
Copyright © 2012 Tech Science Press MCB, vol.9, no.1, pp.31-53, 2012

Transient Bioheat Simulation of the Laser-Tissue
Interaction in Human Skin Using Hybrid Finite Element

Formulation

Ze-Wei Zhang∗, Hui Wang† and Qing-Hua Qin∗,‡

Abstract: This paper presents a hybrid finite element model for describing quan-
titatively the thermal responses of skin tissue under laser irradiation. The model is
based on the boundary integral-based finite element method and the Pennes bio-
heat transfer equation. In this study, temporal discretization of the bioheat system
is first performed and leads to the well-known modified Helmholtz equation. A ra-
dial basis function approach and the boundary integral based finite element method
are employed to obtain particular and homogeneous solutions of the laser-tissue
interaction problem. In the boundary integral based finite element formulation,
two independent fields are assumed: intra-element field and frame field. The intra-
element field is approximated through a linear combination of fundamental solu-
tions at a number of source points outside the element domain. The frame temper-
ature field is expressed in terms of nodal temperature and the corresponding shape
function. Numerical examples are considered to verify and assess the proposed nu-
merical model. Sensitivity analysis is performed to explore the thermal effects of
various control parameters on tissue temperature and to identify the degree of burn
injury due to laser heating.

Keywords: Bioheat transfer; laser irradiation; burn; hybrid finite element; fun-
damental solution; radial basis function

Symbols

c Specific heat of tissue (Jkg−1K−1)
cb Specific heat of blood (Jkg−1K−1)
h∞ Convection coefficient of ambient fluid (Wm−2K−1)
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k Thermal conductivity of tissue (Wm−1K−1)
L Width of 2D skin model (m)
Pin Laser power setting (W)
q Heat flux (Wm−2)
Qm Metabolic heat of tissue (Wm−3)
Qr Spatial heat (Wm−3)
Qt Sum of metabolic heat and spatial heat (Wm−3)
t Time (s)
∆t Time step (s)
T Temperature of tissue (oC)
Ta Artery temperature (oC)
Tc Temperature of body core (oC)
T∞ Sink temperature of ambient fluid (oC)
ρ Density of tissue (kgm−3)
ρb Density of blood (kgm−3)
σ Standard deviation of laser beam profile (m)
ωb Blood perfusion rate (m3s−1m−3)
µa Absorption coefficient of tissue (m−1)
P Pre-exponential factor (s−1)
∆E Activation energy (Jkmol−1)
R Universal gas constant (Jkmol−1K−1)

1 Introduction

In diagnostic applications to biological systems, varieties of laser therapy are widely
used to cure pathology ranging from tumor to short sight; however, the laser heat-
ing can cause burning injury due to local high temperature. It is therefore important
to accurately predict the temperature distribution induced and the potential burn
damage to healthy human tissue during laser irradiation. This can be achieved by
effective prediction of bioheat transport [1]. It is noted that cost and other factors
preclude real time measurement of temperature distribution in in vivo tissue. Thus
numerical simulation of bioheat transfer may be attractive and necessary in prac-
tice. Marqa et al. investigated bioheat and thermal damage behavior under laser
irradiation using the conventional finite element method (FEM) [2], which was
also used by Shibib to determine the thermal damage in human skin due to laser
irradiation [3]. Ansari et al. studied short-pulse laser propagation in biological
tissue by means of the boundary element method (BEM) with time-dependent fun-
damental solutions [4]. The Monte Carlo method and the dual reciprocity boundary
element method (DRBEM) have also been applied to evaluate transient or steady
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state thermal behaviors in biological tissues [5-7]. Recently, a method of funda-
mental solutions (MFS) was developed and applied to the problem of heat transfer
in skin tissue [8].

Among the existing computational methods, Green’s functions or fundamental so-
lution based methods such as the BEM/DRBEM and the MFS have been success-
fully developed to obtain highly accurate numerical approximations of solutions
to linear elliptic partial differential equations (PDEs). The use of fundamental so-
lutions makes the boundary element or collocation discretization possible in these
methods to preserve their boundary-only merits. As an alternative to BEM and
MFS, a fundamental solutions based hybrid finite element model, HFS-FEM for
short, was presented in [9], retaining the advantages of both boundary integrals in
BEM and flexible element division in FEM, and it has been applied to the problem
of heat transfer in the human eye [10], fiber-composites [11] and plane elasticity
[12, 13]. In the proposed HFS-FEM formulation, the solution inside an element
is approximated by a linear combination of fundamental solutions with sources lo-
cated outside the element, as in the MFS [14], and the conventional shape function
interpolation is used to approximate the independent frame field defined over the el-
ement boundary. The linkage of the two groups of independent fields is established
through use of a hybrid variational functional (presented in Section 3.3).

In this study, a HFS-FEM model coupled with the dual reciprocity technique is
developed for analyzing transient bioheat transfer in laser treatment. First, a back-
ward time stepping scheme is employed to perform the time discretization, leading
to the inhomogeneous modified Helmholtz system. Then, the particular solution
part of the inhomogeneous system is obtained using the interpolation of radial basis
functions (RBFs) at a number of points in the solution domain. The homogeneous
solution part is obtained using the hybrid finite element model. Finally, numerical
results are presented to verify and assess the numerical approach and to illustrate
the effect of laser power on temperature distribution in skin tissue.

The paper is organized as follows: In Section 1, a general transient bioheat model
of two-dimensional skin tissue is described, providing notations and reference for
the subsequent sections. The solution procedures for the HFS-FEM combined with
RBF are presented in Sections 2 and 3. In Section 4, validation of the proposed
algorithm, sensitivity analysis of the control parameters, and burn prediction are
conducted. Finally some conclusions are presented in Section 5.
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2 Bioheat mathematical model in skin tissue

2.1 Skin tissue under laser heating

The two-dimensional skin model used in [5] is chosen here, in which the skin mate-
rial is assumed to be homogeneous and isotropic. In the model displayed in Figure
1, the outer surface of the skin tissue is subjected to the convention condition and
the inner boundary is distant from the skin surface, where the temperature remains
at the constant core temperature. The upper and lower surfaces are treated as adi-
abatic by assuming that tissue remote from the area of interest is not affected by
the imposed thermal disturbance. A Gaussian type laser beam is introduced as the
internal spatial heat source and the Beer-Lambert law is used to model the expo-
nential decay of heat generation by laser heating inside the tissue.

Due to the symmetry of the skin model, only half of the model is taken into consid-
eration in the analysis, say the upper half shaded region displayed in Figure 1, in
which x denotes the tissue depth from the skin surface, y is the distance along the
skin surface, and a rectangular domain of 4cm length and 3cm width is employed as
the solution domain [5]. The thermal properties of skin tissues used in the analysis
are listed in Table 1 [8].
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Figure 1 Simplified skin model of two-dimensional skin tissue 

 

Table 1 Thermal properties of skin tissue 

Thermal properties of skin Value 

Thermal conductivity k  (Wm-1K-1) 0.5 

Density ρ  (kgm-3) 1000 

Specific heat c  (Jkg-1K-1) 4200 

Blood perfusion rate ωb  (m3s-1m-3) 0.0005

Density of blood ρb  (kgm-3) 1000 

Figure 1: Simplified skin model of two-dimensional skin tissue

As shown in Figure 1, the laser beam, assumed to be produced from a CO2 laser
with scanner head and beam expander, injects directly onto the middle point (0, 0)
of the skin surface. In the present work, the pattern of the laser beam is that of



Transient Bioheat Simulation of the Laser-Tissue Interaction 35

Table 1: Thermal properties of skin tissue

Thermal properties of skin Value
Thermal conductivity k (Wm−1K−1) 0.5
Density ρ (kgm−3) 1000
Specific heat c (Jkg−1K−1) 4200
Blood perfusion rate ωb (m3s−1m−3) 0.0005
Density of blood ρb (kgm−3) 1000
Specific heat of blood cb (Jkg−1K−1) 4200
Metabolic heat Qm (Wm−3) 4200

Gaussian distribution with 2.85mm standard deviation [15]. The Beer-Lambert law
is used to model the laser heat absorption in the two dimensional skin model, and
thus the spatial heat source Qr caused by laser heating is described by

Q∗r (x,y, t) = Pinµae(−µax) 1
σ
√

2π
e
(
−y2

2σ2

)
(1)

where Pin represents the laser power setting, µa the absorption coefficient of the skin
tissue determined by the wave length of the laser, and σ is the standard deviation
of the laser beam profile.

2.2 General mathematical equations

Referring to the Cartesian coordinate system shown in Figure 1, the bioheat transfer
in a biological tissue is adequately described by the well-known Pennes equation
in the following general form:

k∗∇2T ∗+ρ
∗
b c∗bω

∗
b (T ∗a −T ∗)+Q∗t = ρ

∗c∗
∂T ∗

∂ t∗
x ∈Ω (2)

with the boundary conditions
T ∗(x, t∗) = T̄ ∗(x, t∗) x ∈ Γ1

q∗(x, t∗) = q̄∗(x, t∗) x ∈ Γ2

q∗(x, t∗) = h∗∞(T ∗−T ∗∞) x ∈ Γ3

(3)

where ∇2 represents the Laplacian operator, T ∗(x, t∗) is the sought temperature
field variable, t∗ denotes time (t∗ > 0). k∗ is the thermal conductivity dependent
on the special variables x ∈ Ω; ρ∗ is the mass density and c is the specific heat.
Q∗t = Q∗m + Q∗r stands for the general internal heat generation per unit volume due
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to metabolic heat and the laser beam. q∗ represents the boundary normal heat flux
defined by

q∗ =−k∗∇T ∗ ·n =−k∗
∂T ∗

∂n
(4)

n is the unit outward normal to the boundary Γ. A variable with over-bar denotes
the variable being specified on given boundary. The constant T ∗a is artery temper-
ature. The constant h∗∞ is the convection coefficient and T ∗∞ is the environmental
temperature. For a well-posed problem, we have Γ = Γ1∪Γ2∪Γ3.

Finally, the initial condition is defined as

T ∗(x, t∗ = 0) = T ∗0 (x) (5)

To avoid the potential numerical overflow of the present algorithm, the following
dimensionless variables are employed in the analysis [16]:

X =
x

L0
, Y =

y
L0

, T =
(T ∗−T ∗a )k0

Q0L2
0

, k =
k∗

k0

ρ =
ρ∗

ρ0
, c =

c∗

c0
, t =

t∗k0

L2
0ρ0c0

, Qt =
Q∗t
Q0

(6)

where L0 is the reference length of the biological body, k0, ρ0, c0, and Q0 are
respectively reference values of the thermal conductivity, density, specific heat of
tissue, and heat source term.

From Eq. (6) we derive

∂T ∗

∂x
=

Q0L2
0

k0

1
L0

∂T
∂X

,
∂T ∗

∂y
=

Q0L2
0

k0

1
L0

∂T
∂Y

∂ 2T ∗

∂x2 =
Q0L2

0
k0

1
L2

0

∂ 2T
∂X2 ,

∂ 2T ∗

∂y2 =
Q0L2

0
k0

1
L2

0

∂ 2T
∂Y 2

∂T ∗

∂ t∗
=

Q0L2
0

k0

k0

L2
0ρ0c0

∂T
∂ t

,

(7)

Substitution of Eq. (5) and Eq. (7) into Eq. (2) yields

k∇
2T (x, t)−ρbcbωbT (x, t)+Qt(x) = ρc

∂T (x, t)
∂ t

(8)

where

ρbcbωb =
ρ∗b c∗bω∗b L2

0
k0

(9)
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Correspondingly, the boundary conditions are rewritten as
T (x, t) = T̄ (x, t) x ∈ Γ1

q(x, t) = q̄(x, t) x ∈ Γ2

q(x, t) = h∞(T −T∞) x ∈ Γ3

(10)

with

T =

(
T ∗−T ∗a

)
k0

Q0L2
0

, q =
q∗

Q0L0
, h∞ =

h∗∞L0

k0
, T∞ =

(T ∗∞−T ∗a )k0

Q0L2
0

(11)

and

q =−k
∂T
∂n

(12)

3 Transient HFS-FEM formulation

3.1 Direct time stepping

Making use of finite difference method, the derivative of temperature can be written
as

∂T (x, t)
∂ t

=
T n+1(x)−T n(x)

∆t
(13)

where ∆t is the time-step, T n+1(x) = T (x, tn+1) and T n(x) = T (x, tn) represent the
temperature at the time instances tn+1 and tn, respectively.

As a result, Eq. (8) at the time instance tn+1 can be rewritten as

k∇
2T n+1(x)−ρbcbωbT n+1(x)+Qt(x) = ρc

T n+1(x)−T n(x)
∆t

(14)

Rearranging Eq. (14) gives

∇
2T n+1(x)−λ

2T n+1(x) = b(x) (15)

with

λ =
√

ρc
k∆t

+
ρbcbωb

k
(16)

and

b(x) =−1
k

Qt(x)− ρc
k∆t

T n(x) (17)
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Accordingly, the boundary conditions at time instance tn+1 can be represented as
T n+1(x) = T̄ (x, tn+1) x ∈ Γ1

qn+1(x) = q̄(x, tn+1) x ∈ Γ2

qn+1(x) = h∞(T n+1−T∞) x ∈ Γ3

(18)

The linear system consisting of the governing partial differential equation (15) and
boundary conditions (18) is a standard inhomogeneous modified Helmholtz system,
which will be solved by means of the present HFS-FEM and the dual reciprocity
technique based on radial basis function interpolation described in the following
sections.

3.2 Particular solution obtained using radial basis functions

Let T n+1
p be a particular solution of the governing equation (15), we have

∇
2T n+1

p (x)−λ
2T n+1

p (x) = b(x) (19)

but does not necessarily satisfy boundary condition (18).

Subsequently, the system consisting of Eq. (15) and Eq. (18) can be reduced to a
homogeneous system by introducing two new variables as follows:

T n+1
h (x) = T n+1(x)−T n+1

p (x)

qn+1
h (x) = qn+1(x)−qn+1

p (x)
(20)

where

qn+1
h (x) =−k

∂T n+1
h (x)
∂n

, qn+1
p (x) =−k

∂T n+1
p (x)
∂n

(21)

Substituting Eq. (20) into Eq. (15), we obtain the following homogeneous equation

∇
2T n+1

h (x)−λ
2T n+1

h (x) = 0 (22)

with modified boundary conditions
T n+1

h (x) = T̄h(x) = T̄ (x, tn+1)−T n+1
p (x) x ∈ Γ1

qn+1
h (x) = q̄h(x) = q̄(x, tn+1)−qn+1

p (x) x ∈ Γ2

qn+1
h (x) = h∞

{
T n+1

h (x)−T n+1
∞ (x)

}
x ∈ Γ3

(23)

where

T n+1
∞ (x) =−T n+1

p (x)+T∞ +
qn+1

p (x)
h∞
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The above homogeneous system can be solved using the hybrid finite element
model described in the next section.

In what follows, we describe the solution procedure for the particular solution part
T n+1

p (x). For the arbitrary right-handed source term b(x), the particular solution
T n+1

p (x) can be determined numerically by the dual reciprocity technique, in which
it is essential to approximate the source term by a series of basis functions, i.e.
radial basis functions (RBFs).

Let ϕ be a radial basis function. Then the source term b(x) in Eq. (19) can be
approximated as follows [17, 18]:

b(x) =
M

∑
j=1

α jϕ(r j) (24)

where r j =
∥∥x−x j

∥∥ denotes the Euclidean distance between the field point x and
source point x j, and α j are unknown coefficients.

Making use of Eq. (24), the particular solution can be obtained as

T n+1
p (x) =

M

∑
j=1

α jΦ(r j) (25)

where the function is governed by

∇
2
Φ(r j)−λ

2
Φ(r j) = ϕ(r j) (26)

Taking the thin plate spline (TPS)

ϕ(r j) = r2
j ln(r j) (27)

as an example, the approximate particular solution Φ(r j) can be obtained by the
annihilator method as [19]

Φ(r j) =

{
− 4

λ 4 − 4
λ 4 lnr j− 1

λ 2 r2
j lnr j− 4

λ 4 K0 (λ r j) , r j 6= 0

− 4
λ 4 + 4γ

λ 4 + 4
λ 4 ln

(
λ

2

)
, r j = 0

(28)

where γ=0.5772156649015328 is Euler’s constant.

3.3 Homogeneous solution using the hybrid finite element model

To perform the hybrid finite element analysis in a convenient way, the boundary
conditions given in Eq. (23) are rewritten as

T n+1
h (x) = T̄h(x) x ∈ Γ1

χ
n+1
h (x) = χ̄h(x) x ∈ Γ2

χ
n+1
h (x) = h̄∞

{
T n+1

h (x)−T n+1
∞ (x)

}
x ∈ Γ3

(29)
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with

χ
n+1
h (x) =

∂T n+1
h (x)
∂n

, χ̄h(x) =−q̄h(x)/k, h̄∞ =−h∞

k
(30)

Then, the following hybrid variational functional expressed at element level can be
constructed as [18]

Πme =
1
2

∫
Ωe

(
T,iT,i +λ

2T 2)dΩ−
∫

Γ2e

χ̄T̃ dΓ+
∫

Γe

χ
(
T̃ −T

)
dΓ

− 1
2

∫
Γ3e

h̄∞

(
T̃ −T∞

)2 dΓ (31)

in which T is the temperature field defined inside the element domain Ωe with the
boundary Γe, T̃ denotes the frame field defined along the element boundary, and
Γ2e = Γ2 ∩ Γe, Γ3e = Γ3 ∩ Γe. Note that in Eq. (31), the superscript ‘n+1’ and
subscript ‘h’ are discarded for the sake of simplicity.

By invoking the divergence theorem and assuming that T̃ satisfies the specified
temperature boundary condition (the first equation of Eq. (29)) and the compati-
bility condition on the interface between the element under consideration and its
adjacent elements as prerequisites, variation of Eq. (31) can be written as

δΠme =−
∫

Ωe

(
T,ii−λ

2T
)

δT dΩ+
∫

Γ2e

(χ− χ̄)δ T̃ dΓ+
∫

Γe

δ χ
(
T̃ −T

)
dΓ

+
∫

Γ3e

[
χ− h̄∞

(
T̃ −T∞

)]
δ T̃ dΓ

(32)

from which it can be seen that the third integral enforces the equality of T and
T̃ along the element boundary Γe. The first, second and fourth integrals enforce
respectively the governing equation (22), flux, and convection boundary conditions
(the second and third equations in (29)).

If the internal temperature field T satisfies the homogeneous modified Helmholtz
equation, i.e.

∇
2T −λ

2T = 0 (33)

pointwise, then applying the divergence theorem again to the functional (31), we
have

Πme =−1
2

∫
Γe

χT dΓ−
∫

Γ2e

χ̄T̃ dΓ+
∫

Γe

χT̃ dΓ−
∫

Γ3e

h̄∞

2
(
T̃ −T∞

)2 dΓ (34)

which involves boundary integrals only.
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In the proposed HFS-FEM, the variable T is given as a superposition of funda-
mental solutions G∗(P,Q j) at ns source points to guarantee the satisfaction of Eq.
(33)

T n+1
h =

ns

∑
j=1

G∗(P,Q j)ce j = Ne(P)ce, P ∈Ωe,Q j /∈Ωe (35)

where ce j is undetermined coefficients and ns is the number of virtual sources Q j

applied at points outside the element.

The free-space fundamental solution of the modified Helmholtz operator can be
obtained as the solution of

∇
2G∗(P,Q j)−λ

2G∗(P,Q j) =−δ (P,Q j) (36)

and is given by [20]

G∗(P,Q j) =− 1
2π

K0(λ
∥∥P−Q j

∥∥) (37)

where δ (P,Q j) is the Dirac delta function and K0 denotes the modified Bessel func-
tion of the second kind with order 0.

Simultaneously, the independent frame variable on the element boundary can be
defined by the standard shape function interpolation

T̃ (P) =
n

∑
i=1

Ñi(P)dei = Ñe(P)de, P ∈ Γe (38)

where n is the number of nodes of the element under consideration, Ñi is the shape
function and dei is nodal temperature. Their descriptions can be found in standard
finite element texts and are not repeated here.

By substitution of Eq. (35) and Eq. (38) into Eq. (34) we obtain

Πme =−1
2

cT
e Hece−dT

e ge + cT
e Gede−

1
2

dT
e Fede +dT

e fe−ae (39)

in which

He =
∫

Γe

QT
e NedΓ, Ge =

∫
Γe

QT
e ÑedΓ, ge =

∫
Γ2e

ÑT
e ¯̄qdΓ

Fe =
∫

Γ3e

h̄∞ÑT
e ÑedΓ, fe =

∫
Γ3e

h̄∞T∞ÑT
e dΓ, ae =

∫
Γ3e

h̄∞T 2
∞

2
dΓ

(40)

and

Qe =
∂Ne

∂n
(41)
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4 Numerical results

In this section, we apply the proposed numerical model to several examples for val-
idating and assessing its applicability and effectiveness. Values of the parameters
employed in the following analysis are listed in Table 2 for convenience [21, 22].

Table 2: Control parameters related to boundary conditions

Control parameters Value
Ambient temperature T∞ (oC) 0∼30
Ambient convection coefficient h∞ (Wm−2K−1) 40∼12500
Heat conductivity of tissue k (Wm−1K−1) 0.2∼0.9
Laser power setting Pin (W) 100∼250
Absorption coefficient µa (m−1) 5∼20

4.1 Verification of the present model

To validate and assess the performance of the present HFS-FEM for analyzing the
transient heat transfer of skin materials with blood perfusion and metabolic heat,
a benchmark example is considered whose steady-state analytical solution is ex-
pressed as follows [6]:

T ∗(x) = A+
(T ∗c −A) [µ cosh(µx)+Bsinh(µx)]

µ cosh(µL)+Bsinh(µL)
+

B(T ∗∞−A)sinh [µ (L− x)]
µ cosh(µL)+Bsinh(µL)

(42)

where

A = T ∗a +
Q∗m

ρ∗b ω∗b c∗b

B =
h∗∞
k∗

µ =

√
ρ∗b ω∗b c∗b

k∗

(43)

and L is the thickness of the skin tissue.

In the computation, the solution domain is modeled with 20 eight-node quadratic
elements including 99 nodes. Three different time steps ∆t =50s, 80s and 100s are
employed to assess the performance of the time-stepping scheme employed in this
work. It is assumed that a relative steady state is reached when the inter-iteration
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Figure 2: Steady-state temperature distribution along the x axis

difference between adjacent time instances is less than or equal to 10−3. After 120,
82 and 68 iterations respectively, the corresponding distributions of temperature to
these three time steps along the x axis are plotted in Figure 2. The results from
the analytical solution Eq. (42) are also plotted in the figure for the purpose of
comparison. As we can see from Figure 2, the numerical results from the proposed
HFS-FEM are in good agreement with those of the analytical solution. At the origin
point of the coordinate system, the percentage relative errors of surface temperature
are respectively 0.022%, 0.45% and 0.56% for the three time steps used during the
computation. The maximum value of the percentage relative errors is 1.44%, which
occurs at the region close to the skin surface. Here it is necessary to point out that
a smaller time step will not produce better results. It can be explained that in Eq.
(16), the second term representing the blood perfusion effect ρbcbωb

k is much smaller
than the first term associated with time discretization ρc

k∆t , that is

ρc
k∆t
� ρbcbωb

k
(44)

if the time step becomes smaller. This will cause a round-off error during the
computation.

In Figure 3 the temperature distribution of skin tissues at 500s, 1000s, 3000s and
steady state is displayed, from which we can see that, with the increase of time,
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Figure 3: Temperature variation vs time along the x axis

the temperature curves do not become steeper but finally tend to a steady state. The
surface temperature of the skin decreases gradually. This procedure clearly displays
the propagation of the thermal wave inside the tissue and the heat exchange between
the skin and the ambient fluid. Therefore, accurate results can be obtained for the
transient thermal simulation in skin tissue using the present algorithm.

4.2 Sensitivity of skin temperature to different ambient fluids

The effect of environmental fluids on skin temperature is evaluated by changing the
ambient convection coefficient and ambient temperature. In this study, the ambient
convection coefficient is assumed to be 40, 2500 and 12500Wm−2K−1, respec-
tively, to represent different fluids such as air, oil and water [21], and the ambient
temperature is set to be in the interval [0oC, 30oC]. The transient temperature vari-
ations are presented in Figure 4 and Figure 5 respectively. In Figure 4, the ambient
temperature T∞ is specified at 0oC while the ambient convection coefficient changes
from 40 to 12500. Figure 4 shows that there is very little difference between the nu-
merical results for h∞=12500Wm−2K−1 and h∞=2500Wm−2K−1, whereas the dif-
ference between h∞=40Wm−2K−1 and h∞=2500Wm−2K−1is significant. The main
reason for this significant difference is that the effect of forced convection increases
as the convection coefficient becomes larger. The larger convection coefficient per-
mits more heat flow from tissue to environment. As a result, the temperature at
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Figure 4: Surface temperature variation for various ambient convection coefficients

the convection surface is significantly reduced. Hence it is necessary to increase
the convection coefficient to prevent thermal damage during treatment. However,
when the convection coefficient reaches its critical value, further increase in the
value of the convection coefficient cannot continuously increase the heat flow from
tissue to environment. In Figure 5, the ambient convection coefficient h∞ is set to be
40Wm−2K−1, which corresponds to a general forced convection, while the ambient
temperature changes. As expected, there is a significant increase in temperature at
the origin of the coordinate system (0, 0) when the ambient temperature increases
from 0oC to 30oC. This is because heat energy transfers rapidly from skin tissue to
the environmental fluid by convection when there is a large temperature difference
between the fluid and the tissue.

4.3 Sensitivity of skin temperature to tissue thermal conductivity

To study the effect of tissue thermal conductivity on skin temperature, the thermal
conductivity of the tissue is assumed to vary from 0.2Wm−1K−1 to 0.9Wm−1K−1

in this example. In the calculation, the ambient temperature and convection coef-
ficient are assumed to be 0oC and 40Wm−2K−1 respectively. The variation of the
temperature along the x axis is plotted in Figure 6. As expected, the tissue tem-
perature increases with the increase of thermal conductivity. This is reasonable,
because higher values of thermal conductivity mean more heat transfer from high
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Figure 5: Surface temperature variation for various ambient temperatures

Figure 6: Surface temperature variation for various heat conductivities
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laser power by 50W. Figure 8 displays the steady state temperature distribution along 

the x axis at 4100s and it is observed that the peak value of the temperature occurs at 

the region close to the body core. For comparison, the temperature distribution in the 

absence of laser beam is also plotted in Figure 8. Finally, the spatial temperature 

variations in the entire tissue domain are shown in Figure 9 and Figure 10 respectively 

for the cases with and without laser heating. It can be clearly seen that the effect of the 

laser beam prevents the temperature from being one-dimensional distribution, and in 

the local region close to the center of the laser beam at several cutaneous penetration 

depths there is greater temperature gradation. Moreover, the heating effect of the laser 

in the thickness direction of the tissue is more obvious than that in the vertical 

direction. 

 

Figure 7 Temperature variation at origin for various laser power settings Figure 7: Temperature variation at origin for various laser power settings
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Figure 8 Steady temperature variation at origin for laser 

 
Figure 9 Steady state temperature distribution without laser 

 

Figure 8: Steady temperature variation at origin for laser
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temperature regions like the body core and arteries to the low temperature region
(the skin surface), which causes the increase in surface temperature.

4.4 Sensitivity of skin temperature to different laser power settings

In the fourth example, the effect of laser heating on skin temperature is studied.
In practice, there are many different types of laser for various applications. In the
present work, the Beer-Lambert law is used for modeling heat absorption in two-
dimensional skin tissue. The induced spatial heat source Qr caused by the laser
beam is described by Eq. (1). According to reference [15, 22], the parameters of
the laser beam are taken as Pin=100∼250W, µa=20m−1 and σ =2.85mm, respec-
tively. The ambient temperature, ambient convection coefficient and tissue heat
conductivity are respectively assumed to be 25oC, 2500Wm−2K−1, 0.5Wm−1K−1.
Figure 7 presents the variation of temperature at the origin (0, 0) with power set-
tings 100W, 150W, 200W and 250W respectively. It is clearly seen from Figure
7 that the temperature significantly increases as the laser power increases, because
the higher laser power generates more internal heat energy inside the tissue. In ad-
dition, it is also evident from Figure 7 that temperature will increase by the value
of about 5.4 oC at the sampling point along with an increment of laser power by
50W. Figure 8 displays the steady state temperature distribution along the x axis at
4100s and it is observed that the peak value of the temperature occurs at the region
close to the body core. For comparison, the temperature distribution in the absence
of laser beam is also plotted in Figure 8. Finally, the spatial temperature variations
in the entire tissue domain are shown in Figure 9 and Figure 10 respectively for
the cases with and without laser heating. It can be clearly seen that the effect of
the laser beam prevents the temperature from being one-dimensional distribution,
and in the local region close to the center of the laser beam at several cutaneous
penetration depths there is greater temperature gradation. Moreover, the heating
effect of the laser in the thickness direction of the tissue is more obvious than that
in the vertical direction.

4.5 Evaluation of skin tissue damage caused by laser

As we can see from Figure 7, the temperature of skin tissue increases rapidly along
with an increase in laser power. Consequently, thermal injury or damage to bio-
logical tissue may occur, caused by laser heating. The burn degree of biological
tissue is usually estimated by means of the tissue damage rate Ω(t) expressed in the
following form [21, 23]:

Ω(t) =
t∫

0

Pexp
(

−∆E
R(T +273)

)
dτ (45)
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Figure 9: Steady state temperature distribution without laser
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Figure 10 Steady state temperature distribution with laser 

 

4.5 Evaluation of skin tissue damage caused by laser 

As we can see from Figure 7, the temperature of skin tissue increases rapidly along 

with an increase in laser power. Consequently, thermal injury or damage to biological 

tissue may occur, caused by laser heating. The burn degree of biological tissue is 

usually estimated by means of the tissue damage rate Ω(t) expressed in the following 

form [21, 23]: 
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273
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 −ΔΩ =   + 
  (45) 

where P is a constant determined by the tissue properties and local temperature. ∆E 

represents the activation energy and R is the universal gas constant. T is the local 

tissue temperature at time t. Figure 11 and Figure 12 present the numerical results for 

skin tissue damage rate at the point (3.75mm, 0mm) of laser heating with power 

setting at 250W and 150W respectively. According to the references [21, 23], the 

threshold values of first, second and third degree burns are Ω=0.53, Ω=1 and Ω=104 

respectively. From Figure 11 we can see that at about 2900s the burn degree of skin 

Figure 10: Steady state temperature distribution with laser
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Figure 11: Skin tissue damage rate of laser with power setting at 250W
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Figure 12 Skin tissue damage rate of laser with power setting at 150W 

 

5. Conclusions 

In the present work, a transient HFS-FEM algorithm is developed for analyzing 

bioheat transfer in two-dimensional skin tissue under laser irradiation. The effects of 

blood perfusion, metabolic heat and spatial heating induced by a Gaussian type laser 

beam are considered by way of the Pennes bioheat governing equation. Numerical 

results from the HFS-FEM coupling with RBF are first validated by comparing with 

the analytical solutions, and good agreement is observed. Then, sensitivity analyses 

are conducted of some control parameters, namely ambient convection coefficient, 

ambient temperature, tissue heat conductivity and laser power setting. Finally, the 

burn degree of skin tissue is estimated under laser radiation with different power. 
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where P is a constant determined by the tissue properties and local temperature. ∆E
represents the activation energy and R is the universal gas constant. T is the local
tissue temperature at time t. Figure 11 and Figure 12 present the numerical results
for skin tissue damage rate at the point (3.75mm, 0mm) of laser heating with power
setting at 250W and 150W respectively. According to the references [21, 23], the
threshold values of first, second and third degree burns are Ω=0.53, Ω=1 and Ω=104

respectively. From Figure 11 we can see that at about 2900s the burn degree of skin
tissue increases from second degree to third degree. That means that the damage to
skin tissue induced by laser heating at 250W power setting becomes worse as time
progresses. First and second burn degrees occur very quickly at the beginning of
laser heating. Therefore, a 250W laser can cause skin damage easily and quickly.
As evident in Figure 12, under 150W laser irradiation, first degree burn occurs at
about 1800s and second degree burn occurs at about 2400s. It would be expected
that users will avoid burning of skin tissue by reducing the laser power setting or
the laser irradiation time flexibly in different applications.

5 Conclusions

In the present work, a transient HFS-FEM algorithm is developed for analyzing
bioheat transfer in two-dimensional skin tissue under laser irradiation. The effects
of blood perfusion, metabolic heat and spatial heating induced by a Gaussian type
laser beam are considered by way of the Pennes bioheat governing equation. Nu-
merical results from the HFS-FEM coupling with RBF are first validated by com-
paring with the analytical solutions, and good agreement is observed. Then, sen-
sitivity analyses are conducted of some control parameters, namely ambient con-
vection coefficient, ambient temperature, tissue heat conductivity and laser power
setting. Finally, the burn degree of skin tissue is estimated under laser radiation
with different power.
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