tip. Differentiating the generalized stress function with respect to
x1 and letting x2 = 0, x1 > a, the stress σ 2 = {σ21, σ22, σ23, D2}T ahead of the crack tip along the x1 axis is
obtained as

σ 2 = ϕ,1 = 1

πa

⎛

⎝1 + x1
√

x2
1 − a2

⎞

⎠ Im

{

B
〈

1

ζ − ζ̂α

+ 1

ζ − ζ 2ζ̂α

〉

AT
}

p̂ (31)

where

ζ =
x1 +

√

x2
1 − a2

a
, ζ̂α = ẑα +√ẑ2

α − a2

a
. (32)

With the definition of stress and the electric displacement intensity factors of cracks [33] and using the following
relations:

1

1 − ζ̂α

= 1

2

(

1 − ẑα + a
√

ẑ2
α − a2

)

= 1

2

(

1 +
√

ẑ2
α − a2

a − ẑα

)

, lim
x1→a

ζ = 1, (33)

we can obtain

K =

⎧
⎪⎨

⎪⎩

KII
KI
KIII
KIV

⎫
⎪⎬

⎪⎭
= lim

x1→a

√
2π(x1 − a) σ 2 = 2√

πa
Im

{

B
〈

1

1 − ζ̂α

〉

AT
}

p̂, (34)

where KI, KII, and KIII are the stress intensity factors, and KIV is the electric displacement intensity factor
[34].

3 Formulations of HFS-FEM for piezoelectricity

3.1 Assumed independent fields

To solve electroelastic problems governed by Eq. (10) using HFS-FEM approach, the solution domain � must
be divided into a series of elements, as done in the conventional FEM. For each element, two independent
DEP fields, that is, the intra-element DEP field and the frame DEP field, are assumed in the manner presented
in [28].

3.1.1 Intra-element field

In this approach, the intra-element DEP field ue for a particular element e is approximated in terms of a linear
combination of fundamental solutions of the problem as

ue = Nece (x ∈ �e, ys j /∈ �e), (35)

where ue = [u1, u2, u3, φ]T, the fundamental solution matrix Ne and unknown vector ce (not nodal displace-
ments) can be written as

Ne =
⎡

⎢
⎣

u∗
11(x, ys1) u∗

12(x, ys1) u∗
13(x, ys1) . . . u∗

11(x, ysns ) u∗
12(x, ysns ) u∗

13(x, ysns )
u∗

21(x, ys1) u∗
22(x, ys1) u∗

23(x, ys1) . . . u∗
21(x, ysns ) u∗

22(x, ysns ) u∗
23(x, ysns )

u∗
31(x, ys1) u∗

32(x, ys1) u∗
33(x, ys1) . . . u∗

31(x, ysns ) u∗
32(x, ysns ) u∗

33(x, ysns )
φ∗

41(x, ys1) φ∗
42(x, ys1) φ∗

43(x, ys1) . . . φ∗
41(x, ysns ) φ∗

42(x, ysns ) φ∗
43(x, ysns )

⎤

⎥
⎦ , (36)

ce = [ c11 c21 c31 c41 . . . c1ns c2ns c3ns c4ns ]T, (37)

in which ns is the number of source points located outside the element domain, and x and ys j are, respectively,
the field point and source point in the coordinate system (X1, X2) local to the element under consideration.
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Fig. 3 Intra-element field and frame field of HFS-FEM element for 2D piezoelectric problem: general element (left) and special
element with central elliptical hole (right)

The component u∗
i j (x, ys j ) is the induced displacement component (i = 1, 2, 3) or electric potential (i = 4)

in the i-direction at the field point x due to a unit point load ( j = 1, 2, 3) or point charge ( j = 4) applied
in the j-direction at the source point ys j . The fundamental solution u∗

i j (x, ys j ) is given by Eq. (23) for normal
elements or by Eq. (25) for a special elliptical hole element.

In implementation, the number of source points can be taken to be the same as the number of element nodes
[27]. The source point ys j ( j = 1, 2, . . . , ns) is generated by means of the following method in our calculation:

ys = x0 + γ (x0 − xc), (38)

where γ is a dimensionless coefficient used to determine the distance between the source point ys and the
geometrical centroid of the element xc, and x0 is a point on the element boundary (the nodal points in this
work) as shown in Fig. 3. Determination of γ was discussed in [35], and γ = 5−10 is usually used in practice.

With Eq. (3) and the expression of intra-element DEP field u in Eq. (35), the corresponding stress and
electric displacement Eq. (2) can be further written as

σ = Tece, (39)

where σ = [σ11 σ22 σ23 σ31 σ12 D1 D2
]Tand

Te =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ ∗
11(x, ys1) σ ∗

12(x, ys1) σ ∗
13(x, ys1) σ ∗

14(x, ys1) . . . σ ∗
11(x, ysns) σ ∗

12(x, ysns) σ ∗
13(x, ysns) σ ∗

14(x, ysns)

σ ∗
21(x, ys1) σ ∗

22(x, ys1) σ ∗
23(x, ys1) σ ∗

24(x, ys1) . . . σ ∗
21(x, ysns) σ ∗

22(x, ysns) σ ∗
23(x, ysns) σ ∗

24(x, ysns)

σ ∗
31(x, ys1) σ ∗

32(x, ys1) σ ∗
33(x, ys1) σ ∗

34(x, ys1) . . . σ ∗
31(x, ysns) σ ∗

32(x, ysns) σ ∗
33(x, ysns) σ ∗

34(x, ysns)

σ ∗
41(x, ys1) σ ∗

42(x, ys1) σ ∗
43(x, ys1) σ ∗

44(x, ys1) . . . σ ∗
41(x, ysns) σ ∗

42(x, ysns) σ ∗
43(x, ysns) σ ∗

44(x, ysns)

σ ∗
51(x, ys1) σ ∗

52(x, ys1) σ ∗
53(x, ys1) σ ∗

54(x, ys1) . . . σ ∗
51(x, ysns) σ ∗

52(x, ysns) σ ∗
53(x, ysns) σ ∗

54(x, ysns)

σ ∗
61(x, ys1) σ ∗

62(x, ys1) σ ∗
63(x, ys1) σ ∗

64(x, ys1) . . . σ ∗
61(x, ysns) σ ∗

62(x, ysns) σ ∗
63(x, ysns) σ ∗

64(x, ysns)

σ ∗
71(x, ys1) σ ∗

72(x, ys1) σ ∗
73(x, ys1) σ ∗

74(x, ys1) . . . σ ∗
71(x, ysns) σ ∗

72(x, ysns) σ ∗
73(x, ysns) σ ∗

74(x, ysns)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(40)

in which σ ∗
i j (x, ysj) denotes the corresponding stress components (i = 1, 2, 3, 4, 5) or electric displacement

(i = 6, 7) along the i-direction at the field point x due to a unit point load ( j = 1, 2, 3) or a unit point charge
( j = 4) applied in the j-direction at the source point ys j . The components σ ∗

i j (x, y) are given by Eq. (24)

when p̂i is selected to be (1, 0, 0, 0)T, (0, 1, 0, 0)T, (0, 0, 1, 0)T, and (0, 0, 0, 1)T, respectively. Consequently,
the generalized traction forces and electric displacement can be given as

⎧
⎪⎨

⎪⎩

t1
t2
t3
Dn

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎨

⎪⎩

Q1
Q2
Q3
Q4

⎫
⎪⎬

⎪⎭
ce = Qece (41)
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where

Qe = nTe, (42)

n =
⎡

⎢
⎣

n1 0 0 0 n2 0 0
0 n2 0 0 n1 0 0
0 0 n2 n1 0 0 0
0 0 0 0 0 n1 n2

⎤

⎥
⎦ . (43)

3.1.2 Auxiliary frame field

The unknown ce in Eqs. (35) and (41) may be calculated using a hybrid technique [36] in which the intra-
element fields of the elements are linked through an auxiliary conforming displacement frame which has the
same form as that in the conventional FEM (see Fig. 3). Thus, for the generalized two-dimensional piezoelectric
problem under consideration, the frame field is assumed as

ũ(x) =

⎧
⎪⎨

⎪⎩

ũ1
ũ2
ũ3

φ̃

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎪⎨

⎪⎪⎩

Ñ1

Ñ2

Ñ3

Ñ4

⎫
⎪⎪⎬

⎪⎪⎭

de = Ñede, (x ∈ �e), (44)

where the symbol “∼” is used to specify that the field is defined on the element boundary only, de = de(ce)
stands for the vector of the nodal displacements which are the final unknowns of the problem, �e represents
the boundary of element e, and Ñe is the matrix of shape functions. Taking the side 3-4-5 of a particular 8-node
quadrilateral element (see Fig. 3) as an example, Ñe and de can be expressed as

Ñe =

⎡

⎢
⎢
⎢
⎢
⎣

0 · · · 0 Ñ1 0 0 0 Ñ2 0 0 0 Ñ3 0 0 0 0 · · · 0
0 · · · 0 0 Ñ1 0 0 0 Ñ2 0 0 0 Ñ3 0 0 0 · · · 0
0 · · · 0 0 0 Ñ1 0 0 0 Ñ2 0 0 0 Ñ3 0 0 · · · 0
0 · · · 0︸ ︷︷ ︸

8

0 0 0 Ñ1 0 0 0 Ñ2 0 0 0 Ñ3 0 · · · 0︸ ︷︷ ︸
12

⎤

⎥
⎥
⎥
⎥
⎦

, (45)

de = [u11 u21 u31 φ1 · · · u14 u24 u34 φ4 · · · u18 u28 u38 φ8
]T

, (46)

and Ñ1, Ñ2 and Ñ3 are expressed by the natural coordinate ξ ∈ [−1, 1]

Ñ1 = −ξ (1 − ξ)

2
, Ñ2 = 1 − ξ2, Ñ3 = ξ (1 + ξ)

2
(ξ ∈ [−1, 1]) . (47)

3.2 Variational principles

Based on the assumption of two distinct DEP fields, the Euler equations of the proposed variational functional
should also satisfy the following inter-element continuity requirements in addition to Eqs. (4)–(7):

(ui )e = (ui ) f φe = φ f (on �e ∩ � f , conformity), (48)

(ti )e + (ti ) f = 0 (Dn)e + (Dn) f = 0 (on �e ∩ � f , reciprocity), (49)

where “e” and “ f ” stand for any two neighboring elements. Equations (4)–(7), together with Eqs. (48) and
(49), can now be taken as the basis to establish the modified variational principle for constructing the hybrid
finite element formulation of the piezoelectric material [23,27].

Since the stationary conditions of the traditional potential or complementary variational functional cannot
satisfy the inter-element continuity condition required in the proposed HFS-FEM, a new modified variational
functional must be developed. In the absence of the body forces and electric charge density, the hybrid functional
�me for a particular element, say element e, is constructed as

�me = �e +
∫

�e

ti (ũi − ui )d� +
∫

�e

Dn(φ̃ − φ)d� (50)
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where

�e = 1

2

∫∫

�e

(σi jεi j + Di Ei )d�−
∫

�t

t i ũi d� −
∫

�D

Dnφ̃d�, (51)

and the boundary �e of element e is defined as

�e = �eu ∪ �et ∪ �eI = �eφ ∪ �eD ∪ �eI (52)

and

�eu = �e ∩ �u, �et = �e ∩ �t , �eφ = �e ∩ �φ, �eD = �e ∩ �D, (53)

and �eI is the inter-element boundary of element e. Compared to the functional employed in the conventional
FEM, the present hybrid functional is constructed by adding two integral terms related to the intra-element and
element frame DEP fields to guarantee the satisfaction of displacement and the electrical potential continuity
condition on the common boundary of two adjacent elements.

It can be proved that the stationary conditions of the above functional (50) lead to Eqs. (1)–(7). To this end,
performing a variation of �m , we obtain

δ�me = δ�e +
∫

�e

[(ũi − ui )δti + ti (δũi − δui )]d� +
∫

�e

[(φ̃ − φ)δDn + Dn(δφ̃ − δφ)]d�, (54)

in which the first term is

δ�e =
∫∫

�e

(σi jδεi j d�) +
∫∫

�e

DiδEi d� −
∫

�et

t iδũi d� −
∫

�eD

Dnδφ̃d�,

=
∫∫

�e

σi jδui, j d� +
∫∫

�e

Diδφ,i d� −
∫

�et

t iδũi d� −
∫

�eD

Dnδφ̃d�. (55)

Applying Gaussian theorem
∫∫

�e

f,i d� =
∫

�e

f · ni d�, (56)

and the definitions of traction force and electrical displacement

ti = σi j n j , Dn = Di ni , (57)

and considering the fact that
∫

�eu

tiδũi d� = 0,

∫

�eφ

Dnδφ̃d� = 0, (58)

we have

δ�me = −
∫∫

�e

σi j, jδui d� −
∫∫

�e

Di,iδφd� +
∫

�et

(ti − t i )δũi d� +
∫

�eD

(Dn − Dn)δφ̃d�

+
∫

�e

(ũi − ui )δti d�+
∫

�e

(φ̃ − φ)δDnd� +
∫

�I

tiδũi d� +
∫

�I

Dnδφ̃d�. (59)

Therefore, the Euler equations for Eq. (59) result in Eqs. (1)–(7) and Eq. (48) because the quantities
δui , δti , δφ, δDn, δũi , and δφ̃ may be arbitrary.
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e f

IefΓ

Fig. 4 Illustration of continuity between two adjacent elements “e” and “ f ”

As for the continuity condition of Eq. (49), it can easily be seen from the following variational of two
adjacent elements such as e and f (see Fig. 4) that

δ�m(e∪ f ) = −
∫∫

�e∪� f

σi j, jδui d� −
∫∫

�e∪� f

Di,iδφd� +
∫

�et +�et

(ti − t i )δũi d� +
∫

�eD+� f D

(Dn − Dn)δφ̃d�

+
∫

�e+� f

(ũi − ui )δti d�+
∫

�e+� f

(φ̃ − φ)δDnd�+
∫

�e f I

(
tie + ti f

)
δũi +

∫

�e f I

(
Dne + Dn f

)
δφ̃d�.

(60)

This indicates that the stationary condition of the functional satisfies both the required boundary and inter-
element continuity equations. Furthermore, the existence of an extremum of functional (50) can be easily
proved by the so-called second variational approach, which indicates that functional (50) has a local extreme.
Therefore, we can conclude that functional (50) can be used for deriving the hybrid finite element formulation.

3.3 Element stiffness matrix

The element stiffness equation can be generated by setting δ�me = 0. To simplify the derivation, we first
transform all domain integrals in Eq. (50) into boundary integrals. Making use of the Gaussian theorem, the
functional in Eq. (50) can be simplified as

�me = 1

2

⎛

⎜
⎝

∫

�e

ti ui d� −
∫∫

�e

σi j, j ui d�

⎞

⎟
⎠+ 1

2

⎛

⎜
⎝

∫

�e

Dnφd� −
∫∫

�e

Di,iφd�

⎞

⎟
⎠−

∫

�t

t i ũi d� −
∫

�D

Dnφ̃d�

+
∫

�e

ti (ũi − ui )d� +
∫

�e

Dn(φ̃ − φ)d�. (61)

Due to satisfaction of the equilibrium equation with the constructed intra-element fields, we have the following
expression for the HFS-FEM:

�me = −1

2

∫

�e

(ti ui + Dnφ)d� +
∫

�e

(ti ũi + Dnφ̃)d� −
∫

�t

t i ũi d� −
∫

�D

Dnφ̃d�. (62)

Substituting Eqs. (35), (41), and (44) into the functional (62) yields the formulation

�me = −1

2
cT

e Hece + cT
e Gede − dT

e ge (63)

where

He =
∫

�e

QT
e Ned�, Ge =

∫

�e

QT
e Ñed�, ge =

∫

�t

ÑT
e td� +

∫

�D

ÑT
e Dd�. (64)
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To enforce inter-element continuity on the common element boundary, the unknown vector ce should be
expressed in terms of nodal DOF de. The stationary condition of the functional �me with respect to ce and de,
respectively, yields

∂�me

∂cT
e

= −Hece + Gede = 0,
∂�me

∂dT
e

= GT
e ce − ge = 0, (65)

from which the relationship between ce and de and the stiffness equation can be obtained,

ce = H−1
e Gede, (66)

Kede = ge, (67)

where Ke = GT
e H−1

e Ge is the element stiffness matrix.
Following the procedure given in [27], the missing rigid-body motion can be recovered by setting the

augmented internal field of a particular element e as

ue = Nece +
⎡

⎢
⎣

1 0 0 0 0 −x2 0
0 1 0 0 0 x1 0
0 0 1 x2 −x1 0 0
0 0 0 0 0 0 1

⎤

⎥
⎦ c0, (68)

where the undetermined rigid-body motion parameter c0 can be calculated using the least square matching of
ue and ũe at element nodes,

min =
n∑

i=1

[
(u1i − ũ1i )

2 + (u2i − ũ2i )
2 + (u3i − ũ3i )

2 + (φi − φ̃i )
2
]
, (69)

which finally gives

c0 = R−1
e re, (70)

Re =
n∑

i=1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 −x2i 0
0 1 0 0 0 x1i 0
0 0 1 x2i −x1i 0 0
0 0 x2i x2

2i −x1i x2i 0 0
0 0 −x1i −x1i x2i x2

1i 0 0
−x2i x1i 0 0 0 x2

1i + x2
2i 0

0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (71)

re =
n∑

i=1

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

�ue1i
�ue2i
�ue3i

�ue3i x2i
−�ue3i x1i

�ue2i x1i − �ue1i x2i
�φei

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

, (72)

in which �uei = (ũe−ûe)|nodei and n is the number of element nodes. As a consequence, c0 can be calculated
by Eq. (70) once the nodal DEP fields de and the interpolation coefficients ce are, respectively, determined by
Eqs. (67) and (66). Then, the complete DEP fields ue can be obtained from Eq. (68).

3.4 Normalization of the variables

The orders of magnitude of the material constants and the corresponding field variables in piezoelectricity
have a wide spectrum, as large as 1019 in SI units. This will lead to an ill-conditioned matrix of the system. To
resolve this problem, normalization of each quantity by its reference value should be employed in dealing with
piezoelectric problems. The reference values for the stiffness, piezoelectric stress constant, dielectric constants,
and strain are selected to be c0 = 1011(N/m2), e0 = 101(N/mV), k0 = 10−9(C/mV), ε0 = 10−3(V/m),
respectively. The reference values of other quantities, as shown in Table 1, are determined in terms of these
four fundamental reference variables and the characteristic length x0 = 100(m) of the problem, so that the
normalized governing equations remain in exactly the same form as the original equations.
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Table 1 Reference values for material constants and field variables in piezoelectricity derived from basic reference
variables: c0, e0, k0, ε0 and x0

Displacement u0 = x0ε0 = 10−3 (m) Electric potential φ0 = x0 E0 = 107 (V)

Stress σ0 = c0ε0 = 108 (N/m2) Electric induction D0 = k0 E0 = 10−2 (C/m2)

Compliance s0 = ε0
σ0

= 10−11 (m2/N) Impermeability β0 = E0
D0

= 109 (mV/C)

Electric field E0 = σ0
e0

= 107 (V/m) Piezoelectric strain constant g0 = E0
σ0

= 10−1 (mV/N)

Fig. 5 Geometry, boundary conditions, and mesh configuration of the piezoelectric prism

4 Numerical examples

Several numerical examples are presented in this section to illustrate the application of the HFS-FEM and to
demonstrate its effectiveness and accuracy.

4.1 Simple tension of a piezoelectric prism

In this example, a PZT-4 piezoelectric prism subjected to simple tension, as shown in Fig. 8, is investigated by
the proposed HFS-FEM. The properties of the material PZT-4 are as follows [37]:

c11 = 12.6 × 1010 Nm−2, c12 = 7.78 × 1010 Nm−2, c13 = 7.43 × 1010 Nm−2,

c33 = 11.5 × 1010 Nm−2, c44 = 2.56 × 1010 Nm−2,

e15 = 12.7 Cm−2, e31 = −5.2 Cm−2, e33 = 15.1 Cm−2,

κ11 = 730κ0, κ33 = 635κ0, κ0 = 8.854 × 10−12 C/Nm.

In this analysis, the dimensions of the geometry are set to be a = 3 m, h = 10 m, P = 10 Pa. Consider-
ing the symmetry conditions of the problem, only one quadrant of the prism is modeled by HFS-FEM. The
corresponding boundary conditions are

σxx = σxz = Dx = 0 at x = ±a,

σzz = P, σxz = Dz = 0 at z = ±h.

As shown in Fig. 5, 30 quadrilateral elements are used in this model. The displacements and electric
potential of the four selected reference points: A (2,0), B (3,0), C (0,5), and D (0,10) are listed in Table 2. The
analytical results of the corresponding points are also given for comparison [37]. It can be seen that the HFS-
FEM results are in good agreement with the analytical ones. The contour plots of the piezoelectric plate under
simple tension are given in Fig. 6, clearly demonstrating that the displacement field and electrical distribution
are in linear variation as expected.



54 C. Cao et al.

Table 2 Comparison of the predicted results by HFS-FEM with the analytical results

Position ux (10−10 m) uz(10−9 m) φ(V) σxx (N m−2) σzz(N m−2) Dz(N m−2)

A −0.7220 0.0000 0.0000 0.0018 9.9991 −0.0000
(−0.7222) (0.0000) (0.0000) (0.0000) (10.000) (0.0000)

B −1.0831 0.0000 0.0000 0.0019 9.9992 −0.0003
(−1.0834) (0.0000) (0.0000) (0.0000) (10.000) (0.0000)

C 0.0000 0.3914 1.2187 0.0018 9.9992 −0.0000
(0.0000) (0.3915) (1.2183) (0.0000) (10.000) (0.0000)

D 0.0000 0.7828 2.4373 0.0019 9.9991 −0.0001
(0.0000) (0.7829) (2.4367) (0.0000) (10.000) (0.0000)
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Fig. 6 Contour plot of the displacement and electric potential of the plate

4.2 Infinite piezoelectric plate with a circular hole

In this example, an infinite piezoelectric plate with a circular hole as shown in Fig. 7 is assessed by the new
HFS-FEM. The material parameters used are given in Table 3. We suppose that a remote mechanical load
σ∞

zz = σ0 or electrical load D∞
zz = D0 is applied to the plate along the z axis direction (poling direction),

while traction- and electric-charge-free boundary conditions are applied on the edge of the hole. According to
our previous study, we assume the radius of the hole to be r = 1 and L/r = 20, to approximate the infinite
piezoelectric plate in this work. In our analysis, 117 eight-node quadratic elements are employed for the quarter
piezoelectric plate. The results for the stress σθ and electric displacement Dθ are normalized with respect to
either the far field applied stress σ∞

zz = σ0 or the far field applied electric displacement D∞
zz = D0.

Figure 8 presents the variations of the normalized stress σθ/σ0 and the normalized electric displacement
Dθ /σ0 × 1010 along the hole edge under remote mechanical load. Clearly, the results obtained from the HFS-
FEM agree very well with those from the analytical solution by Sosa [4]. It is also verified that when the
loading is in the poling direction, the electromechanical coupling effect can alleviate the stress concentration
occurring in the plate. It can be observed from Fig. 8 that the maximum values of σθ appear at θ = 0◦ and
θ = 180◦ for the applied load σ∞

zz , which also agrees well with the analytical solution from Sosa [4]. Figure 9
shows that the maximum values of Dθ appear at θ = 65◦ and θ = 115◦, which also agrees well with the
analytical solution from Sosa.

Figure 10 shows the variation of normalized stress σθ/D0 ×108 and electrical displacement Dθ /D0 along
the hole boundary under remote electrical load. It can be seen from Fig. 10 that the electric displacement
can induce marked stress concentration problems in piezoelectric materials with defects, up to σθ/D0 × 108

times the applied D0. It can be seen from Fig. 11 that Dθ reaches its maximum at θ = 0◦ and its minimum at
θ = 180◦, which also agrees well with the analytical solution from Sosa [5]. To achieve the same accuracy,
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Fig. 7 An infinite piezoelectric plate with a circular hole subjected to remote stress

Table 3 Properties of the material PZT-4 used in Example 1

Parameters Values Parameters Values

c11 13.9 × 1010 N m−2 e15 13.44 Cm−2

c12 7.78 × 1010 N m−2 e31 −6.98 Cm−2

c13 7.43 × 1010 N m−2 e33 13.84 Cm−2

c33 11.3 × 1010 N m−2 κ11 6.0 × 10−9 C/N m
c44 2.56 × 1010 N m−2 κ33 5.47 × 10−9 C/N m

Fig. 8 Variation of normalized stress σθ/σ0 along the hole boundary under remote mechanical load

960 eight-node ordinary parametric elements are needed to model a quarter of the plate [38]. It is obvious that
the computational efficiency of HFS-FEM is superior for this case. Figure 12 shows the contour plots of stress
and electric displacement components around the elliptical hole in the piezoelectric plate when applying a
remote mechanical load along z direction.
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Fig. 9 Variation of normalized electrical displacement Dθ /σ0 × 1010 along the hole boundary under remote mechanical load

Fig. 10 Variation of normalized stress σθ/D0 × 108 along the hole boundary under remote electrical load

4.3 Infinite piezoelectric plate with elliptical hole

To investigate the performance of the special element, an infinite piezoelectric plate containing an elliptical
hole is modeled by the HFS-FEM. A uniform remote tension σ0 is applied in the z direction. The material
parameters are the same as those used in Example 4.2. In our analysis, as shown in Fig. 13, the infinite plate is
approximated by a finite domain with the length and width assumed to be L = W = 20 mm, and the geometry
of the ellipse is a = 2b = 2 mm. In this case, it is not necessary to use numerous elements to capture the
concentrated stress as in the traditional FEM. A relatively coarse mesh can be employed, and the elliptical
hole can be analyzed by only one special element. There are 49 elements in all, with a total of 176 nodes:
48 eight-node conventional hybrid elements and one central special element containing the elliptical hole, as
shown in Fig. 14.

Figure 15 shows the variations of the normalized hoop stress σθ/σ0 and electric displacement Dθ /σ0 along
the rim of the elliptical hole. It can be seen from Fig. 15 that the results obtained from the HFS-FEM are in very
good agreement with the analytical solutions. This indicates that the proposed method with a special element
can capture the dramatic variations of hoop stress and electric displacement induced by the elliptical hole in
the plate. Compared with the traditional FEM, the HFS-FEM method with special element has the capability
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Fig. 11 Variation of normalized electrical displacement Dθ /D0 along the hole boundary under remote electrical load

Fig. 12 Contour plots of stress and electric displacement components around the elliptic hole in the piezoelectric plate under
remote mechanical load

to use much less elements to capture the stress concentration incurred by the defects and will greatly reduce
the computation effort in piezoelectric analysis.

4.4 An infinite piezoelectric plate with a center crack

In this example, the extreme case of an elliptical hole is considered. By letting the minor axis b equal zero, an
elliptical hole can be made into a crack of length 2a. The geometry and loading for this problem are shown in
Fig. 16. The dimensions are assumed to be 2a/W = 0.1 and L/W = 1, so that it can be approximated to an
infinite plate with a finite crack. The plate is made of PZT-5H ceramic, and the material parameters are listed
in Table 4. The remote mechanical loading and electric loading are σ∞

zz = 1.0 × 106 Pa, σ∞
zx = 1.0 × 106 Pa

and D∞
zz = 1.0 × 106 C/m2. The same mesh as used in Example 4.3 is employed for this problem. The stress

and electric intensity factors K I , KII and KIV calculated by the proposed HFS-FEM are given in Table 5, in
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Fig. 13 Schematic of an infinite piezoelectric plate with an elliptic hole under remote tension

Fig. 14 Mesh configuration with special element for the piezoelectric plate

Table 4 Properties of the material PZT-5H used in Example 4

Parameters Values Parameters Values

c11 12.6 × 1010 N m−2 e15 17.0 Cm−2

c12 5.5 × 1010 N m−2 e31 −6.5 Cm−2

c13 5.3 × 1010 N m−2 e33 23.3 Cm−2

c33 11.7 × 1010 N m−2 κ11 15.1 × 10−9 C/N m
c44 3.53 × 1010 N m−2 κ33 13.0 × 10−9 C/N m

which the analytical solutions obtained from the formulations of Sosa and the BEM results [4,37] are listed
for comparison. Figure 17 shows the variation of KIV with respect to the applied remote electric displacement
D∞

zz . It can be seen from Table 5 and Fig. 17 that the results from the HFS-FEM exhibit good agreement with
the analytical solutions, and the accuracy is similar to that of the BEM.
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Fig. 15 Variations of the normalized hoop stress σθ/σ0 and electric displacement Dθ /σ0 along the rim of the elliptical hole

Fig. 16 An orthotropic plate with a center crack under uniform tension
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Table 5 The stress and electric intensity factors KI, KII and KIV

Method KI(106 N m−3/2) KII(106 N m−3/2) KIV(10−3 N m−3/2)

HFS-FEM 0.1761 0.1707 0.1753
BEM 0.1757 0.1708 0.1750
Analytical 0.1772 0.1772 0.1772

Fig. 17 The variation of KIV with respect to the applied remote electric displacement D∞
zz

5 Conclusions

Based on the fundamental solutions derived from the elegant Stroh formalism, a new efficient hybrid finite ele-
ment scheme HFS-FEM is developed for modeling plane piezoelectric materials with defects. In this method,
the general or special fundamental solutions of the piezoelectric materials are employed to approximate the
intra-element DEP, and the element frame field is interpolated by common shape functions. The element
stiffness matrix is derived from the modified variational functional, whose minimization conditions lead to
boundary conditions and continuity conditions between any two adjacent elements. To verify and evaluate
the performance of the new method, four numerical examples are considered, and the results from HFS-FEM
are compared with those from analytical solutions or the literature. It is demonstrated that the HFS-FEM has
good performance in the analysis of the coupling behavior of piezoelectric materials under various loading
conditions. The special element is able to capture the strong stress/electric displacement concentration around
the elliptical hole and can obtain accurate stress intensity factors for cracks while simultaneously avoiding the
need for very fine meshing around such defects. The HFS-FEM offers the attractive possibility of developing
accurate crack singular, corner, or perforated elements, simply by using appropriate special fundamental solu-
tions as the trial functions of the intra-element displacements. It is concluded that HFS-FEM is a promising
numerical method for solving complex engineering problems.
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