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ABSTRACT A novel hybrid graded element model is developed in this paper for investigating
thermal behavior of functionally graded materials (FGMs). The model can handle a spatially
varying material property field of FGMs. In the proposed approach, a new variational functional
is first constructed for generating corresponding finite element model. Then, a graded element is
formulated based on two sets of independent temperature fields. One is known as intra-element
temperature field defined within the element domain; the other is the so-called frame field defined
on the element boundary only. The intra-element temperature field is constructed using the linear
combination of fundamental solutions, while the independent frame field is separately used as
the boundary interpolation functions of the element to ensure the field continuity over the inter-
element boundary. Due to the properties of fundamental solutions, the domain integrals appearing
in the variational functional can be converted into boundary integrals which can significantly
simplify the calculation of generalized element stiffness matrix. The proposed model can simulate
the graded material properties naturally due to the use of the graded element in the finite element
(FE) model. Moreover, it inherits all the advantages of the hybrid Trefftz finite element method
(HT-FEM) over the conventional FEM and boundary element method (BEM). Finally, several
examples are presented to assess the performance of the proposed method, and the obtained
numerical results show a good numerical accuracy.
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I. INTRODUCTION
FGMs are a class of relatively new and promising composite materials that have optimized material

properties by combining different material components following a predetermined law. The gradual
change in terms of special variables offers a gradient of properties and performances[1]. For instance, a
material that transitions smoothly from a pure metal to a pure ceramic would integrate the advantages
of the two components (metal and ceramic here). It is noted that functionally graded materials are
frequently used in structures under thermal load, and it is, therefore, necessary to develop some effective
numerical methods for analyzing thermal properties of FGMs.

� Corresponding authors. E-mail: qinghua.qin@anu.edu.au
�� The research in this paper is partially supported by the Special Fund for Basic Scientific Research of Central Colleges,
Chang’an University (Project No. CHD2011JC150) and the National Natural Science Foundation of China (No. 11102059).



· 378 · ACTA MECHANICA SOLIDA SINICA 2012

In general, the thermal conductivity of FGMs varies continuously in one or two spatial directions, so
the exact solution of FGMs is usually difficult to obtain, except for some simple cases. To obtain solutions
for FGMs with complex geometry and loading conditions, various numerical algorithms have been
developed during the past decades. For example, finite elementmethod (FEM)[2,3], the boundary element
method (BEM)[4,5] or dual reciprocity BEM[6,7] have been used to analyze the static or dynamic thermal
response ofFGMs.Additionally, somemeshless ormeshfree approaches, such as themeshless localPetrov-
Galerkin (MLPG) method[8], the meshless local boundary integral equation (LBIE) method[9] and the
method of fundamental solution (MFS)[10–14] have also been developed for solving heat conduction
problems in both isotropic and anisotropic, single and multi-materials, as well as linear and nonlinear
FGMs. In particular, the following two models have been developed specially for FGMs. The first one
is the conventional homogeneous elements model[15,16], in which the element rows are aligned with the
gradient direction and the property of each row of the homogeneous elements is taken to be the property
at the centroid of the element and the material gradient is achieved by constructing a highly refined
mesh. This produces a stepwise constant approximation to a continuous material property field. The
second one is the graded finite element model[2,17,18], in which the material gradient is directly sampled
by assigning corresponding material properties at the Gauss integration points.

In this paper, a hybrid graded element model is developed for analyzing two-dimensional heat
conduction problems in both isotropic and anisotropic graded materials. This study builds upon the
hybrid finite element formulation with fundamental solutions as internal interpolation functions (HFS-
FEM) proposed by Wang and Qin[19] and presents a special graded element for FGMs. The HFS-
FEM inherits the advantages of the hybrid Trefftz finite element method (HT-FEM)[20,21] over the
conventional FEM and boundary element method (BEM), and removes the difficulty in deriving and
selecting appropriate terms of T-complete functions used in HT-FEM, as the fundamental solution is
relatively easy to be constructed (or can be found for most physical problems in the literature) and
contains usually one term only, rather than a series containing infinite terms for T-complete functions.
In the analysis, a linear combination of the fundamental solution for functionally graded materials at
different source points is used to approximate the field variable within the element and an independent
frame field defined along the element boundary is employed to guarantee the inter-element continuity.
A variational functional is constructed to generate the final stiffness equation and establish the link
between the boundary frame field and internal field within an element. The proposed graded element
formulation can incorporate the graded material property at the size of element level, so it is more
natural than conventional homogeneous elements model and Gauss point sampling model discussed
above[15,17]. Besides, other hybrid approaches for developing high performance finite element models can
be found in Refs.[22,23] by introducing Airy stress functions in the complementary energy functional.

The paper begins with a brief description of heat conduction problems in FGMs in §II. Then, a
detailed derivation of the proposed HFS-FEM with graded element and the corresponding algorithm
is described in §III to provide an initial insight on this new finite element model. Several numerical
examples for both isotropic and anisotropic cases are presented in §IV to assess the proposed algorithm
and some concluding remarks are presented in §V.

II. STATEMENT OF HEAT CONDUCTION PROBLEMS IN FGM
2.1. Basic Formulations

Consider a 2D steady-state heat conduction problem defined in an anisotropic inhomogeneous media
without internal heat sources:

(K̃ij(X)u(X),j),i = 0 ∀X ∈ Ω (1)

with following boundary conditions:
—Specified temperature boundary condition

u = ū on Γu (2)

—Specified heat flux boundary condition

q = −K̃iju,jni = q̄ on Γq (3)

—Convection boundary condition

q = h(u− u∞) on Γc (4)
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where K̃ij denotes the thermal conductivity in terms of spatial variable X and is assumed to be

symmetric and positive-definite (K̃12 = K̃21, det K̃ = K̃11K̃22− K̃2
12 > 0. u is the sought field variable

and q represents the boundary heat flux. nj is the direction cosine of the unit outward normal vector
n to the boundary Γ = Γu ∪ Γq ∪ Γc, and ū and q̄ are specified functions on the related boundaries,
respectively. h is the coefficient of heat convection, and u∞ is the ambient environment temperature.
For convenience, the space derivatives are indicated by a comma, i.e. u,j = ∂u/∂Xj, and the subscript
index i, j takes values 1 and 2 in our analysis. Moreover, repeated subscript indices stand for summation
convention.

2.2. Fundamental Solution in FGMs

For simplicity, we assume the thermal conductivity varies exponentially with position vector, for
example

K̃(X) = K exp(2β ·X) (5)

where vector β = (β1, β2) is a graded parameter and matrix K is symmetric and positive-definite with
constant entries.

Substituting Eq.(5) into Eq.(1) yields

Kiju,ij(X) + 2βiKiju,j(X) = 0 (6)

whose fundamental function defined in the infinite domain must satisfy the following equation:

KijN,ij(X,Xs) + 2βiKijN,j(X,Xs) + δ(X,Xs) = 0 (7)

in which X and Xs denote arbitrary field point and source point in the infinite domain, respectively.
δ is the Dirac delta function.

The closed-form solution to Eq.(6) in two dimensions can be expressed as[24]

N(X,Xs) = −
K0(κR)

2π
√

detK

exp{−β · (X + Xs)} (8)

where κ =
√

β ·Kβ, R is the geodesic distance defined as R = R(X,Xs) =
√

r ·K−1
r and r =

r(X,Xs) = X −Xs. K0 is the modified Bessel function of the second kind of zero order. For isotropic
materials, K12 = K21 = 0, K11 = K22 = k0 > 0, Eq.(6) recasts as

k0∇2u(X) + 2k0βiu,i(X) = 0 (9)

Then the fundamental solution given by Eq.(8) reduces to

N(X,Xs) = −
K0(κR)

2πk0
exp[−β · (X + Xs)] (10)

which agrees with the result in Ref.[25].

III. GENERATION OF GRADED ELEMENT
In this section, the procedure for developing a hybrid graded element model is described based on

the boundary value problem (BVP) defined in Eqs.(1)-(3). The focus is to fully introduce the smooth
variation of material properties into element formulation, instead of stepwise constant approximation
frequently used in the conventional FEM.

Similar to HT-FEM, the main idea of the proposed approach is to establish an appropriate hybrid
FE formulation whereby intra-element continuity is enforced on a nonconforming internal displacement
field formed by a linear combination of fundamental solutions at points outside the element domain
under consideration, while an auxiliary frame field is independently defined on the element bound-
ary to enforce the field continuity across inter-element boundaries. But unlike in the HT-FEM, the
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intra-element fields are constructed based on the
fundamental solutiondefined inEq.(7), rather than
T-functions.Consequently, a variational functional
corresponding to the new trial function is required
to derive the related generalized stiffness matrix
equation. With the problem domain divided into
some sub-domains or elements denoted byΩe with
the element boundary Γe, additional continuities
are usually required on the common boundaryΓIef
between any two adjacent elements ‘e’ and ‘f ’ (see
Fig.1):

Fig. 1 Illustration of continuity between two adjacent ele-
ments ‘e’ and ‘f ’.

ue = uf (conformity)
qe + qf = 0 (reciprocity)

}
on ΓIef = Γe ∩ Γf (11)

in the proposed hybrid FE approach.

3.1. Non-conforming Intra-element Field

The idea of method of fundamental solution (MFS)[26] is adopted here to remove the singularity of
fundamental solution. For a particular element, say element e, which occupies sub-domain Ωe, we first
assume that the field variable within an element is extracted from a linear combination of fundamental
solutions centered at different source points (see Fig.2), that is,

ue (x) =

ns∑
j=1

Ne (x,xsj) cej = Ne (x) ce ∀x ∈ Ωe, xsj /∈ Ωe (12)

where cej is undetermined coefficients and ns is the number of virtual sources outside the element e.
is the required fundamental solution expressed in local element coordinates (x1, x2), instead of global
coordinates (X1, X2)(see Fig.2).

Fig. 2. Intra-element field, frame field in a particular element, and generation of source points in HFS-FEM.

Evidently, Eq.(12) analytically satisfies the heat conduction equation (6) due to the inherent property
of Ne (x,xsj).

In practice, the generation of virtual source points is usually done by means of the following formu-
lation employed in the meshless method[27]:

xsj = xbj + γ (xbj − xc) (13)

where γ is a dimensionless coefficient, xbj is a elementary boundary point and xc is the geometrical
centroid of the element. For a particular element shown in Fig.2, we can use the nodes of element
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to generate related source points for simplification. Either too big or too small distance between the
virtue source points and physical element boundaries will affect the results due to the singularity of
the fundamental solution and the restriction of computer precision including round-off error[13].

The corresponding normal heat flux on Γe is given by

qe = −K̃ijue,jni = Qece (14)

where
Qe = −K̃ijNe,jni = AT e (15)

with

T e =
[
−
(
K̃11N e,1 + K̃12Ne,2

)
−
(
K̃21Ne,1 + K̃22Ne,2

)]T
, A =

{
n1 n2

}
(16)

3.2. Auxiliary Conforming Frame Field

In order to enforce the conformity on the field variable u, for instance, ue = uf on Γe ∩ Γf of any
two neighboring elements e and f , an auxiliary inter-element frame field ũ is used and expressed in
terms of the same nodal degrees of freedom (DOF) de, as used in the conventional finite elements. In
this case, ũ is confined to the whole element boundary

ũe (x) = Ñe (x)de (17)

which is independently assumed along the element boundary in terms of nodal DOF de, where Ñe

represents the conventional FE interpolating functions. For example, a simple interpolation of the frame
field on a side with three nodes of a particular element can be given in the form

ũ = Ñ1u1 + Ñ2u2 + Ñ3u3 (18)

where Ñi (i = 1, 2, 3) stands for shape functions in terms of natural coordinate ξ defined in Fig.3.

Fig. 3. Typical quadratic interpolation for the frame field.

Fig. 4. Comparison of computational cell in the stepwise
constant FEM and the proposed HFS-FEM.

3.3. Graded Element

The fundamental solution for FGM is used as Ne in Eq.(12) to approximate the intra-element field.
It can be seen from Eq.(8) that Ne varied throughout each element due to different geodesic distance
for each field point, so the smooth variation of material properties can be achieved by this inherent
property, instead of stepwise constant approximation frequently used in the conventional FEM[4]. For
example, Fig.4 illustrates the two models when the thermal conductivity varies along direction X2 in
isotropic material.

It should be mentioned here that Eq.(5) which describes variation of the thermal conductivity is
defined under global coordinate system. When contriving the intra-element field for each element, this
formulation has to be transferred into local element coordinate defined at the center of the element,
the graded matrix K̃ in Eq.(5) can, then, be expressed by

K̃e(x) = KC exp(2β · x) (19)
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for a particular element e, where KC denotes the value of the conductivity at the centroid of each
element and can be calculated as follow:

KC = K exp(2β ·Xc) (20)

where Xc is the global coordinate of the element centroid.
Accordingly, the matrix KC is used to replace K(see Eq.(7) ) in the formulation of fundamental solu-

tion for FGM and the construction of intra-element field under local element coordinate for each element.

3.4. Modified Variational Principle and Stiffness Equation

3.4.1. Modified functional

For the boundary value problem defined in Eqs.(1)-(3) and (4), since the stationary conditions of the
traditional potential or complementary variational functional can’t guarantee the satisfaction of inter-
element continuity condition required in the proposed HFS-FE model, a modified potential functional
is developed as follows[19]:

Πm =
∑
e

Πme =
∑
e

{
−
∫
Ωe

1

2
K̃iju,ju,idΩ −

∫
Γqe

q̄ũdΓ +

∫
Γe

(ũ− u) qdΓ −
∫
Γce

h

2
(ũ− u∞)

2
dΓ

}

(21)
in which the governing equation (1) is assumed to be satisfied, a priori, in deriving the HFS-FE model.
The boundary Γe of a particular element consists of the following parts:

Γe = Γue ∪ Γqe ∪ Γce ∪ ΓIe (22)

where ΓIe represents the inter-element boundary of the element ‘e’ shown in Fig.1.
The stationary condition of the functional (21) can lead to the governing equation (Euler equation),

boundary conditions and continuity conditions, which is briefly shown here. Equation (21) gives the
following functional defined in a particular element:

Πme = −
1

2

∫
Ωe

K̃iju,ju,idΩ −
∫
Γqe

q̄ũdΓ +

∫
Γe

q (ũ− u) dΓ −
1

2

∫
Γce

h (ũ− u∞)
2
dΓ (23)

whose first-order variational yields

δΠme = −
∫
Ωe

K̃iju,jδu,idΩ −
∫
Γqe

q̄δũdΓ +

∫
Γe

(δũ− δu) qdΓ

+

∫
Γe

(ũ− u) δqdΓ −
∫
Γce

h (u− u∞) δũdΓ (24)

From the notation q = −K̃iju,jni = q̄ and the Gauss theorem∫
Ω

h,idΩ =

∫
Γ

hnidΓ (25)

for any smooth function h in the domain, we have

δΠme =

∫
Ωe

(K̃iju,j),iδudΩ +

∫
Γqe

(q − q̄) δũdΓ +

∫
Γue

qδũdΓ +

∫
ΓIe

qδũdΓ

+

∫
Γe

(ũ− u) δqdΓ +

∫
Γce

[q − h (ũ− u∞)] δũdΓ (26)

For the displacement-based method, the potential conformity should be satisfied in advance, that
is,

δũ = 0 on Γue because (ũ = ū)
δũe = δũf on ΓIef because (ũe = ũf )

(27)
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then, Eq.(26) can be rewritten as

δΠme =

∫
Ωe

(K̃iju,j),iδudΩ +

∫
Γqe

(q − q̄) δũdΓ +

∫
ΓIe

qδũdΓ

+

∫
Γe

(ũ− u) δqdΓ +

∫
Γce

[q − h (ũ− u∞)] δũdΓ (28)

from which the Euler equation in the domain Ωe, heat flux and convection boundary conditions on Γe,
and the equality of u and ũ along the element frame Γe can be obtained using the stationary condition
δΠme = 0, i.e.,

(K̃iju,j),i = 0 in Ωe

q = q̄ on Γqe
q = h (ũ− u∞) on Γce
ũ = u on Γe

(29)

3.4.2. Stiffness equation

Having independently defined the intra-element field and frame field in a particular element (see
Fig.2), we next generate the element stiffness equation through a variational approach.

The variational functional Πe corresponding to a particular element e of the present problem can
be written as

Πme = −
1

2

∫
Ωe

K̃iju,ju,idΩ −
∫
Γqe

q̄ũdΓ +

∫
Γe

q (ũ− u) dΓ −
∫
Γce

h

2
(ũ− u∞)

2
dΓ (30)

Applying the Gauss theorem (25) again to the above functional, we get the following functional for
the HFS-FE model:

Πme =
1

2

[∫
Γe

qudΓ +

∫
Ωe

u(K̃iju,j),idΩ

]
−
∫
Γqe

q̄ũdΓ +

∫
Γe

q (ũ− u) dΓ −
∫
Γce

h

2
(ũ− u∞)2 dΓ (31)

Considering the governing equation (1), we finally obtain the functional defined on the element
boundary only

Πme = −
1

2

∫
Γe

qudΓ −
∫
Γqe

q̄ũdΓ +

∫
Γe

qũdΓ −
∫
Γce

h

2
(ũ− u∞)

2
dΓ (32)

which leads to Eq.(33) by substituting Eqs.(12), (14) and (17) into the functional (32):

Πe = −
1

2
c
T
e Hece − d

T
e ge + c

T
e Gede −

1

2
d

T
e F ede + d

T
e f e − ae (33)

with

He =

∫
Γe

Q
T
e N edΓ, Ge =

∫
Γe

Q
T
e ÑedΓ, ge =

∫
Γqe

Ñ

T

e q̄dΓ

F e =

∫
Γce

hÑ

T

e ÑedΓ, fe =

∫
Γce

hu∞Ñ

T

e dΓ, ae =

∫
Γce

hu2
∞

2
dΓ

(34)

Next, to enforce inter-element continuity on the common element boundary, the unknown vector ce

should be expressed in terms of nodal DOF de. The minimization of the functional Πe with respect to
ce and de, respectively, yields

∂Πe

∂c
T
e

= −Hece + Gede = 0

∂Πe

∂d
T
e

= G
T
e ce − ge − F ede + fe = 0

(35)

from which the optional relationship between ce and de, and the stiffness equation can be produced:

ce = H
−1
e Gede and Kede = ge − f e (36)

where Ke = G
T
e H

−1
e Ge − F e stands for the generalized element stiffness matrix.
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3.5. Recovery of Generalized Rigid-body Motion

Considering the physical definition of the fundamental solution, it’s necessary to recover the missing
generalized rigid-body motion modes from above results.

Following the method presented in Ref.[20], the missing generalized rigid-body motion can be re-
covered by writing the internal potential field of a particular element e as

ue = N ece + c0 (37)

where the undetermined generalized rigid-body motion parameter c0 can be calculated using the least
square matching of ue and ũe at element nodes:

n∑
i=1

(Nece + c0 − ũe)
2
∣∣∣
node i

= min (38)

which finally gives

c0 =
1

n

n∑
i=1

Δuei (39)

in which Δuei = (ũe −N ece)|node i and n is the number of element nodes.
Once the nodal field is determined by solving the final stiffness equation, the coefficient vector ce

can be evaluated from Eq.(36), and then c0 is evaluated from Eq.(39). Finally, the potential field u at
any internal point in an element can be obtained by means of Eq.(37).

IV. NUMERICAL ASSESSMENTS
In order to evaluate the performance of the proposed approach, here we consider five typical examples

for steady-state heat transfer in 2D functionally graded material and the results are compared with
those from analytical and numerical methods. These examples cover the cases of a square of isotropic
functional graded (FG) plate (Example 1 with exponential quadratic and trigonometric gradation),
anisotropic FG plate whose thermal conductivities may vary in one direction (Example 2) or in two
directions (Example 3), a FG annulus sector (Example 4), and a FGM bar with complicated geometry
(Example 5).

The accuracy of the calculation results can be estimated by the average relative error on a variable
f , which is defined as

Arerr(f(X)) =

√√√√√√√√
N∑
i=1

(f (num)(X)− f (an)(X))2i

N∑
i=1

(f (an)(X))2i

(40)

where f (num)and f (an) are the numerical and exact result of the field variable.
Example 1 A square of isotropic FG plate

Assume that the plate is isotropic and the ther-
mal conductivity graded along the X2-direction.
Three graded types of FGM are considered in this
example (exponential, quadratic and trigonomet-
ric). The side-length of the plate is a = 0.04 m.
The square FG plate with boundary conditions
is shown in Fig.5. In the calculation, β is the
graded parameter and material constant k0 = 17
W/m/◦C are used. Only one 16-node quadrilateral
element is used to model the solution domain (see
Fig.6(a)).

Fig. 5 Square FG plate and boundary condition in example
1.(1) Exponential material gradation

The thermal conductivity follows the exponential law k = k0e
2βX2 . The calculation is conducted for

different values of graded parameter β = 10, 25, 50 m−1. The obtained numerical results are compared
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Fig. 6. (a) The mesh in proposed HFS-FEM, and (b) The mesh in the stepwise constant FEM.

with the following analytical solution[9,13]:

u =
e−2βX2 − 1

e−2βa − 1

(
lim
β→0

u =
X2

a

)
(41)

To investigate the effect of location of source
points generated from Eq.(13), the calculation is
conducted using different values of γ. It can be seen
from Fig.7 that the numerical accuracy becomes
acceptable and stable when γ is greater than 1.5
and the results are worse when γ is smaller than
1. This is because the small value of γ makes the
source points too close to the field points, which
may cause singularity of fundamental solution. Fig-
ure 8 shows that larger γ leads to larger condition
number of matrix H due to the round-off error in
floating point algorithm. So, we choose γ = 2.5 in
our following calculation. Figure 9 shows the tem-
perature distribution along X2 direction which is

Fig. 7 Effect of various dimensionless parameter γ to numer-
ical accuracy.

the graded direction. With an increasing β, the thermal conductivity increases and a higher level of
temperature is obtained at the same position. An excellent agreement between numerical and analyt-
ical results is obtained for different graded parameters. It should be mentioned that such accuracy is
achieved by just using one element in our approach.

For the purpose of verification, the results are compared with those from conventional finite element
simulation performed by the commercially available software ANSYS. With ANSYS, homogeneous
elements are used. The material property of each element is taken at the centroid of each element
and the material gradient is achieved by a highly refined mesh with 16 8-node quadrilateral elements
(see Fig.6(b)). Table 1 compares the temperature of the interested points along the graded direction.
It can be seen from Table 1 that the proposed method is more efficient than ANSYS because it can
achieve more accurate results with much less elements. It should be mentioned that this example is
also calculated using other meshless methods such as LBIE method[9] and virtual boundary collocation

Table 1. Comparison of temperature along X2 from HFS-FEM and ANSYS at β = 25 m−1

X2 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 Arerr

Exact 0 0.2558 0.4551 0.6102 0.7311 0.8252 0.8985 0.9555 1
HFS-FEM 0 0.2556 0.4553 0.6102 0.7295 0.8252 0.8982 0.9556 1 7.92× 10−4

ANSYS 0 0.2275 0.4551 0.5931 0.7311 0.8148 0.8984 0.94923 1 1.65× 10−2
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Fig. 8. Effect of various dimensionless parameter γ to con-
dition number of matrix H.

Fig. 9. Temperature distribution along the graded direction
with various graded parameter β.

method (VBCM)[13], in which equal 16 interior and boundary points are needed for approximation. In
this paper, similar accuracy is obtained by the proposed method with only 16 boundary nodes and no
interior nodes are involved.

(2) Quadratic material gradation
The thermal conductivity is assumed to follow the quadratic law k = k0(1 + βX2)

2 (β = 5 m−1 is
adopted in the calculation). The fundamental solution used in Eq.(12) for quadratic FGM is derived
based on the work [24] as

N(X,Xs) =
1

2πkC(1 + βX2)(1 + βXs2)
ln(R) (42)

And the analytical solution is

u =

√
k0(1 + βL)X2√

kL
(43)

It can be seen from Fig.10 that the numerical solution has an excellent agreement with the analytical
solution.

To investigate the convergence of the proposed method, the calculation is also conducted by a series
of meshes of N ×N elements. Table 2 displays the numerical accuracy with respect to different mesh
densities. It can be seen from Table 2 that the relative error decreases along with refinement of the
element meshes for both HFS-FEM and ANSYS, but in HFS-FEM, the numerical solution converges
to the analytical solution more gradually and it can achieve high accuracy by only few elements.

Fig. 10. Temperature distribution along the graded direc-
tion.

Fig. 11. Distorted mesh for example 1.
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Table 2. Numerical results with mesh density

N ×N 2× 2 4× 4 8× 8

HFS-FEM 9.1703×10−4 2.4725×10−4 6.2363×10−5

ANSYS 9.7192×10−2 2.6018×10−2 6.7950×10−4

(3) Trigonometric material gradation
The thermal conductivity follows the trigonometric law k = k0[cos(βX2)+ sin(βX2)]

2 (β = 10 m−1

is used in the calculation). The fundamental solution used in Eq.(12) for trigonometric FGM is derived
based on the work [24] as

N(X,Xs) =
1

2πKC[cos(βX2) + sin(βX2)][cos(βXs2) + sin(βXs2)]
ln(R) (44)

The numerical results are compared with the analytical solution

u =

√
k0[cos(βα) + 2 sin(βα)] sin(βX2)√

k sin(βX2)
(45)

Figure 10 shows that the numerical solution matches with the analytical solution very well.

Table 3. Comparison of temperature for distorted (e and z are shown in Fig.11 ) and undistorted 4×4 element mesh along X2

X2 Undistorted Distorted for e = 0.4z Distorted for e = 0.3z Analytical

0.01 0.3071 0.3080 0.3102 0.3069
0.02 0.5681 0.5693 0.5712 0.5672
0.03 0.7976 0.8023 0.8034 0.7950

Table 3 shows the results of the study of sensitivity to mesh distortion. The results exhibit remarkable
insensitivity to mesh distortion.
Example 2 An anisotropic FG plate with varying thermal conductivities in X2-direction

In this example, we consider a typical benchmark problem which is taken from Ref.[11]. In an
anisotropic FGM squareΩ = {X = (X1, X2)|0 < X1, X2 < 1 m} subject to mixed boundary conditions
as those in Example 1, the corresponding exact solution of the problem is

u(X) = U0
1− exp[−2(β1X1 + β2X2)]

1− exp[−2(β1 + β2)]
(46)

and the heat flux is

q(X) = −2[n1(X)(K̃11β1 + K̃12β2) + n2(X)(K̃11β1 + K̃12β2)]
U0

1− exp[−2(β1 + β2)]
(47)

Specifically, the temperature u on two sides
y = ±1m and the normal flux on the remaining two
sides are specified. In the calculation, K11 = 3.0,
K12 = K21 = 0.0 and K22 = 1.0 W/m/◦C are
used, where U0 = 100.0 ◦C, β1 = 0 m−1, β2 = 0.2
m−1 (heat conductivity varies along direction X2

only). 2× 2 8-node quadrilateral elements are em-
ployed to model the solution domain.

Figure 12 illustrates the distribution of temper-
ature in the FGM plate. The level of the largest per-
centage normalization is 10−3. The heat flux dis-
tribution in graded direction is shown in Fig.13(a) Fig. 12 Temperature distribution.

and the corresponding normalized percentage error is plotted in Fig.13(b). It can be seen that the
proposed model can achieve very high accuracy for both temperature field and heat flux field using a
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Fig. 13. (a) Distribution of heat flux qX2
and (b) distribution of percentage normalized error of heat flux qX2

.

small number of elements.
Example 3 An anisotropic FG plate with varying thermal conductivities in both X1- and X2-directions

We consider the same solution domain, boundary condition and parameters, and the same number
of elements as those in Example 2 are used for comparison purpose. But the heat conductivity varies
along both direction X1 and X2, with the graded constants β1 = −0.5 m−1, β2 = 0.2 m−1.

Figure 14(a) shows the temperature distribution in the FGM plate and the corresponding numerical
isothermal is presented in Fig.14(b). From Fig.14(c), it is apparent that it has already achieved a
relatively high accuracy, although the error level is much higher than Example 2. This is because the
material properties vary along two directions with different graded parameters (β1 = −0.5 m−1, β2 = 0.2
m−1) in this case. The higher accuracy can be achieved by increasing element mesh density. Figures
15 and 16 show heat flux in direction X1 and X2, respectively. The largest error locates in the corner
of the plate and its level is 10−1. The values of heat flux are much higher in X2 direction than those
in X1 direction because of a larger graded parameter percentage normalized error distribution.
Example 4 A FG annulus sector

In this example, a functionally annulus sector domain is considered. The boundary conditions of the
problem are shown in Fig.17. The thermal conductivity graded along the X1-direction is k = k0e

2βX1 ,
where k0 = 17 W/m/◦C and β = 20 m−1. The inner and outer radii are assumed to be R1 = 0.08 m
and R2 = 0.1 m in the calculation. 8-node quadrilateral elements are employed to model the solution
domain and 4 elements are used to discretize along radial direction (see Fig.17). For comparison, the
calculation is also done for homogeneous material (β = 0) under the same condition. Figure 18 shows
the isothermals for functionally graded material (FGM) and homogeneous material (HM). It can be
seen that the isothermals for the homogeneous material are a set of concentric circular arcs, but offset
for the FGM because of the graded material property.
Example 5 FGM link bar

To further assess the performance of the proposed finite element model, consider a FGM link bar as
is shown in Fig.18[2]. The bar is subject to mixed boundary conditions including temperature condition,
heat flux condition and convection condition, as is shown in Fig.19. The thermal conductivity graded
along the X2-direction. The calculation is done for exponential, quadratic and trigonometric material
gradation, respectively. In the following computation, following physical properties and temperatures
are used: β = 10 m−1, h = 1300 W/(m2·◦C), k0 = 5 W/(m·◦C), T0 = 300◦C and T∞ = 1300◦C. The
domain is discretized with 33 quadratic elements(see Fig.20(a)). For verification purpose, the results are
compared with those from conventional finite element simulation performed by commercially available
software ANSYS. With ANSYS, homogeneous elements with constant properties at the element level
are used and the material gradient is achieved by a highly refined mesh with 135 quadratic elements (see
Fig.20(b)). Contour plots of the temperature distribution obtained from proposed model are shown in
Figs.21-23 and similar results can be obtained by using ANSYS. It should be mentioned that only few
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Fig. 14. (a) Temperature distribution, (b) numerical isothermals and (c) distribution of percentage normalized error of
temperature.

Fig. 15. Distribution of heat flux qX1
. Fig. 16. Distribution of heat flux qX2

.

elements are used in the proposed model and it contains some singular elements. The results exhibit
remarkable insensitivity to the mesh distortion. For all those three cases, the peak temperature appears
at the pointed corner of the bar. Table 4 compares the maximum temperature difference at those three
kinds of FGM bars and homogeneous bar. It can be seen that the maximum temperature difference
is lower in the FGMs than in the homogeneous material. Thus, the FGMs can lead to lower stress,
which is an important advantage of FGMs. Moreover, exponential FGM shows best results with lowest
temperature difference in this situation, quadratic FGM is better and trigonometric FGM is the worst
one.
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Fig. 17. Illustration of boundary conditions and mesh dis-
cretion for the quarter domain. Fig. 18. Comparison of isothermal in FGM and HM.

Fig. 19. Geometry and boundary conditions of FGM link bar.

Fig. 20. (a) Computational mesh for the proposed HFS-FEM and (b) the conventional FEM.

Table 4. Comparison of maximum temperature difference at different FGM bars

Exponential Quadratic Trigonometric Homogeneous
Graded types

FGM FGM FGM material

Maximum temperature
927.8 960.2 989.0 1000.0

difference (◦C)

V. CONCLUSIONS
In this paper, a new hybrid graded element model is developed for 2D steady-state heat conduction

in functionally graded materials. In the model, the graded element which incorporate the material
property gradient at the size of the element level, have been presented in internal element domain.
A linear combination of the fundamental solution at points outside the element domain is used to
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Fig. 21. Contour plots of the temperature distribution in
exponential FGM bar.

Fig. 22. Contour plots of the temperature distribution in
quadratic FGM bar.

Fig. 23. Contour plots of the temperature distribution in trigonometric FGM bar.

approximate the field variable in the internal element domain and the boundary interpolation functions
are used to construct the frame field. To assess the performance of the proposed model, several examples
with continuous nonhomogeneous isotropic and anisotropic FGM are considered. The results show that
the proposed method is an efficient approach, which has a high accuracy to simulate the heat behavior
in FGM. In fact, it can approach the exact solution through continuous mesh refinement.
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