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Abstract Special hole elements are presented for analyzing the stress behavior of an isotropic elastic solid
containing an elliptical hole. The special hole elements are constructed using the special fundamental solu-
tions for an infinite domain containing a single elliptical hole, which are derived based on complex conformal
mapping and Cauchy integrals. During the construction of the special elements, the interior displacement and
stress fields are assumed to be the combination of fundamental solutions at a number of source points, and the
frame displacement field defined over the element boundary is independently approximated with conventional
shape functions. The hybrid finite element model is formulated based on a hybrid functional that provides a
link between the two assumed independent fields. Because the fundamental solutions used exactly satisfy both
the traction-free boundary conditions of the elliptical hole under consideration and the governing equations
of the problems of interest, all integrals can be converted into integrals along the element boundary and there
is no need to model the elliptical hole boundary. Thus, the mesh effort near the elliptical hole is significantly
reduced. Finally, the numerical model is verified through three examples, and the numerical results obtained
for the prediction of stress concentration factors caused by elliptical holes are extremely accurate.

1 Introduction

Stress concentration along the rim of an elliptical hole is important in engineering design. It is of interest,
therefore, to consider how to predict the stress concentration factor and stress distribution on the elliptical hole
boundary under various loadings as accurately as possible.

Currently, numerical methods are usually used to achieve the desired results for problems associated with
one or more elliptical holes under complex boundary constraints and loading conditions. Among them, the
conventional finite element method (FEM) has been widely used for such analysis, in which mesh refinement
near the elliptical hole is unavoidably required to capture the stress concentration around it and to achieve
the necessary numerical accuracy. To address this point, the boundary element method (BEM) using point-
force-based fundamental solutions or Green’s functions was developed to evaluate the stress concentration
factor related to an elliptical hole [1,2], and the BEM using special Green’s functions that satisfy the par-
ticular boundary conditions is referred to as the special Green’s function BEM by Denda [2]. In the special
Green’s function BEM, the special Green’s functions related to the elliptical hole are required to satisfy the
proper singularity at the source point and the free boundary conditions along the rim of the elliptical hole.
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Thus, there is no need for the boundary element to model the elliptical hole. Other contributions to use of the
special Green’s function BEM for elliptic hole or crack problems in anisotropic media have been made by
Clements and Haselgrove [3], Ang and Clements [4], Kamel and Liaw [5], Qin and Mai [6] and Hwu and Liao
[7]. However, it is inconvenient to deal with an elastic domain containing multiple elliptical holes using the
special Green’s function BEM. Moreover, the boundary element alternating method was developed by Ting to
treat problems involving multiple elliptical holes in an infinite plane [8].

As an alternative numerical method to the standard FEM and BEM, the hybrid Trefftz finite element
method (HT-FEM) in terms of special T-complete solutions related to an elliptical hole for plane elastic media
was first established by Piltner [9] to evaluate the stress concentration factor around elliptical holes, with-
out the time-consuming mesh effort around elliptical holes. The advantage of T-complete solutions is that
the particular traction-free elliptical hole boundary conditions and the governing equations are automatically
satisfied, and thus a large-scale Trefftz element containing an elliptical hole can be constructed to improve
the numerical accuracy and simultaneously reduce the mesh effort around the elliptical hole. In the proposed
special element, all integrals are evaluated along the element boundary only. Additionally, a formulation that
improved on the work of Piltner was proposed by Dhanasekar et al. [10] to provide relatively stable solutions
for elliptical hole problems. However, special care must be taken for the derivation and selection of a truncated
T-complete solution set for some problems when using HT-FEM, such as the completeness of solutions and
the corresponding rigid body motion terms being discarded for the purpose of matrix inversion [11]. Also, to
ensure a good numerical condition during the inversion of the matrix, a coordinate transformation is usually
required, because the T-complete solutions appearing in the assumed fields may be in the form of a relative
higher order of the distance variable.

As an alternative to the HT-FEM, a hybrid finite element formulation based on fundamental solutions has
been developed for solving heat transfer problems in isotropic homogeneous solids [12] and fiber-reinforced
composites [13], and elastic problems in isotropic [14] and orthotropic [15] media. That numerical model
was referred to as HFS-FEM to distinguish it from the HT-FEM, due to the use of fundamental solutions.
The present HFS-FEM inherits the advantages of flexible domain element division in the HT-FEM over the
conventional FEM and BEM, and avoids some of the shortcomings mentioned above.

In this paper, a special HFS-FEM model is developed to investigate the stress concentration caused by
elliptical holes. In the present numerical model, the special fundamental solutions characterizing the local
stress effect caused by the interaction of an elliptical hole and concentrated forces are adopted to construct
special elliptical-hole elements, in which the proper superposition of fundamental solutions at a number of
source points is used to approximate the displacement and stress fields inside the element, while conventional
shape functions are employed to interpolate the element boundary displacement field. The hybrid functional at
the element level is used to enforce the two assumed fields and to generate the final element stiffness equation.
Because the assumed displacement and stress fields inside the element can exactly satisfy both the traction-free
boundary conditions and the governing equations, there is no need to model the elliptical hole boundary, and a
relatively coarse mesh of the size of the elliptical hole can be employed to discretize the local region of interest.
The effort of mesh division near the elliptical hole can then be significantly reduced, while simultaneously the
effect of stress concentration along the elliptical hole boundary can be captured more accurately.

This paper is organized as follows. In Sect. 2, the formulations of isotropic elastic problems and the funda-
mental solutions associated with an elliptical hole are introduced, for the purpose of completeness. Section 3
gives the solution procedure of the present hybrid finite element model, and the special elliptical-hole elements
are constructed. Section 4 verifies the proposed numerical model by three examples. The stress concentration
for elliptical holes and the interactions between them are investigated using the proposed special elements.
In Sect. 5, some conclusions are drawn to summarize the features of this numerical method.

2 Formulations of plane elasticity with elliptical hole

2.1 Governing equations

For a well-posed plane linear elastic problem occupying the domain �, the corresponding partial differential
governing equations consist of [16]

Equilibrium equations

Lσ + b = 0, (1)
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Strain–displacement relations

ε = LTu, (2)

Stress–strain relations

σ = Dε, (3)

where σ = {
σ11 σ22 σ12

}T and ε = {
ε11 ε22 γ12

}T denote the stress and strain vectors, respectively, b =
{

b1 b2
}T is the body force vector, u = {

u1 u2
}T is the displacement vector, and the differential matrix L is

defined as

L =
[

∂
∂x1

0 ∂
∂x2

0 ∂
∂x2

∂
∂x1

]

, (4)

and xi (i = 1, 2) are the global Cartesian coordinates. The stress–strain matrix D is given by

D = E∗

1 − ν∗2

⎡

⎣
1 ν∗ 0
ν∗ 1 0
0 0 1−ν∗

2

⎤

⎦ , (5)

with E∗ = E, ν∗ = ν for plane stress analysis and E∗ = E/(1−ν2), ν∗ = ν/(1−ν) for plane strain analysis.
E and ν, respectively, denote the elastic modulus and the Poisson’s ratio.

As well, the specified boundary displacement and traction conditions should be complemented, such as

u = ū on �u
s = Aσ = s̄ on �s

}
, (6)

where an overbar represents a specified variable, and

[A] =
[

n1 0 n2
0 n2 n1

]
, (7)

where ni represents the i th component of the outward normal to the boundary

� = �u + �s .

Rearranging Eq. (3) leads to the following Cauchy–Navier equations in terms of displacements:

LDLTu + b = 0. (8)

2.2 Fundamental solutions for an elliptical hole

In the process of constructing special elliptical-hole elements for stress concentration analysis in the next sec-
tion, the key step is to find proper fundamental solutions that reflect the local stress concentration attributable
to an elliptical hole. To achieve this, the interaction of an elliptical hole and a concentrated load in an infinite
elastic medium is considered, here using Muskhelishvili’s complex variable formulation [17].

When a concentrated point force F = F1 + F2i is applied at the point z0 = xs
1 + xs

2i outside an elliptical
hole with major and minor axes a, b(a ≥ b) along the x1, x2 axes at the origin (see Fig. 1), the induced
displacements and stresses solutions can be obtained using complex elastic theory, that is, the displacements
and stresses in the isotropic elastic medium can be expressed through two complex functions ψ1(z), ϕ1(z),
such that [17]

2G(u1 + u2i) = κψ1(z)− zψ ′
1(z)− ϕ1(z) (9)

and

σ11 + σ22 = 2
[
ψ ′

1(z)+ ψ ′
1(z)

]
,

σ22 − σ11 + 2σ12i = 2
{
z̄ψ ′′

1 (z)+ ϕ′
1(z)

}
,

(10)
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Fig. 1 Infinite plane with an elliptical hole under concentrated forces

where i = √−1, κ = 3−4ν for plane strain and κ = (3− ν)/(1+ ν) for plane stress. A bar over a complex
variable indicates its conjugate and a prime denotes differentiation with respect to the independent variable,
i.e.,

ψ ′
1(z) = dψ1(z)

dz
, ψ ′′

1 (z) = d2ψ1(z)

dz2 , ϕ′
1(z) = dϕ1(z)

dz
. (11)

Also, we have the following expression for the resultant forces P1, P2 on an arc AB of the boundary from
point A to point B:

− i (P1 − P2i) =
[
ψ1(z)+ z̄ψ ′

1(z)+ ϕ1(z)
]B

A
. (12)

To convert the elliptical hole into a unit circle, the following conformal mapping is defined:

z = z(w) = R
(
w + m

w

)
, (13)

where the parameters R and m are related to the major and minor axes by

R = 1

2
(a + b) , m = a − b

a + b
. (14)

The mapping function (13) maps the ellipse onto a unit circle (see Fig. 2) and also maps the exterior of the
ellipse onto the exterior of a unit circle. Based on this consideration, the inverse mapping function is given by

w = z + √
z2 − 4R2m

2R
, (15)

when the real part of the complex variable z is larger than zero or z is located at the positive axes of the
coordinate system, and

w = z − √
z2 − 4R2m

2R
, (16)

when the real part of the complex number z is less than zero or z is located at the negative axes of the coordinate
system.

For the interaction of the pair of point forces F and an elliptical hole, Eq. (13) maps the elliptical hole in
the z-plane onto a unit circle at the origin of the w-plane, and the points z and z0 in the z-plane onto points w
and w0 in the w-plane.
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Fig. 2 Conformal mapping of an infinite plane with an elliptical hole

Now the complex potentials defined in the actual domain (z-plane) are transformed into functions of w
through the relations

ψ1(z) = ψ1(z(w)) = ψ(w), ϕ1(z) = ϕ1(z(w)) = ϕ(w). (17)

It is obvious that if the elasticity solution is known for the geometry in thew-plane, then through appropriate
inverse transformation formulae the solution for the actual problem can be determined.

Because the sought complex potential functions are expressed in the transformed domain, that is,
ψ(w), ϕ(w), the following relations are useful for distinguishing those derivatives respectively defined in
different spaces, for example,

ψ ′
1(z) = dψ1(z)

dz
, ψ̇(w) = dψ(w)

dw
,

ψ ′′
1 (z) = d2ψ1(z)

dz2 , ψ̈(w) = d2ψ(w)

dw2 , (18)

ϕ′
1(z) = dϕ1(z)

dz
, ϕ̇(w) = dϕ(w)

dw
.

Using the chain rule of derivatives, we have

ψ ′
1(z) = ψ̇(w)

dw

dz
= ψ̇(w)

ż(w)
,

ψ ′′
1 (z) = ψ̈(w)

[ż(w)]2 − ψ̇(w)
z̈(w)

[ż(w)]3

(19)

and

ϕ′
1(z) = ϕ̇(w)

dw

dz
= ϕ̇(w)

ż(w)
. (20)

As a result, Eqs. (9), (10), and (12) can be rewritten in the transformed space as

2G(u1 + u2i) = κψ(w)− z(w)
ψ̇(w)

ż(w)
− ϕ(w),

σ11 + σ22 = 4Re

[
ψ̇(w)

ż(w)

]
,

σ22 − σ11 + 2σ12i = 2

{
z(w)

(
ψ̈(w)

[ż(w)]2 − ψ̇(w)
z̈(w)

[ż(w)]3

)
+ ϕ̇(w)

ż(w)

}
,

−i (P1 − P2i) =
[
ψ(w)+ z(w)

ψ̇(w)

ż(w)
+ ϕ(w)

]B

A
.

(21)
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Using the complex variable formalism of Muskhelishvili, Green’s function solutions for the hole problem
can be written in the form [2]

ψ(w) = ψs(w)+ ψr (w),

ϕ(w) = ϕs(w)+ ϕr (w),
(22)

where ψs(w) and ϕs(w) are the singular parts for an infinite body subjected to an concentrated force and
containing no hole or other defects;ψr (w) and ϕr (w) are the regular parts to be determined so that the traction
on the surface of the hole becomes zero.

According to complex elastic theory, the singular parts in the w-plane can be given by

φs(w) = −γ ln [z(w)− z(ρ)] ,

ψs(w) = κγ̄ ln [z(w)− z(ρ)] + γ
z(ρ)

z(w)− z(ρ)
,

(23)

where

γ = F1 + F2i

2π(1 + κ)
. (24)

With the help of Cauchy integrals, the resulting regular terms can be given by [2]

ψr (w) = ψr1(w)γ + ψr2(w)γ̄ ,

ϕr (w) = ϕr1(w)γ + ϕr2(w)γ̄ − z
( 1
w

)

z′(w)
ψ ′

r (w),
(25)

where

ψr1(w) = ln

(
1 − m

wρ

)
− κ ln

(
1 − 1

wρ̄

)
,

ψr2(w) = ρ(1 + mρ̄2)− ρ̄(m + ρ2)

ρ(m − ρ̄2)

1

ρ̄w − 1
,

ϕr1(w) = ρ̄(m3 + ρ2)− mρ(m + ρ̄2)

ρ̄(m − ρ2)

1

ρw − m
,

ϕr2(w) = −κ ln

(
1 − m

wρ

)
+ ln

(
1 − 1

wρ̄

)
.

(26)

2.3 Coordinate transformation for an inclined elliptical hole

If the semi-axes of the ellipse are along, for example, the coordinate axes of the local system (x̂1, x̂2) rather
than those of the global system (x1, x2), then a coordinate transformation is needed during the derivation of
the hybrid finite element model with special elements in this study.

For the two coordinate systems mentioned above with same origin (see Fig. 3), the angle between the two
axes is denoted by an angle θ , which is positive in the anti-clockwise direction. Then the global and local
coordinates are related to each other through the angle θ :

{
x1
x2

}
= T−1

1

{
x̂1
x̂2

}
(27)

or
{

x̂1
x̂2

}
= T1

{
x1
x2

}
(28)

where T1 is called the transformation matrix and is defined as

T1 =
[

c s
−s c

]
(29)
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Fig. 3 Global and local coordinate systems defined for an inclined elliptical hole

or its inverse matrix

T−1
1 =

[
c −s
s c

]
(30)

with c = cos(θ), s = sin(θ).
Subsequently, for the inclined elliptical hole, the relationship for transformation of displacement and stress

components between the local and global coordinate systems is given by
{

u1
u2

}
= T−1

1

{
û1
û2

}
, (31)

⎧
⎨

⎩

σ11
σ22
σ12

⎫
⎬

⎭
= T−1

2

⎧
⎨

⎩

σ̂11
σ̂22
σ̂12

⎫
⎬

⎭
, (32)

where the stress transformation matrix T2 is defined as

T2 =
⎡

⎣
c2 s2 2cs
s2 c2 −2cs
−cs cs c2 − s2

⎤

⎦ , (33)

or its inverse matrix

T−1
2 =

⎡

⎣
c2 s2 −2cs
s2 c2 2cs
cs −cs c2 − s2

⎤

⎦. (34)

3 Development of HFS finite element formulation

3.1 Element interior fields

In the absence of body forces, motivated by the basic idea of the method of fundamental solution (MFS) [18]
to remove the singularity of a fundamental solution, for a particular element e, which occupies a sub-domain
�e, we first assume that the field variable defined in the element domain is extracted from a linear combination
of fundamental solutions centered at different source points, that is,

ue = Nce, (35)
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where ce = [
c11 c21 · · · c1ns c2ns

]T is an unknown coefficient vector (not a nodal displacement vector)
consisting of the source intensity at ns source points outside the element domain, and the coefficient matrix

N =
[

u∗
11 (x, y1) u∗

21 (x, y1) · · · u∗
11

(
x, yns

)
u∗

21

(
x, yns

)

u∗
12 (x, y1) u∗

22 (x, y1) · · · u∗
12

(
x, yns

)
u∗

22

(
x, yns

)

]

,

consists of the fundamental solution u∗
li

(
x, y j

)
, x and y j are field point and source point measured in the local

coordinate system (x1, x2), respectively.
In practice, the generation of virtual sources outside the element domain can usually be achieved by means

of the following formulation [12,19,20]

y j = xb + γ (xb − xc) , (36)

where γ is a dimensionless coefficient, xb is the elementary boundary point and xc the geometrical centroid of
the element. Typically, in the proposed approach, we use the nodes of the element to generate related source
points for simplicity.

Subsequently, differentiating Eq. (35), we obtain the corresponding stress fields

σ e = Tce (37)

with

T =
⎡

⎣
σ ∗

111 (x, y1) σ
∗
211 (x, y1) · · · σ ∗

111

(
x, yns

)
σ ∗

211

(
x, yns

)

σ ∗
122 (x, y1) σ

∗
222 (x, y1) · · · σ ∗

122

(
x, yns

)
σ ∗

222

(
x, yns

)

σ ∗
112 (x, y1) σ

∗
212 (x, y1) · · · σ ∗

112

(
x, yns

)
σ ∗

212

(
x, yns

)

⎤

⎦ ,

Furthermore, the boundary traction vector s is evaluated by

se = Qce, (38)

where

Q = AT. (39)

3.2 Element frame field

To enforce conformity on the displacement field over the interface of two neighboring elements e and f , for
instance, ue = u f on �e ∩ � f , an auxiliary inter-element frame field ũe defined along the element boundary
is assumed in terms of the nodal degrees of freedom (DOF) de, that is,

ũe = Ñde, (40)

in which the matrix Ñ is formed with respect to shape functions used in the standard FEM and BEM.

3.3 Hybrid functional and stiffness equation

Having independently defined the intra-element field and frame field in a particular element e, the hybrid
functional �me in the absence of body forces is given by [21]

�me = 1

2

∫

�e

σTε d�−
∫

�s
e

s̄Tũ d� +
∫

�e

sT (ũ − u) d�, (41)

which can be used to link the two independent fields and to generate the element stiffness equation.
Applying the Gaussian theorem again to the above hybrid functional, we have

�me = −1

2

∫

�e

uTs d� −
∫

�s
e

s̄Tũ d� +
∫

�e

sTũ d�, (42)
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Substituting Eqs. (35), (38) and (40) into the functional (42) yields

�me = −1

2
cT

e Hece − dT
e ge + cT

e Gede, (43)

in which

He =
∫

�e

QTN d�, Ge =
∫

�e

QTÑ d�, ge =
∫

�s
e

ÑTs̄ d�. (44)

To enforce inter-element continuity on the common element boundary, the unknown vector ce should
be expressed in terms of the nodal DOFsde. Minimization of the functional �me with respect to ce and de,
respectively, yields

∂�me

∂cT
e

= −Hece + Gede = 0,

∂�me

∂dT
e

= GT
e ce − ge = 0,

(45)

from which the optional relationship between ce and de, and the stiffness equation can be produced, that is,

ce = H−1
e Gede (46)

and

Kede= ge, (47)

where

Ke = GT
e H−1

e Ge (48)

stands for the element stiffness matrix, which is symmetric and can be easily incorporated into the standard
finite element program.

3.4 Special elliptical-hole element

From the hybrid formulation described above, we can see that the independence of the interior and boundary
fields for a particular element makes it possible to construct arbitrarily shaped hybrid elements, such as ele-
ments with more edges and nodes. More importantly, because the assumed interior fields analytically satisfy
the governing equations and the local boundary condition associated with an elliptical hole within the element
domain, it is reasonable to design a special large-scale element to enclose the elliptical hole with multiple edges
and nodes. In general, the interpolation functions provide more accurate solutions when the number of source
points is increased. However, the solutions may become unstable in practice when more source points are
chosen, because the induced larger order of the matrix He may decrease the numerical accuracy of its inverse
manipulation. Here, two types of special element are designed: One is an 8-node special element and the other
a 16-node special element. These elements are constructed with quadratically varying frame displacements as
shown in Fig. 4.

4 Numerical results

To assess the performance of the proposed approach and the associated special elements, three numerical
examples are considered in this section. The first example is considered for validating the present special ele-
ment by comparing numerical results with available analytical solutions. The second example is used to assess
the behavior of the special element for solving an inclined elliptical hole. The final numerical experiment is
used to assess the ability of the present special element for simulating the interaction between two elliptical
holes.
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Fig. 4 Special elliptical-hole elements with a 8 nodes, b 16 nodes

4.1 Infinite plate with a centered elliptical hole under tension

The first example, for which exact solutions are available, is chosen to demonstrate the accuracy of the present
special elliptical-hole element. In this example, we analyze an infinite plate with a centered elliptical hole sub-
jected to unidirectional tension, and the plane stress state is assumed. The exact complex potential solutions
for such case can be determined by using Cauchy integral methods, as found in Muskhelishvili [17]:

ψ(w) = pR

4

(
w − 2 + m

w

)
,

ϕ(w) = − pR

2

(

−w − 1

mw
−
(
1 + m2

)
(−1 − m)

m

w

w2 − m

)

.

(49)

The related stress concentration factor (SCF) on the hoop stress σθ at the top point (a, 0) of the elliptical
boundary is given by

(σθ )max

p
= 1 + 2

a

b
. (50)

In the computation, the infinite domain is idealized by a large square domain taken from the work of
Piltner [22] with the side length 100, and the major axis of the elliptical hole is taken to be a = 2, as shown
in Fig. 5. The applied uniform tension load p is assumed to be 1. The mesh configuration associated with one
8-node special hybrid element and 48 8-node general hybrid elements is displayed in Fig. 6. The total number
of nodes is 176. Four symmetric displacement constraints at points (±50, 0), (0, ±50) are imposed during
the computation. The effect of the location of source points on the stress concentration of hoop stress is first
investigated for the case of a/b = 2, and the numerical results displayed in Fig. 7 show that stable results can
be achieved for a large range of values of the parameter γ . It is found that with too small a value of γ the
source points are too close to the physical boundary of the hybrid element, leading to vibrating results due to
the near singularity of fundamental solutions. However, when the source points are remote from the element
physical boundary, the numerical accuracy can decrease due to the round-off error caused by the large mag-
nitude difference between the unknown interpolating coefficient ce and nodal displacement de. Hence, γ = 5
is chosen in the subsequent computation, and a similar suggestion can be found in the authors’ previous work
[12,14,15]. Next, the corresponding variation of hoop stress along the elliptical hole boundary is displayed in
Fig. 8, and it is seen that there is good agreement between the numerical results using the present hybrid finite
element model and the analytical solutions. As well, the decays of stress components σ11 and σ22 away from
the edge of the elliptical hole are shown in Figs. 9 and 10, from which it can be seen that the magnitude of
the stress components decays rapidly to the state without the elliptical hole, so the correctness of the truncated
size of the infinite plate is illustrated.

Finally, the stress concentration factor for various ratios of a/b is calculated, and numerical and analytical
solutions are tabulated in Table 1, from which it is found that the maximum relative error is just 0.27 %,
indicating that the present hybrid model can accurately capture the dramatic variation of stress on the elliptical
hole boundary and the constructed special element is verified.
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Fig. 5 Square plate with a centered elliptical hole under tension

Fig. 6 Mesh configuration of special element

4.2 Infinite plate with an inclined elliptical hole under tension

The second example considered is an infinite plate containing an inclined elliptical hole and subjected to
uniform tension along the vertical direction. The inclined angle of the elliptical hole to the horizontal axis is
defined as α (see Fig. 11). The analytical solutions can be derived using two complex potential functions given
in [17] and proper coordinate transformation.

The size of the solution domain is selected to be the same as the square plate used in Example 1, and the
corresponding hybrid finite element discretization is shown in Fig. 12, in which α = 30o, 45o, 60o, 90o are
considered. The mesh configuration for the case of α = 0o is the same as that in Example 1. The ratio a/b
is set to be 2. To perform hybrid finite element analysis, the necessary displacement constraints should be
introduced into the stiffness equation to remove the singularity of the stiffness matrix. For this purpose, the
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Fig. 7 Effect of the location of source points outside the element domain

Fig. 8 Variation of hoop stress along the boundary of elliptical hole

Fig. 9 Stress decay along the horizontal coordinate axis
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Fig. 10 Stress decay along the vertical coordinate axis

Table 1 Stress concentration factor for various ratios of a/b

a/b 1 2 3 4 5 6 7 8

Exact 3 5 7 9 11 13 15 17
HFS-FEM 3.008 5.010 7.012 9.015 11.018 13.021 15.024 17.026
Percentage relative error (%) 0.27 0.20 0.17 0.17 0.16 0.16 0.16 0.15

Fig. 11 Square plate with an inclined elliptical hole under tension

analytical displacement solutions at points (−50, 50), (50,50) and (50, −50) are calculated and applied during
the procedure of hybrid finite element analysis.

The stress concentration coefficients at points A and B are studied and presented in Fig. 13 as a function
of the inclination angle α. From Fig. 13 it can be seen that the numerical results agree well with the analytical
solutions. The good agreement demonstrates the accuracy of the present hybrid finite element formulation
and special elliptical-hole element. More importantly, the mesh used in the present approach is relatively sim-
pler. The number of elements used for various inclination angles is 35, 38, 38 and 49, respectively, and the
corresponding number of nodes is 130, 139, 139 and 176, respectively.



1336 H. Wang, Q.-H. Qin

Fig. 12 Mesh configurations for the inclined elliptical hole. a α = 30◦, b α = 45◦, c α = 60◦, d α = 90◦

Fig. 13 Variation of hoop stress for different rotation angles of the elliptical hole
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Fig. 14 Infinite plate containing two elliptical holes under uniaxial tension

Fig. 15 a Hybrid finite element grid with one 8-node special element. b Conventional finite element grid for l = 3

4.3 Interaction of two elliptical holes under tension

This example is used to investigate the interaction of two elliptical holes, as displayed in Fig. 14. The plate is
modeled with a finite size of 100 × 100, and the two elliptical holes have same shape, with major axis 2a = 4
and minor axis 2b = 2. The distance between these two holes is denoted by l.

When the distance parameter l = 3, only half of the domain is modeled due to the symmetry of the prob-
lem, and the hybrid finite element division with one 8-node special element is plotted in Fig. 15, in which the
conventional finite element grid of the representative quarter of the domain is generated using ABAQUS for
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Fig. 16 a Hybrid finite element grid with one 8-node special element. b Conventional finite element grid for l = 1

Fig. 17 Stress variation along the horizontal axis between the two elliptical holes with 8-node special element

the purpose of comparison. In the present hybrid finite element grid, a total of 55 quadratic hybrid elements
with 198 nodes are used, whereas the conventional finite element grid uses 2,786 elements of the type CPS8R
including 8,569 nodes in ABAQUS. Also, Fig. 16 displays the corresponding finite element grids of the present
model and the conventional finite element model for the case of l = 1. The results in Fig. 17 give the variation
of stress component σ22 between the two elliptical holes, and it can be seen that there is a significant increase
in the maximum value of stress as the distance parameter l decreases. The main reason is that the interaction of
two elliptical holes becomes stronger as the two elliptical holes come closer. For the case of l = 3, the present
8-node special element can well capture the variation of stress σ22, and good agreement is observed between
the results of the present HFS-FEM and that from ABAQUS. The maximum relative error between the two
methods is 1.223 % at the left point B of the elliptical hole. In this case, the stress concentration factor at the
right point C of the elliptical hole is 5.078, which is very close to the theoretical value of a single elliptical hole
in an infinite plane, as described in Example 1. For the case l = 1, the stress concentration factor at the point
B obtained using the present hybrid model reaches 5.682 and has a large discrepancy against the results of
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Fig. 18 Hybrid finite element grid with one 16-node special element

Fig. 19 Stress variation along the horizontal axis between the two elliptical holes with 16-node special element

Table 2 Stress σ22 at three points for the case of l = 1

A B C

HFS-FEM
8-node special element 1.827 5.682 5.395
16-node special element 1.973 5.512 5.201

ABAQUS 1.919 5.446 5.162

ABAQUS, which use 2,109 elements and 6,528 nodes. Thus, the present 8-nodel special element is inadequate
to capture the strong interaction of two elliptical holes.

To deal with the strong interaction of two elliptical holes, the 16-node special element shown in Fig. 4b is
employed here and the corresponding mesh grid is displayed in Fig. 18. The stress results in Fig. 19 show that
the 16-node special elliptical-hole element can give better accuracy than the 8-node special element.

Finally, the stress results at points A, B and C displayed in Fig. 14 are tabulated in Table 2.
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5 Conclusions

A special-fundamental-solution-based finite element formulation is established to provide an efficient approach
for stress concentration analysis around elliptical holes, in which the special fundamental solutions associated
with the elliptical hole are used to approximate the element’s interior displacement and stress fields, and the
shape functions used in the conventional FEM and BEM are employed for the element frame displacement
fields. Due to the properties of special fundamental solutions, the special element is designed to enclose an
elliptical hole and thus the local mesh refinement around the elliptical hole is avoided. The special hybrid ele-
ments developed may have different numbers of nodes with quadratically varying displacement approximation
along their boundary to match with complex surrounding geometry. Numerical results from three examples,
namely a square domain with a horizontal elliptical hole, an inclined elliptical hole, and two elliptical holes,
showed that the present special elliptical-hole element can effectively capture the dramatic variation of stress
around elliptical holes by using relatively coarse meshes, whereby the computational cost is significantly
reduced. Hence, the present approach can be employed to effectively predict the stress concentration factor
associated with elliptical holes.
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