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Abstract This paper presents a hybrid graded element
model for the transient heat conduction problem in function-
ally graded materials (FGMs). First, a Laplace transform
approach is used to handle the time variable. Then, a fun-
damental solution in Laplace space for FGMs is constructed.
Next, a hybrid graded element is formulated based on the
obtained fundamental solution and a frame field. As a result,
the graded properties of FGMs are naturally reflected by us-
ing the fundamental solution to interpolate the intra-element
field. Further, Stefest’s algorithm is employed to convert the
results in Laplace space back into the time–space domain.
Finally, the performance of the proposed method is assessed
by several benchmark examples. The results demonstrate
well the efficiency and accuracy of the proposed method.

Keywords Graded element model · Functionally graded
materials · Hybrid FEM · Transient heat conduction

1 Introduction

Traditional composite materials are ineffective to satisfy spe-
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cial requirements for working in harsh conditions, including
high temperature and large temperature gradients, due to sig-
nificant stress concentrations caused by their instantaneous
and stepped variations in material properties. Functionally
graded materials (FGMs) are a new generation of compos-
ite material whose microstructure varies from one material
to another with a specific gradient. This smooth variation
of material properties significantly improves the mechanical
strength and fracture toughness of FGMs. Since FGMs are
expected to be used in harsh thermal environments and in
various working conditions, it is necessary to effectively an-
alyze their transient heat conduction behavior. Investigation
of transient heat conduction in FGMs is difficult because of
the time-dependent excitation and spatial variations of their
material properties.

For time-dependent problems, treatment of the time
variable can essentially be classified into two categories [1]:
the time domain approaches (usually a time-stepping
scheme), which solve the problem directly in its time–space
domain, and the transform space approaches (usually the
Laplace transform, LT for short), which solve the problem
in a transformed Laplace domain first and then convert the
results back into the time–space domain. Time-stepping
schemes always start from an initial time and provide the
solution in the following time step, then take this solution as
the new initial condition, conducting the solution procedure
repeatedly. It should be mentioned that the disadvantage of
time-stepping schemes is that they might be numerically in-
efficient and unstable. The LT is a powerful alternative that
eliminates time derivatives by transforming the original heat
conduction equation into one in Laplace space. However,
once the new equation is solved in Laplace space, an inverse
transform is required to obtain the solution in the time–space
domain. Therefore the accuracy of the solution relies on an
efficient and accurate numerical inverse transform [2].

Alibeigloo [3] derived a steady-state solution of tem-
perature field for a square exponential FGMs. It is, however,
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difficult to obtain exact transient solution of FGMs, so var-
ious numerical algorithms have been developed in the past
decades for heat conduction problems in FGMs. Among
them, the boundary element method (BEM) is a very popu-
lar method which relies on the actual Green’s function (GF)
associated with the function describing the material grada-
tion. Most existing research has used an exponential law
for FGMs. Gray et al. [4] and Berger et al. [5] derived
the GF for isotropic and anisotropic FGMs, respectively, in
steady-state heat conduction problems. Paulino [6] intro-
duced a Galerkin BEM for FGMs. Sutradhar et al. [2] ex-
tended the above work to transient heat conduction prob-
lems by using Laplace transform boundary element method
(LTBEM), and then proposed a simple BEM which can
be used to solve transient heat conduction problems for a
broad range of FGMs (quadratic, exponential and trigono-
metric) [7]. Sladek et al. [8, 9] presented a local boundary in-
tegral equation formulation for transient heat conduction in
exponential FGMs. In addition, the method of fundamental
solution (MFS) has also been developed for FGMs. Marin
applied MFS to steady-state heat conduction in FGMs [10]
and also nonlinear FGMs [11]. Wang et al. [12] developed a
meshless model for transient heat conduction of FGMs. Be-
side the well-established BEM and MFS, the finite element
method (FEM) provides an effective alternative in numeri-
cal algorithms. Two typical finite element models can be
found in the literature to simulate the physical behavior of
FGMs: the stepwise constant model [13, 14] and the graded
finite element model [15–17]. In the first model, the element
rows are aligned with the gradient direction, the property of
each row of homogeneous elements is taken to be the prop-
erty at the centroid of the element, and the material gradient
is achieved by a highly refined mesh. In the second model,
the material gradient is directly sampled by assigning corre-
sponding material properties at the Gauss integration points.

To improve the efficiency of FEM for solving tran-
sient heat conduction in FGMs, a new hybrid graded ele-
ment model is developed in this paper, which builds upon
the hybrid finite element formulation with fundamental solu-
tions as internal interpolation functions (HFS-FEM) recently
proposed by Wang and Qin [18] and incorporate with LT.
It is capable of effectively modeling transient heat conduc-
tion in various FGMs. Unlike the hybrid Trefftz FEM (HT-
FEM) [19], HFS-FEM uses fundamental solutions as inter-
nal interpolation functions, and thus inherits all the advan-
tages of HT-FEM over conventional FEM and BEM (see
Refs. [20–22]) and also avoids the difficulty encountered in
constructing and selecting T-functions in HT-FEM [23]. For
the hybrid graded element model, a linear combination of the
fundamental solutions for FGMs at different source points is
used to approximate the field variable within the element,
and an independent frame field defined along the element
boundary is employed to guarantee inter-element continuity.
A variational functional is used to generate the final stiffness
equation and establish a linkage between the boundary frame

field and the internal field at the element level. The proposed
graded element formulation can incorporate the graded ma-
terial properties at the element level, so it is more intuitive
than the conventional homogeneous elements model and the
Gauss point sampling model mentioned above in represent-
ing graded material properties. In the proposed model, the
LT is used to eliminate time derivatives in the basic equa-
tions. After solving the problem by the hybrid graded el-
ement model in Laplace space, the Stehfest numerical in-
version method is applied to obtain the solution in the time–
space domain. It should be noted that although the same fun-
damental solution as in the BEM is employed, the proposed
approach can avoid the singular or hyper-singular integrals
encounted in BEM due to placing source points outside the
element domain. Moreover, the element based model can
manage complex shapes much better than meshless methods.

This paper begins with a description of basic formula-
tions of transient heat conduction problems in Sect. 2. Then,
the hybrid graded element model is described in Sect. 3, fol-
lowed by numerical implementation of the inversion LT, as
given in Sect. 4. Several benchmark examples are presented
in Sect. 5, and conclusions are finally drawn in Sect. 6.

2 Basic formulations

2.1 Statement of heat conduction problems in FGMs

Consider a two-dimensional (2D) transient heat conduction
problem

∇ · (k(X)∇u(X, t)) = ρ(X)c(X)
∂u(X, t)
∂t

, (1)

with the following boundary conditions:

Dirichlet boundary condition

u(X, t) = ū(X, t), on Γu. (2)

Neumann boundary condition

q(X, t) = q̄(X, t), on Γq, (3)

where t denotes the time variable (t > 0), k is the thermal
conductivity dependent on the special variables X ∈ Ω ⊂ Rd,
d is the number of dimensions of the solution domain Ω
(d = 2 in this study), ρ is the mass density, c is the specific
heat, and u is the unknown temperature field, q represents the
boundary heat flux defined by q = −k∂u/∂n, where n is the
unit outward normal to the boundary Γ = Γu ∪ Γq, ū and q̄
are specified temperature and heat flow, respectively, on the
related boundaries. In addition, an initial condition must be
given for the time dependent problem. In this paper, a zero
initial temperature distribution is considered, i.e.

u(X, 0) = u0(X) = 0. (4)

The composition and the volume fraction of FGMs con-
stituents vary gradually with coordinate X, giving a non-
uniform microstructure with continuously graded macro-
properties (conductivity, specific heat, density). In the
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present work, to make the derivation tractable, the mass den-
sity is assumed to be constant within each element and taken
the value of ρ at the centroid of the element. The thermal
conductivity and specific heat have been chosen to have the
same functional variation so that the thermal diffusivity η is
constant, that is

k(X) = k0 f (X), (5)

c(X) = c0 f (X), (6)

and

η =
k0

c0ρ
. (7)

It should be mentioned that the above assumption in FGMs
leads to a class of solvable problems and can provide bench-
mark solutions to other numerical methods, such as FEM,
meshless and BEM. Moreover, it can provide valuable in-
sight into the thermal behavior of FGMs [7]. So this assump-
tion has been followed by a lot of researchers in solving tran-
sient thermal problems in FGMs, see Refs. [2, 7–9, 12, 24].

2.2 LT and fundamental solution in Laplace space

The LT of a function u(X, t) is defined by

L(u(X, t)) = U(X, s) =
∫ ∞

0
u(X, t)e−stdt, (8)

where s is the Laplace parameter. By integration by parts,
one can show that

L
[
∂u(X, t)
∂t

]
= sU(X, s) − u0(X). (9)

The boundary conditions (2) and (3) become

U(X, s) =
ū(X, t)

s
, on Γu, (10)

P(X, s) =
q̄(X, t)

s
, on Γq. (11)

2.2.1 Exponentially graded material

First, we consider an FGMs with thermal conductivity and
specific heat varying exponentially in one Cartesian coordi-
nate, X2, only

k(X2) = k0e2βX2 , (12)

c(X2) = c0e2βX2 , (13)

where β is the non-homogeneity graded parameter.
Substituting Eqs. (12) and (13) into Eq. (1) yields

∇2u + 2βuX2 =
1
η

∂u
∂t
, (14)

where uX2 denotes the derivative of u with respect to X2

(uX2 = ∂u/∂X2).
After performing the LT, Eq. (14) becomes

∇2U + 2βUX2 −
s
η

U = 0, (15)

in LT space, where u0(X) = 0 (at t = 0) is considered (see
Eq. (4)).

To obtain the fundamental solution of Eq. (15), the fol-
lowing substitution is used here

U = e−βX2G. (16)

In this case, the differential Eq. (15) in Laplace space be-
comes

∇2G −
(
β2 +

s
η

)
G = 0. (17)

Obviously, Eq. (17) is the modified Helmholz equation,
whose fundamental solution is

G =
1

2π
K0

(√
β2 +

s
η

r
)
. (18)

Making use of Eq. (16), we obtain the fundamental solution
of Eq. (15) in Laplace space

N(X, XS ) =
1

2π
e−β(X2−XS 2 )K0

(√
β2 +

s
η

r
)
, (19)

where r = ‖X − XS ‖, X and XS denote arbitrary field point
and source point in the infinite domain, respectively. K0 is
the modified zero order Bessel function of the second kind.

2.2.2 General method for FGMs with different variation of
properties

The method can be extended by variable transformations [7]
to a broader range of FGMs, not only exponential but also
quadratic and trigonometric material variation. By defining
a variable [7]

v(X, t) =
√

k(X)u(X, t). (20)

Equation (1) can be rewritten as

∇2v +
[∇k(X) · ∇k(X)

4k2(X)
− ∇

2k(X)
2k(X)

]
v =
ρc(X)
k(X)

∂v
∂t
. (21)

For simplicity, define

k′(X) =
∇k(X) · ∇k(X)

4k2(X)
− ∇

2k(X)
2k(X)

. (22)

Then, Eq. (21) can be rewritten as

∇2v + k′(X)v =
1
η

∂v
∂t
. (23)

After performing the LT, the differential equation (23) be-
comes

∇2V + k′V − s
η

V = 0. (24)

When k′ is a constant, Eq. (24) is a modified Helmholz equa-
tion whose fundamental solution is known. Then the funda-
mental solution of Eq. (1) in Laplace space can be obtained
by inverse transformation

N(X, XS ) =
1

2π

K0

(√
−k′ +

s
η

r
)

k(X)1/2k(Xs)1/2
. (25)
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For quadratic material

k(X) = k0(a1 + βX2)2. (26)

In this case, k′ = 0 in Eq. (24).
For trigonometric material

k(X) = k0(a1 cos βX2 + a2 sin βX2)2. (27)

In this case, k′ = β2 in Eq. (24).
For exponential material

k(X) = k0(a1eβX2 + a2e−βX2 )2. (28)

In this case, k′ = −β2 in Eq. (24). By substituting k′ = −β2

into Eq. (25) and using the exponential law, the fundamen-
tal solution given by Eq. (25) is reduced to Eq. (19). Note
that for quadratic, trigonometric and exponential variations
of both heat conductivity and specific heat, the FGMs tran-
sient problem can be transformed into the same differential
equation which has a simple and standard form as shown by
Eq. (23) [7].

3 Generation of graded element

In this section, an element formulation is presented to deal
with materials with continuous variation of physical prop-
erties. Such an element model is usually known as a hy-
brid graded element, and can be used for solving the bound-
ary value problem (BVP) in Laplace space. The governing
equation is the transformed governing equation of Eq. (1) in
Laplace space. The corresponding boundary conditions are
defined in Eqs. (10) and (11).

The proposed approach is based on a hybrid finite ele-
ment formulation in which fundamental solutions are taken
as internal interpolation functions (HFS-FEM) [18]. As in
HT-FEM, the main idea of HFS-FEM is to establish an ap-
propriate hybrid FE formulation, in which intra-element con-
tinuity is enforced on a nonconforming internal field formed
by a linear combination of fundamental solutions at points
outside the element domain under consideration, while an
auxiliary frame field is independently defined on the element
boundary to enforce field continuity across the inter-element
boundaries. But unlike HT FEM, the intra-element fields are
constructed based on the fundamental solution, rather than
T-functions. Consequently, a variational functional corre-
sponding to the new trial function is required to derive the
related stiffness matrix equation. As in conventional FEM,
the solution domain is divided into sub-domains or elements.
For a particular element, say element e, its domain is denoted
byΩe and bounded by Γe. Since a nonconforming function is
used for modeling the internal fields, additional continuities
are usually required in the proposed hybrid FE approach for
the common boundary ΓIe f between any two adjacent ele-
ments “e” and “ f ” (see Fig. 1) [25]

conformity : Ue = U f ,

reciprocity : Pe + Pf = 0,
on ΓIe f = Γe ∩ Γ f . (29)

Fig. 1 Illustration of continuity between two adjacent elements “e”
and “ f ”

3.1 Non-conforming intra-element field

For a particular element, say element e, which occupies a
sub-domain Ωe, the field variable within the element is ex-
tracted from a linear combination of fundamental solutions
centered at different source points (see Fig. 2), that is

Ue(x) =
ns∑
j=1

Ne(x, xS )ce j = N e(x)ce,

∀x ∈ Ωe ⊂ Rd, xS � Ωe,

(30)

where ce j is undetermined coefficients and ns is the num-
ber of virtual sources outside the element e. Ne(x, xS ) is
the required fundamental solution expressed in local element
coordinates (x1, x2), rather than global coordinates (X1, X2)
(see Fig. 2). Clearly, Eq. (30) analytically satisfies the trans-
formed governing equation of Eq. (1) in Laplace space due
to the inherent property of Ne(x, xS ).

Fig. 2 Intra-element field, frame field in a particular element in
HFS-FEM, and the generation of source points for a particular ele-
ment

The fundamental solution for FGMs (Ne in Eq. (30))
is used to approximate the intra-element field for an FGMs.
The smooth variation of material properties throughout an
element can be achieved by using the fundamental solution
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which can reflect the impact of a concentrated unit source
acting at a point on any other points. The model inherits the
essence of an FGMs, so it can simulate FGMs more natu-
rally than the stepwise constant approximation, which has
been frequently used in conventional FEM. Figure 3 illus-
trates the difference between the two models when the ther-
mal conductivity varies along direction X2.

Fig. 3 Comparison of computational cells in conventional FEM
and the proposed HFS-FEM

Note that the thermal conductivity in Eq. (1) is de-
fined in the global coordinate system. When contriving the
intra-element field for each element, this formulation must
be transferred into the local element coordinate system de-
fined at the center of the element, and the graded heat con-
ductivity k(X) in Eq. (5) can then be expressed by

ke(X) = kC(X) f (X), (31)

for a particular element e, where kC(X) denotes the value of
conductivity at the centroid of each element and can be cal-
culated as

kC(X) = k0 f (XC), (32)

where XC is the global coordinates of the element centroid.
Accordingly, kC is used to replace k (see Eq. (25)) in

the formulation of the fundamental solution for the FGMs
and to construct the intra-element field in the local element
coordinate system for each element.

In practice, the generation of virtual sources is usually
achieved by means of the following formulation employed
in the MFS [12]

y = xb + γ(xb − xc), (33)

where γ is a dimensionless coefficient, xb and xc are, respec-
tively, boundary point and geometrical centroid of the ele-
ment. For a particular element shown in Fig. 2, we can use
the nodes of the element to generate related source points for
simplicity.

The corresponding normal heat flux on Γe is given by

Pe = −ke
∂Ue

∂Xj
ni = Qece, (34)

where

Qe = −ke
∂N e

∂Xj
ni = −ke AT e, (35)

with

T e = [N e,1 N e,2]T, A = [n1 n2]. (36)

3.2 Auxiliary conforming frame field

In order to enforce conformity on the field variable U, for in-
stance, Ue = U f on Γe∩Γ f of any two neighboring elements
e and f , an auxiliary inter-element frame field Ũ is used and
expressed, in terms of nodal degrees of freedom (DOF), d ,
as used in conventional FEM, as

Ũe(x) = Ñ e(x)d e, (37)

which is independently assumed along the element bound-
ary, where Ñ e represents the conventional FE interpolating
functions. For example, a simple interpolation of the frame
field on the side with three nodes of a particular element can
be given in the form of

Ũ = Ñ1Ψ1 + Ñ2Ψ2 + Ñ3Ψ3, (38)

where Ñi (i = 1, 2, 3) stands for shape functions which are
the same as those used in conventional FEM.

3.3 Modified variational and stiffness equation

With the intra-element field and the frame field indepen-
dently defined in a particular element (see Fig. 2), the el-
ement stiffness equation can be generated through a varia-
tional approach. Here we just present the results directly;
details of the derivation can be found in Refs. [17, 19].

The final functional defined only on the element bound-
ary is

Πme = −1
2

∫
Γe

PUdΓ −
∫
Γqe

q̄
s

ŨdΓ +
∫
Γe

PŨdΓ. (39)

Substituting Eqs. (30), (34) and (37) into the functional (39),
yields

Πe = −1
2

cT
e H ece − dT

e ge + cT
e Ged e, (40)

where

H e =

∫
Γe

QT
e N edΓ,

Ge =

∫
Γe

QT
e Ñ edΓ,

ge =

∫
Γqe

Ñ T
e

q̄
s

dΓ.

(41)

Next, to enforce inter-element continuity on the com-
mon element boundary, the unknown vector ce must be ex-
pressed in terms of nodal DOF d e. The minimization of the
functional Πe with respect to ce and d e, respectively, yields
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∂Πe

∂cT
e
= −H ece + Ged e = 0 ,

∂Πe

∂dT
e
= GT

e ce − ge = 0 ,
(42)

from which the optional relationship between ce and d e, and
the stiffness equation can be produced in the form of

ce = H−1
e Ged e, K ed e = ge, (43)

where K e = GT
e H−1

e Ge stands for the element stiffness ma-
trix.

4 Numerical inversion of LT

In this section, we present a brief review of the inversion
of the LT used in this work. In general, once the solution
for U(X, s) in the Laplace space is found numerically by
the method proposed above, inversion of the LT is needed
to obtain the solution for u(X, t) in the original physical do-
main. There are many inversion approaches for LT algo-
rithms available in Ref. [2]. A comprehensive review on
those approaches can be found in Ref. [26]. In terms of nu-
merical accuracy, computational efficiency and ease of im-
plementation, Davies and Martin showed that Stehfest’s al-
gorithm gives good accuracy with a fairly wide range of
functions [1]. Therefore, Stehfest’s algorithm is chosen in
our study.

If F(s) is the LT of f (t), an approximate value fa of the
function f (t) for a specific time t = T is given by

fa =
ln 2
T

N∑
i=1

ViF
( ln 2

T
i
)
, (44)

where

Vi = (−1)N/2+i

×
min(i,N/2)∑

k= i+1
2

kN/2(2k)!
(N/2 − k)!k!(k − 1)!(i − k)!(2k − i)!

, (45)

in which N must be taken as an even number. In implemen-
tation, one should compare the results for different N’s to
investigate whether the function is smooth enough, and de-
termine an optimum N’s [2]. Stehfest suggested N = 10
and other researchers have found no significant change for
6 ≤ N ≤ 10 [1]. Therefore, N = 10 is adopted here.
That means that for each specific time T it is necessary to
solve different boundary value problems with corresponding
Laplace parameters s = (ln 2/T )i, i = 1, 2, · · · , 10, ten times
in Laplace space, then weight and sum the solutions obtained
in Laplace space.

5 Numerical assessment

To assess the performance of the proposed approach, it is
desirable to select several benchmark problems which have

analytical solutions and are often used by researchers [7, 8]
for transient heat conduction in FGMs. The convergence per-
formance and sensitivity to mesh distortion of the proposed
method are also investigated in this section. These examples
cover the cases of functional graded plate with a range of
functional material variations: exponential law in Example
1, quadratic law in Example 3, trigonometric law in Exam-
ple 4; also, exponentially graded annulus sector in Example
2, and an L-shaped FGMs plate in Example 5. The results
are compared with those obtained from analytical solution
or the FEM software ANSYS.

Example 1

An exponentially graded plate is considered in this exam-
ple. The thermal conductivity and specific heat are defined
as k = k0e2βX2 and c = c0e2βX2 , respectively. In the compu-
tation, k0 = 17 W/(m·K), c0 = 1.0 MJ/(kg·K), and the side
length of the plate is L = 0.04 m. On the two opposite sides
parallel to the X1 axis, two different temperatures are pre-
scribed. As shown in Fig 4, one side is maintained at zero
and the temperature of the other side is modified as described
by the Heaviside function of u = T · H(t) with T = 1◦C [8].
On the lateral sides of the plate the heat flux vanishes. 4 × 4
8-node quadrilateral elements are employed for the square
domain. The analytical solution is [7]

u = T
1 − e−2βX2

1 − e−2βL
+

∞∑
n=1

2TeβLnπ cos nπ
β2L2 + n2π2

× sin
nπX2

L
e−βX2 e−

(
n2π2

L2 +β
2
)
ηt. (46)

Fig. 4 Square functionally graded plate and boundary condition

Table 1 presents the temperature along X2-axis at t =
20 s (β = 25). It can be seen that the proposed method can
achieve high accuracy. Figure 5 shows the temperature his-
tory at position X2 = 0.02 m with four different graded pa-
rameters β = 0, 10, 25, 50. The numerical results are in
excellent agreement with the analytical results. Also, as ex-
pected, with an increase in the value of β, a higher tempera-
ture at the position of interest is obtained in a longer period
of time.
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Table 1 Comparison of results along X2(β = 25, t = 20 s)

X2 0 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

Analytical 0 0.203 2 0.369 3 0.511 2 0.636 4 0.748 0 0.846 3 0.930 6 1.000 0

Proposed method 0 0.202 7 0.368 6 0.510 7 0.636 1 0.747 8 0.846 2 0.930 6 1.000 0

Fig. 5 Temperature history at position X2 = 0.02 m for an expo-
nentially graded plate

The analytical solution for the final steady state is [3]

u = T
e−2βX2 − 1
e−2βL − 1

(
u→ T

X2

L
with β→ 0

)
. (47)

The results for the stationary or static loading conditions are
presented in Fig. 6. The numerical results are in good agree-

ment with the analytical results for the steady state case. Ta-
ble 2 presents the temperature history obtained by proposed
method at another particular position X2 = 0.01 m and com-
parison is made with analytical solutions. From Table 2 we
can see clearly that the proposed method is very efficient in
solving transient problems.

Fig. 6 Temperature distribution along X2 for an FGMs plate under
steady-state loading conditions

Table 2 Comparison of results from various methods at X2 = 0.01 m (β = 25)

t = 10 s t = 20 s t = 30 s t = 40 s t = 50 s t = 60 s t = ∞
Analytical 0.191 3 0.369 3 0.428 0 0.446 5 0.452 4 0.454 2 0.455 1

Proposed method 0.190 9 0.368 4 0.427 6 0.446 7 0.452 8 0.454 7 0.455 1

Example 2

An annulus sector domain is considered, with its boundary
conditions shown in Fig. 7. The thermal conductivity and
specific heat are graded along direction X2, and k = k0e2βX2 ,
c = c0e2βX2 and k0 = 17 W/(m·K), c0 = 1.0 MJ/(kg·K) are
used in the calculation. The inner and outer radii are assumed
to be R1 = 0.08 m and R2 = 0.1 m. 8-node quadrilateral el-
ements are employed to model the solution domain and 4
elements are used to discretize along the radial direction (see
Fig. 7). The special case with exponential parameter β = 0
corresponds to a homogeneous material. The analytical so-
lution for the homogeneous case is [26]

u =
T ln(r/R1)
ln(R2/R1)

− π
∞∑

n=1

e−ηα
2
nt 1

F(αn)

×T J0(R2αn)J0(R1αn)C0(r, αn), (48)

where

F(αn) = J0(R1αn)2 − J0(R2αn)2, (49)

C0(r, αn) = J0(rαn)Y0(R1αn) − Y0(rαn)J0(R1αn), (50)

and αn are roots of the transcendental equation

J0(αnR1)Y0(αnR2) − Y0(αnR1)J0(αnR2) = 0. (51)
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Fig. 7 Illustration of boundary condition and mesh division for the
quarter domain

Figure 8 presents the temperature history at one particular
point. The excellent agreement between the analytical and
the numerical results can be seen in Fig. 8. To investigate
the influence of the graded parameter, the calculation is also
performed for β = 10, 25, 50, and the results at the partic-
ular point (0.09 m, 0) are shown in Fig. 9. Similar results
can be observed as seen in the first example, in which the
temperature increases with increasing graded parameter.

Fig. 8 Time variation of temperature at point (0.087 5 m, 0) in the
annulus sector with homogeneous material properties

Fig. 9 Time variation of temperature at point (0.09 m, 0) in the
FGMs annulus sector

Example 3

A quadratically graded square plate is considered in this ex-
ample. The thermal conductivity and specific heat are de-
fined as k(X) = k0(1+βX2)2 and c(X) = c0(1+βX2)2 (β = 25).
The size of the plate, boundary condition, parameters and el-
ement discretization are the same as adopted in Example 1.
The analytical solution is

u =
T1X2√

kL
+

2T1√
k

∞∑
n=1

cos nπ
nπ

sin
nπX2

L
e−
(

n2π2

L2 ηt
)
, (52)

where T1 =
√

k0(1 + βL)T .

The temperature distribution along X2-axis at different
times is plotted in Fig. 10. Good agreement between the nu-
merical and the analytical results is observed from Fig. 10.

Fig. 10 Temperature distribution along X2 at different times for the
quadratically graded plate

To investigate the convergence of the proposed method,
the calculation is also conducted for a series of meshes of
N × N elements. In addition, to facilitate a quantitative un-
derstanding of the results, the average relative error of a vari-

able f is introduced as Are( f ) =

√√√√√√√√√√√√√√√√√

N∑
i=1

( fnum − fana)
2
i

N∑
i=1

( fana)
2
i

. It

can be seen from Table 3 that the relative error decreases
along with refinement of the element meshes. The proposed
method also gradually approximates the analytical solution
with an increase in time.

Example 4

A trigonometrically graded square plate is considered in
this example. The thermal conductivity and specific heat
are defined as k(X) = k0(cos βX2 + sin βX2)2 and c(X) =
c0(cos βX2 + sin βX2)2 (β = 25). Again, the size of the plate,
boundary condition, parameters and element discretization
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Table 3 Variation of average relative error with mesh density and
time

2 × 2 4 × 4 8 × 8

t = 2 2.624 0×10−2 1.691 2×10−2 4.603 8×10−3

t = 20 1.793 4×10−2 4.296 5×10−3 1.023 0×10−3

t = 40 1.275 8×10−2 3.052 8×10−3 7.559 7×10−4

t = 60 1.214 9×10−2 3.019 7×10−3 7.314 0×10−4

are the same as adopted in the previous example. The ana-
lytical solution is

u =
T1 sin βX2√

k sin βX2

+
2T1√

k

∞∑
n=1

nπ cos nπ
n2π2 − β2L2

× sin
nπX2

L
e−
(

n2π2

L2 −β2
)
ηt, (53)

where

T1 =
√

k0(cos βL + 2 sin βL)T. (54)

The temperature distribution along X2-axis at different
times is plotted in Fig. 11. The numerical results match those
given by the analytical method very well.

Fig. 11 Temperature distribution along X2 at different times for the
trigonometrically graded plate

Table 4 shows the results of the study of its sensitivity
to mesh distortion. The results exhibit its remarkable insen-
sitivity to mesh distortion.

Table 4 Comparison of temperature for distorted (e and z are
shown in Fig. 12 ) and undistorted 4 × 4 element mesh along

X2-axis

X2 Undistorted
Distorted for Distorted for Analytical

e = 0.4z e = 0.3z result

0.01 0.331 2 0.330 0 0.328 6 0.332 0

0.02 0.577 3 0.575 6 0.574 4 0.577 6

0.03 0.790 3 0.791 5 0.793 9 0.790 3

Fig. 12 Distorted mesh for Example 4

Example 5

The last numerical example is an L-shaped FGMs domain.
The geometry and boundary conditions are shown in Fig.
13. k = k0e2βX2 , c = c0e2βX2 , k0 = 17 W/(m·K), c0 =

1.0 MJ/(kg·K), β = 25 are used in the calculation. The do-
main is discretized with 12 elements. For verification pur-
poses, the results are compared with those obtained from
conventional finite element simulation performed by the
commercially available software ANSYS. With ANSYS, ho-
mogeneous elements with constant properties at the element
level are used and the material gradient is achieved by a
highly refined mesh with 300 elements (see Fig. 14). Con-
tour plots of the temperature distribution at different times,
as determined by the proposed model and by ANSYS, are
shown in Fig. 15. Table 5 compares the temperatures at the
interested points, A, B, C (see Fig. 13), given by the pro-
posed hybrid graded element model (HGEM) and by AN-
SYS at different times. Good agreement can be observed be-
tween the results of proposed model and ANSYS, in which
only 12 elements are used in the proposed model.

Fig. 13 L-shaped functionally graded plate and boundary condition
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Fig. 14 The FEM mesh in ANSYS

6 Conclusions

In this paper the LT and graded element model are employed
to deal with the transient heat conduction in FGMs. A fun-
damental solution is derived and a graded element model is
developed in Laplace space. In the model, the graded ele-
ment, which incorporates the material property gradient at
the element level, is presented in the internal element do-
main. A linear combination of the fundamental solution at
points outside the element domain is used to approximate
the field variable in the internal element domain, and bound-
ary interpolation functions are used to construct the frame
field. Five typical examples are considered to assess the per-
formance of the proposed method. The results show that the

a

ANSYS model Hybrid graded element model

b

ANSYS model Hybrid graded element model
Fig. 15 Contour plots of the temperature distribution at different times by two models. a t = 8 s; b t = 13 s; c t = 20 s; d t = 30 s; e t = 60 s
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c

ANSYS model Hybrid graded element model

d

ANSYS model Hybrid graded element model

e

ANSYS model Hybrid graded element model
Fig. 15 Contour plots of the temperature distribution at different times by two models. a t = 8 s; b t = 13 s; c t = 20 s; d t = 30 s;
e t = 60 s (continued)
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Table 5 Comparison of results at the interested points

t = 8 s t = 13 s t = 20 s t = 30 s t = 60 s

HGEM ANSYS HGEM ANSYS HGEM ANSYS HGEM ANSYS HGEM ANSYS

A (0.01, 0.02) 0.139 7 0.132 1 0.215 0 0.205 8 0.276 8 0.268 1 0.317 8 0.311 3 0.343 3 0.339 2

B (0.01, 0.01) 0.418 2 0.406 2 0.495 3 0.487 3 0.554 0.548 2 0.592 5 0.588 9 0.616 4 0.615 1

C (0.03, 0.01) 0.465 5 0.453 7 0.588 3 0.577 6 0.684 4 0.676 4 0.745 9 0.741 6 0.782 7 0.782 5

proposed method is efficient and accurate for transient heat
conduction in FGMs. In particular, it is insensitive to the
mesh distortion. Moreover, the graded element model can
capture the graded character of FGMs at element level and
simulates the graded material in a natural way.
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