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Nanomaterials with chiral morphologies hold promise for a wide diversity of
technologically important applications in such fields as micro/nano-electromechanical
systems and medical engineering. Understanding the mechanisms underlying the
formation of chiral morphologies of natural and synthesized materials remains an issue
of crucial significance. In this study, a refined Kirchhoff rod model taking into account
anisotropic surface effects is employed to describe quasi-one-dimensional nanomaterials
with complicated spatial morphologies. It is shown that anisotropic surface stresses can
induce the formation of rich morphologies of nanomaterials. A general shape equation
of nanowires is derived by the variational method of energy. Thereby, the effects of
anisotropic surface properties, bulk elastic properties and cross-sectional sizes on the
chiral morphologies of nanomaterials are quantitatively investigated, and the conditions
for the formation of binormal nanohelices are given. The physical mechanism addressed
in this study is verified by our recent experiments on tuning the twisting chirality of
polymer lamellae via surface treatments. Our analysis suggests that one can design and
adjust the morphology of synthesized nanohelices by tailoring or functionalizing their
surfaces during fabrication. This study is also helpful in interpreting the formation of
such artificial and biological chiral materials as the flagella of bacterial and self-assembled
helical ribbons.

Keywords: nanomaterials; nanohelix; size effect; chiral morphology;
anisotropic surface stress

1. Introduction

Quasi-one-dimensional nanomaterials such as nanotubes, nanowires and
nanobelts have attracted the attention, imagination and close scrutiny of
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610 J.-S. Wang et al.

scientists and engineers over the past decade. This scrutiny derives from their
promising applications in a broad range of industrial fields. They have been
used, for instance, as sensors, actuators, transductors and other building blocks
for various micro/nanodevices and systems. Some ‘bottom-up’ and ‘top-down’
techniques have been developed to produce nanowires and nanobelts made of
metals, semiconductors, oxides and polymers. Interestingly, these quasi-one-
dimensional nanomaterials may assume different morphologies (e.g. straight,
kinked, wavy, twisted and helical shapes), which can be further assembled into
more complex structures.

Chiral shapes are widely observed in synthesized materials and biological
and self-assembled organic systems. Some typical examples are ZnO and SiOx
nanobelts of helical shape (Kong & Wang 2003; Gao et al. 2005; Kim &
Shim 2007), amorphous boron carbide nanosprings (McIlroy et al. 2001),
twisting carbon nanoribbons (Chen et al. 2005), twisting polymer lamellae
(Lotz & Cheng 2005), self-assembled helical ribbons (Zastavker et al. 1999;
Smith et al. 2001), the capsids of viruses and the flagella of bacteria (e.g.
Salmonella and Escherichia coli; Cahill 2005; Kim & Powers 2005). Although
nanowires are required to have a straight shape for applications in certain
fields, the helical morphology of nanobelts or nanoribbons of such materials
as ZnO endows the materials with some unusual properties, e.g. superior
elastic properties. Spiral micro/nanomaterials, including nanosprings, nanocoils
and helical nanobelts, have found diverse novel applications as, for instance,
sensors and probes in biomedical and nanoengineering areas (Zastavker et al.
1999; Smith et al. 2001; Chen et al. 2005; Gao et al. 2005; Korgel 2005;
Kim & Shim 2007). For example, nanohelices can be used to measure the
forces and energies associated with interacting biological macromolecules and
to quantitatively characterize the elastic properties of biological structures
such as one-dimensional chains and two-dimensional membranes (Zastavker
et al. 1999).

Although many biological and synthesized nanohelices assume helical or
twisting morphologies in a wide range of size scales, the origins of the formation
of such asymmetric shapes remain unclear in many cases. Much effort has
been directed towards exploring the formation mechanisms of the helical double
structure of DNA and the twisted shape of polymer lamellae. Snir & Kamien
(2005) proposed a heuristic, entropically based model for a system of hard spheres
and semiflexible tubes to explain the helical conformations of biopolymers. By
analysing the regular assembly of identical objects, Cahill (2005) theoretically
illustrated that biological structures such as DNA, protein and virus capsids
prefer helical geometry. Investigation of the twisting mechanisms of polymer
lamellae remains a challenging issue in the field of polymer science, although
some possible mechanisms at the molecular or grain level have been proposed,
including the asymmetric supply of material to the growth front of polymer
lamellae, nucleation of screw dislocations in growing lamellae and surface
stresses associated with chain folding (Lotz & Cheng 2005). Zastavker et al.
(1999) examined the self-assembly of helical crystalline ribbons in a variety of
multi-component enantiomerically pure systems. They found that, in almost
all systems, two distinctly different pitch lengths of helical ribbons could be
formed, and both right- and left-handed chiralities were observable. Therefore,
they concluded that molecular chirality is not the determining factor in helix
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Surface effects on chiral morphologies 611

formation. Recently, Khaykovich et al. (2007) further examined the structure of
cholesterol helical ribbons and self-assembled biological springs at the molecular
and granular levels.

Another important issue is the control and optimization of the morphology
and growth processes of chiral nanomaterials. In contrast to the formation of
straight nanowires, the synthesis of helical nanostructures is often more complex
and requires either the existence of anisotropic growth or asymmetric forces at
a certain level (Fonseca et al. 2007). Considering a vapour–liquid–solid growth
mechanism, McIlroy et al. (2001) developed a contact angle anisotropy model
to demonstrate that anisotropic contact between the catalyst and the nanowire
can lead to the formation of amorphous helical nanostructures. Subsequently,
they attributed the formation of biphase (crystalline core/amorphous sheath)
helical nanowires to the different growth rates of the two phases induced by
the existence of temperature gradients within the catalyst (Zhang et al. 2003).
More recently, Fonseca et al. (2007) studied the effect of catalyst shape on the
cross-sectional shape of nanosprings and discussed the possibility of growth of
normal and binormal nanosprings. In addition, Amelinckx et al. (1994) proposed a
spatial velocity hodograph-based model to interpret the helical growth of carbon
nanotubes, and Bandaru et al. (2007) addressed the formation mechanisms of
helical nanotube/fibres from the viewpoint of thermodynamics.

In spite of these previous developments, however, there is still a lack of
quantitative investigations on the mechanisms underlying the formation of chiral
morphology of micro/nanosized materials. Nanomaterials have a large ratio
between surface area and volume, and their atoms near surfaces experience a local
environment distinct from those in the bulk. Therefore, surface stress and surface
energy often have a substantial influence on the growth, material properties and
physical behaviours of nanosized materials and devices (Dingreville et al. 2005;
Park & Klein 2008; Zhang et al. 2008; Ru 2010). To account for the effect of
surface stress and surface energy, Gurtin & Murdoch (1975) and Gurtin et al.
(1995) presented a continuum mechanics theory by treating the surface as a
two-dimensional coherent membrane adhering to the bulk. This surface elasticity
theory has been adopted to study the static and dynamic deformation behaviours
of nanosized structure elements such as plates, beams and bars, and the results
agree well with those from atomic simulations (Miller & Shenoy 2000; Shenoy
2002). Therefore, the theory provides an efficient tool for understanding various
size-dependent phenomena at the micro- and nanoscales (Sharma et al. 2003;
He et al. 2004; Duan et al. 2005; Lu et al. 2006; Tian & Rajapakse 2007;
Wang, G. F. et al. 2007; Wang, J. S. et al. 2010; Wang, Z. J. et al. 2010;
Huang & Kang 2011; Xia et al. 2011).

It has been recognized that surface stresses play an important role in surface
reconstruction, diffusion, growth and evolution of nanomaterials (Lu & Suo 2002;
Siegel et al. 2004). However, the effects of surface stresses on the morphology
of nanowires have been little addressed. For most metallic, semiconducting and
even polymeric materials, surfaces/interfaces have anisotropic properties, which
often induce orientation-dependent surface stresses. For example, the interface
stresses on the {201} polyethylene crystal surface are anisotropic, with the values
of approximately −0.27 and −0.4 J m−2 along the two main directions of the
interface, respectively (Hütter et al. 2006). Anisotropic surface stresses on W(110)
and Ge(001) were reported by Sander et al. (1999) and Middel et al. (2002),
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respectively. In addition, different surfaces of a material often have different
properties for such reasons as synthesis process, chain folding and constraint
conditions. Recently, Wang et al. (2008) and Ye et al. (2010) demonstrated,
through theoretical analysis and experiments, that anisotropic surface stresses can
induce the twisting of nanobelts and polymer lamellae, which is only a special case
of three-dimensional chiral morphologies. However, how the anisotropic surface
stresses affect the formation of general chiral morphologies of nanomaterials such
as nanohelices remains elusive.

In this study, we investigate the effects of anisotropic surface stresses on the
formation of chiral morphologies of quasi-one-dimensional nanomaterials. The
refined Kirchhoff rod model with isotropic surface effects (Wang, J. S. et al.
2010) is first generalized to the case of anisotropic surface effects. Using this
model, a general shape equation that controls the spatial equilibrium morphology
of nanowires is derived and, thereby, the necessary conditions for the formation of
binormal nanohelices are given. Effects of the elastic properties of surface and bulk
materials are examined on the chiral morphologies of nanohelices. The theoretical
results are validated by our recent experiments (Ye et al. 2010).

2. Refined Kirchhoff rod model with anisotropic surface effects

(a) Kirchhoff rod model

The Kirchhoff rod model provides an efficient theoretical tool to study the
static and dynamic behaviour of long rods, which may undergo large change
of shape. It has been used to model the deformation behaviour of long DNA
chains, the tendrils of climbing plants, ropes and cables, etc. (Fonseca &
Galvão 2004; Goriely & Neukirch 2006; Liu 2006). Recently, the effect of
surface stresses has been implemented into the Kirchhoff rod model using the
concept of surface elasticity (Wang, J. S. et al. 2010). In the present study, this
model is extended to describe the spatial morphology of quasi-one-dimensional
nanomaterials associated with anisotropic surface effects.

Consider a slender nanowire such as a nanobelt or a nanolamella of length l ,
as shown in figure 1. For illustration, it is assumed to have a rectangular cross
section of width b and thickness h, with l � b � h, although other cross-sectional
shapes can be analysed similarly. Here, the nanowire is treated as a Kirchhoff
rod with anisotropic properties of the surface elasticity. We describe the spatial
geometry of the morphology of a curved Kirchhoff rod in terms of both the
principal axes-based Cartesian coordinate system (o–xyz) and the local Frenet
coordinate system (o–NBT ), as shown in figure 2a, where the origin o is located
on the centreline. The x and y axes are along the principal axes of the cross
section of the nanowire, the z and T axes are along the tangent direction of the
centreline, and the N and B axes are along the normal and binormal vectors
of the centreline, respectively. The unit vectors along the T , N and B axes are
denoted as n, b and t, respectively. Let c designate the angle measured from the
x-axis to the N -axis.

With reference to the two coordinate systems, we can describe not only the
spatial geometry change of the centreline of the deformable nanowire but also
the relative rotation of its cross section with respect to the centreline. The
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Figure 1. An originally straight nanobelt, whose front and back surfaces have different anisotropic
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Figure 2. (a) The principal axes of the cross section (o–xyz) and the Frenet coordinate system
(o–NBT ) in a thin and long nanobelt. (b) Its cross section and surface layer.

twisting of the nanowire can be characterized by a twisting vector u, which is
expressed as

u1 = k sin c, u2 = k cos c and u3 = t + dc

ds
, (2.1)

where ui (i = 1, 2, 3) denote the components of u in the x , y and z directions,
respectively, and k denotes the curvature of the centreline at point o and t
is the torsion of the nanowire (Liu 2006). For a nanowire with a rectangular
cross-section as shown in figure 2b, the two principal moments of inertia along
the principal axes are Ix = (1/12)hb3 and Iy = (1/12)h3b. A helical morphology
will be referred to as normal or binormal (Fonseca et al. 2007), if the direction
of its greatest bending stiffness is along the unit vector n or b, respectively, as
shown in figure 3a,b. In the following, the existence of both binormal and normal
helical nanowires will be discussed.

According to the Kirchhoff rod model, the stresses and strains in the bulk of
the nanowire with a long and narrow rectangular cross section (b � h) can be
expressed as (Wang, J. S. et al. 2010)

s3 = E(u1y − u2x), t23 = t32 = 2Gu3x , (2.2)

and
33 = u1y − u2x , 323 = 332 = u3x , (2.3)
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Figure 3. (a) Binormal and (b) normal helical nanobelts. (Online version in colour.)

where E and G are Young’s modulus and the shear modulus of the bulk material,
respectively.

(b) Surface elasticity

The front and the back surfaces of the nanowire are denoted by s+ and s−,
respectively, as shown in figures 1 and 2b. The two surfaces may have different
elastic properties for such reasons as different surface structures, growth processes
and chain-folding manners (Lotz & Cheng 2005). For the sake of simplicity, we
assume that the two surfaces have different anisotropic elastic properties and
their main elastic axes have different orientations. Refer to the global Cartesian
coordinate system (o–xyz) in figure 1, where the y and z axes are along the width
and length directions, respectively. In the case of small strains, it is reasonable to
assume that the surface constitutive relations are linearly elastic and orthotropic.
The main axes of the constitutive relation on the initial front surface s+ are along
the y+ and z+ axes, with an angle q+ measured from z to z+, whereas the main
axes on the back surface s− are along the y− and z− axes, with an angle q−
measured from z to z−. Here and in the following, the superscripts ‘+’ and ‘−’
stand for the parameters on the initial front and back surfaces, respectively.

The surface elastic constitutive relations in the coordinate system (o − x+y+
z+) or (o − x−y−z−) can be written as (Gurtin & Murdoch 1975)

ss
ab = t0

ab + cs
abgd3s

gd, (2.4)

where ss
ab denote the surface stresses, 3s

gd the surface strains, t0
ab the residual

surface stress or surface eigenstress (Zhang et al. 2010) and cs
abgd the surface elastic

constants. Throughout this study, Einstein’s summation convention is adopted
for all repeated Latin indices over (1, 2, 3) and Greek indices over (1, 2).

The surface elastic properties in the global coordinate system (o–xyz) can be
obtained by coordinate transformation as (Wang et al. 2008)

s±
yy = c±

113±
yy + c±

123±
zz + c±

133±
zy ,

s±
zz = t±

0 + c±
213±

xx + c±
223±

zz + c±
233±

zy

and t±
zy = c±

313±
yy + c±

323±
zz + c±

333±
zy ,

⎫⎪⎪⎬
⎪⎪⎭

(2.5)
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where t±
0 is the axial residual surface stresses, and c±

ij denote the surface
elastic coefficients on the two surfaces, respectively. For example, c+

ij can be
expressed as

c+
11 = cs+

1111 cos4 q+ + 2(cs+
1122 + 2cs+

1212) cos2 q+ sin2 q+ + cs+
2222 sin4 q+,

c+
12 = (cs+

1111 + cs+
2222 − 4cs+

1212) cos2 q+ sin2 q+ + cs+
1212(cos4 q+ + sin4 q+),

c+
22 = cs+

1111 sin4 q+ + 2(cs+
1122 + 2cs+

1212) cos2 q+ sin2 q+ + cs+
2222 cos4 q+,

c+
31 = (−cs+

1111 + cs+
1122 + 2cs+

1212) cos3 q+ sin q+

+ (−cs+
1122 + cs+

2222 − 2cs+
1212) cos q+ sin3 q+,

c+
32 = (−cs+

1111 + cs+
1122 + 2cs+

1212) cos q+ sin3 q+

+ (−cs+
1122 + cs+

2222 − 2cs+
1212) cos3 q+ sin q+,

c+
33 = 1

2
(cs+

1111 + cs+
2222 − 2cs+

1122) sin2 2q+ + 2cs+
1212 cos2 2q+,

c+
13 = 2c+

31 and c+
23 = 2c+

32.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

During the formation of a helical nanowire, the curvature radius is assumed to
be much larger than the sizes of the cross section, i.e. |kb| � 1. According to
the surface elasticity theory, the front and back surfaces of the nanowire are
considered to adhere perfectly to the bulk without slipping being allowed, and
the equilibrium equations on the surfaces are written as (Gurtin & Murdoch 1975;
Gurtin et al. 1995)

s±
xh,x − shjnj = 0 and sijninj = s±

xhk±
xh, (2.7)

where sij are the stresses in the bulk material, s±
xh are the surface stresses and

ni is the unit normal vector of the surface.
It should be noted that surface properties are generally defined as the excess

over the values of the bulk properties (Gibbs 1928). Surface structures of some
nanomaterials such as polymer lamellae can be changed by surface treatments
and the oriented chain-folding of polymer macromolecules, which can render
anisotropic surface properties. In such cases, the anisotropic surface with an
isotropic bulk material can still be described with the concepts of dividing surfaces
and excess quantities defined by Gibbs (1928). Furthermore, the model we present
in this study is also applicable to nanowires with an anisotropic core.

(c) Equilibrium equations

For a nanowire with a rectangular cross section (b � h), equation (2.7)
indicates that the surface stresses induce an effective distributed transverse force
on the centreline, f1, along the x direction. f1 can be obtained as

f1 = (t+
0 + t−

0 )bu2 + 1
2(c

+
22 − c−

22)bhu2
2 − (c+

32 − c−
32)bhu2u3. (2.8)
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Because h � b � l , the effect of surface stresses on the left and right surfaces can
be neglected, i.e. f2 = 0. Similarly, f3 = 0 and m1 = m3 ≈ 0. A distributed moment
m2 in the y direction is also induced by the residual surface stresses. m2 is given as

m2 = 1
2(t

+
0 − t−

0 )bh. (2.9)

Then, the modified Kirchhoff equations to describe the equilibrium of the
nanowire with b � h in the principal axes-based Cartesian coordinate system
(o − xyz) read

dF
ds

+ u × F + f = 0 (2.10)

and
dM
ds

+ u × M + e3 × F + m = 0, (2.11)

where F and M are the internal force and moment on the cross section,
respectively. M can be obtained by

M1 = A∗
1u1, M2 = B∗

1 u2 + B∗
2 u3 and M3 = C ∗

1 u3 + C ∗
2 u2, (2.12)

where

A∗
1 = 1

12

[
Eh3 + (c+

22 + c−
22)b

2] b,

B∗
1 = 1

12

[
Eh + 3(c+

22 + c−
22)

]
bh2, B∗

2 = − 1
2(c

+
32 + c−

32)bh
2

and C ∗
1 = 1

6

[
2Gh + 3(c+

33 + c−
33)

]
bh2, C ∗

2 = − 1
2(c

+
32 + c−

32)bh
2.

⎫⎪⎪⎬
⎪⎪⎭

(2.13)

The force f and the moment m induced by the residual surface stresses are
given by

f = f1e1 + f2e2 + f3e3 and m = m1e1 + m2e2 + m3e3, (2.14)

where f2 = f3 = 0 and m1 = m3 = 0.
Submitting equations (2.12)–(2.14) into (2.10), the Kirchhoff equations can be

formulated in terms of the components of the force f and the moment m. The
equilibrium condition of the moments in the z direction requires that

dM3

ds
+ u1M2 − u2M1 = 0. (2.15)

Using equations (2.1) and (2.11), equation (2.15) can become

C ∗
1
du3

ds
+ B∗

2 ku3 sin c = (A∗
1 − B∗

1 )k
2 sin c cos c + C ∗

2 k
d(cos c)

ds
. (2.16)

As in the classical Kirchhoff problem for a helical rod, equations (2.10) and (2.11)
for a nanowire have solutions corresponding to chiral morphologies like twisting
nanobelts and nanohelices. For a rectangular cross-sectional nanowire (A∗

1 �= B∗
1 )

with a chiral morphology, u3 has a constant value. From equation (2.16), we
obtain the following special solution corresponding to a regular three-dimensional
chiral morphology with a constant twist:

c = np (n = 0, 1, 2, . . .). (2.17)
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Without loss of generality, let c = 0, that is, the principal axes-based Cartesian
coordinate system (o − xyz) coincides with the local Frenet coordinate system
(o − NBT ). In this case, one has

u1 = 0, u2 = k0 and u3 = t0, (2.18)

where k0 and t0 are constants. Equation (2.18) indicates that the nanowire
assumes the shape of a binormal nanohelix. For the normal nanohelices, c = p/2,
which cannot satisfy equation (2.16). Thus, anisotropic surface effects will not
induce a normal helical morphology.

Another special solution of equation (2.16) is

k = 0, t = 0 and c = t∗s, (2.19)

where t∗, the twist angle per unit length, is a constant and s is the arc length.
In this case, the nanowire has the shape of a twisting nanobelt. Other solutions
of equation (2.16) correspond to more complicated spatial morphologies with
non-uniform curvature and torsion.

3. Two typical chiral morphologies of nanomaterials

Owing to factors such as temperature change, concentration gradient and chain
folding during the synthesis or fabrication process, residual strains and stresses
often arise in metal, semiconductor or polymer nanowires. As a consequence of
anisotropic surface elasticity, the nanowire will bend and twist simultaneously
into different spatial shapes, rendering partial release of residual strains–stresses.
In addition, the anisotropic surface eigen displacements induced by surface
energy relaxation (Zhang et al. 2011) can also deform nanowires into different
morphologies and may serve as another driving force for the formation of chiral
materials.

In principle, the above-refined Kirchhoff rod model allows us to analyse
the deformation of quasi-one-dimensional materials of arbitrary geometry with
surface effects. In this section, we will consider, for simplicity, the two
most representative chiral morphologies, i.e. twisting nanobelts and binormal
nanohelices, which are widely observed in experiments and are of particular
interest for applications. The mechanism of anisotropic surface stresses underlying
the formation of chiral morphologies of nanomaterials will also be verified by
comparing with relevant experiments.

(a) Twisting nanobelts

Experimental observations found that some quasi-one-dimensional
nanomaterials have a twisting shape, and the theoretical analysis of Wang et al.
(2008) showed that the formation of such an asymmetric shape may originate
from the effect of anisotropic surface stresses. For completeness and comparison,
we briefly summarize the solution of a twisting nanobelt. For a nanobelt of length
l , width b and thickness h, the potential energy is expressed as

P = 1
2E32bhl + 1

6Gt′2bh3l + (t+
0 + t−

0 )3bl + 1
2(c

+
22 + c−

22)3
2bl

+ (c+
32 − c−

32)t
′3bhl + 1

4(c
+
33 + c−

32)t
′2bh2l − F3l , (3.1)
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where F is the force associated with the growth process, 3 the axial strain
component and t′ the twist angle per unit length. It should be mentioned that,
besides the force F , some other factors, e.g. the change of temperature and
concentration gradient, can also deform nanowires and can be analysed similarly.

Using the variational principle of energy with respect to 3 and t′, one obtains
(Wang et al. 2008)

D13 + D2t′ = s0, 3 = D3t′, (3.2)

with

D1 = E + 1
h

(c+
22 + c−

22), D2 = c−
32 − c+

32

and D3 = 2Gh2 + 3(c+
22 + c−

22)h
6(c+

32 − c−
32)

, s0 = F
bh

− 1
h

(t+
0 + t−

0 ).

⎫⎪⎪⎬
⎪⎪⎭

(3.3)

The half-twisting pitch length can be derived as

L(h) = p

t′ = p

s0
(D1D3 + D2). (3.4)

Evidently, the half-twisting pitch length depends on the elastic properties of the
surfaces and the bulk material as well as the geometry of the cross section.

(b) Binormal nanohelices

In the second representative example, we assume that the axial residual
strain component in the originally straight state of the nanowire is 30. In
addition, the nanowire may have an initial twisting t∗

0 induced by growth. For a
slender nanowire of a rectangular cross section with l � b � h, the normal stress
component syy along its thickness direction is generally negligible. We take the
initial state of the nanowire with the axial residual strain and the initial twisting
as the reference configuration. Its potential energy is

Pi = (H i
bulk + H i

sur)l , (3.5)

where H i
bulk and H i

sur denote the energies in the bulk and on the surfaces,
respectively. They are expressed as

H i
bulk = 1

2Ebh32
0 + 1

6Gbh3t∗2
0 (3.6)

and H i
sur = (t+

0 + t−
0 )b30 + 1

2(c
+
22 + c−

22)b32
0 + 3

2(c
+
32 − c−

32)bht∗
030

+ 1
8(c

+
33 + c−

33)bh
2t∗2

0 , (3.7)

where the superscript ‘i’ stands for the quantities in the initial or reference
configuration.

After the release of the axial residual strain and the initial twisting, the
nanowire will have a spatial shape with curvature k(s) and torsion t(s), which are
functions of the arc length s. For simplicity, it is assumed that the nanowire has no
self-twisting, i.e. c = 0. In the current configuration, the centreline of the nanowire
with bending and twisting deformations will be a spatial curve. According to
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equation (2.3), the surface strain components in the deformed nanowire can be
expressed as

3c+
zz = 1

2hk(s), 3c+
zy = − 1

2ht(s), 3c−
zz = − 1

2hk(s) and 3c−
zy = 1

2ht(s), (3.8)

where the superscript ‘c’ indicates the quantities in the current configuration.
Using equations (2.5) and (3.8), the potential energy of nanowires in the current

configuration is derived as

Pc =
∫
(H c

bulk + H c
sur)ds, (3.9)

where

H c
bulk = 1

2B1k(s)2 + 1
2C1t(s)2 (3.10)

and H c
suf = 1

2(t
+
0 − t−

0 )bhk(s) + 1
8(c

+
22 + c−

22)bh
2k(s)2 − 3

4(c
+
32 + c−

32)bh
2k(s)t(s)

+ 1
8(c

+
33 + c−

33)bh
2t(s)2, (3.11)

with B1 = 1
12Eh3b being the bending stiffness of the nanowire with respect to the

y-axis and C1 = 1
3Gbh3 being the torsion rigidity.

From equations (3.5) and (3.9), the change in the potential energy from the
reference state to the current state is

P = Pc − Pi =
∫

H0 ds, (3.12)

where

H0 = 1
2

[−Q0 + Q1k(s) + Q2k2(s) + Q3k(s)t(s) + Q4t2(s)
]
, (3.13)

Q0 = (Eh + c+
22 + c−

22+)b32
0 + 1

4

[
4C1 + (c+

33 + c−
33)bh

]
t∗2

0 + 2(t+
0 + t−

0 )b30

+ 3
4(c

+
32 − c−

32)bht∗
030,

Q1 = (t+
0 − t−

0 )bh, Q2 = 1
4

[
4B1 + (c+

22 + c−
22)bh

2] ,

Q3 = − 3
2(c

+
32 + c−

32)bh
2 and Q4 = 1

4

[
4C1 + (c+

33 + c−
33)bh

2] .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(3.14)

The equilibrium and stability of a nanowire require

P ≤ 0, dP = 0 and d2P ≥ 0, (3.15)

where

dP =
∫

vH0

vk
dk ds +

∫
vH0

vt
dt ds +

∫
H0d ds. (3.16)
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The centreline of a nanowire r = r(s) can be described in terms of the
orthonormal Frenet basis {r(s); e1(s), e2(s), e3(s)}, where e1(s) is the unit tangent
vector, e2(s) is the unit normal vector and e3(s) is the unit binormal vector of
the centreline of the nanowire.

The Frenet equations are

dei = wijej , wij + wji = 0, (3.17)

where

w1,2 = −w2,1 = k(s)ds, w2,3 = −w3,2 = t(s)ds. (3.18)

Using the calculus of variations (Ou-Yang & Su 1997; Tu et al. 2006; Zhao et al.
2006; Gao et al. 2008), we can derive the expression of dP. It should be mentioned
that, owing to the inextensibility assumption of the bent and twisted nanowire,
the variation dP depends only on the variation of the centreline of the nanowire
along the normal (e2) and binormal (e3) directions. Using dr = U2e2 and dei =
Uijej , in conjunction with the relation (Tu et al. 2006)

d ds = U2w21 = −k dsU2, U23 ds = 1
k

[2d(tU2) − U2 dt] ,

dk ds = dU12 + (k2 − t2)U2ds and dtds = dU23 + 2ktdU2,

⎫⎬
⎭ (3.19)

we obtain

d

∫
k ds = −

∫
t2U2 ds,

d

∫
kt ds =

∫ [
tss + 2

(ks

k

)
s
t + ksts

k
+ t(2k2 − t2)

]
U2 ds,

d

∫
k2 ds =

∫
(2kss + k3 − 2kt2)U2 ds

and d

∫
t2 ds =

∫ [
4

(ts

k

)
s
t + 2t2

s

k
+ 3kt2

]
U2 ds,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.20)

with

ks = dk

ds
, ts = dt

ds
, kss = d2k

ds2
and tss = d2t

ds2
.

Substituting equations (3.13) and (3.20) into equation (3.16) leads to

dP = 1
2

∫ {
Q0k − Q1t2 + Q2k3 + 2Q3k2t + (3Q4 − 2Q2)kt2 − Q3t3

− Q3t3 + 2Q2kss + Q3

[
tss + 2

(ks

k

)
s
t + ksts

k

]

+ Q4

[
4

(ts

k

)
s
t + 2t2

s

k

]}
U2 ds. (3.21)
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Using dr = U3e3 in conjunction with the following relations (Tu et al. 2006)

dds = U3w31 = 0, U23ds = 1
k

[2d(tU2) − U2dt] ,

dkds = dU12 + (k2 − t2)U2ds and dtds = dU23 + 2ktdU2,

⎫⎬
⎭ (3.22)

one obtains

d

∫
k ds =

∫
tsU3 ds, d

∫
t ds = −

∫
ksU3 ds,

d

∫
kt ds =

∫ [
3tts − 2kks + ks

k
t2 −

(ks

k

)
ss

]
U3 ds,

d

∫
k2 ds =

∫
(3kst + kts)U3 ds

and d

∫
t2 ds =

∫
2

[ts

k
t2 − (tk)s −

(ts

k

)
ss

]
U3 ds.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.23)

From equation (3.9), one has

dP = 1
2

∫ {
Q1ts + (3Q2 − 2Q4)kst + (Q2 − 2Q4)kts

+ Q3

[
3tst − 2ksk −

(ks

k

)
ss

+ ks

k
t2

]
+ 2Q4

[ts

k
t2 −

(ts

k

)
ss

]}
U3 ds. (3.24)

Because U2 and U3 are arbitrary functions, the general equations governing the
shape of quasi-one-dimensional nanomaterials at equilibrium are derived from
equations (3.21) and (3.24) as

Q0k − Q1t2 + Q2k3 + 2Q3k2t + (3Q4 − 2Q2)kt2 − Q3t3

+ 2Q2kss + Q3

[
tss + 2

(ks

k

)
s
t + ksts

k

]
+ Q4

[
4

(ts

k

)
s
t + 2t2

s

k

]
= 0, (3.25)

Q1ts + (3Q2 − 2Q4)kst + (Q2 − 2Q4)kts

+ Q3

[
3tst − 2ksk −

(ks

k

)
ss

+ ks

k
t2

]
+ 2Q4

[ts

k
t2 −

(ts

k

)
ss

]
= 0. (3.26)

For a binormal nanohelix, both the curvature and the twist are constant and can
be expressed in terms of the shape parameters, i.e. the helical radius R and the
helical angle 4. That is,

k = cos2 4

R
, t = sin 4 cos

4

R
. (3.27)

Submitting equation (3.27) into (3.25) leads to the following shape equation for
a binormal nanohelix:

Q0R2 − Q1R sin2 4 + Q2 cos4 4 + Q3 sin 4 cos 4(1 + cos2 4)

+ (3Q4 − 2Q2) sin2 4 cos2 4 = 0. (3.28)

In this case, equation (3.26) is automatically satisfied.
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The centreline of a nanohelix can also be described by

r(s) = R cos(ls)e1 + R sin(ls)e2 + h0lse3, (3.29)

where l = 1/
√

k2 + t2 and P = 2ph0. Here, one has

k = R
R2 + h2

0

and t = h0

R2 + h2
0

. (3.30)

Then, the shape equation (3.28) is recast as

Q0R5 + (2Q0h2
0 + Q2)R3 − (Q1h0 − 2Q3)h0R2 − (Q1h0 + Q3)h3

0

+ (Q0h2
0 − 2Q2 + 3Q4)h2

0R = 0. (3.31)

From equations (3.13) and (3.27), the potential energy of a binormal nanohelix
is obtained as

P = L
2R2

(−Q0R2 + Q1R cos2 4 + Q2 cos4 4 + Q3 sin 4 cos3 4

+ Q4 sin2 4 cos2 4). (3.32)

The stable condition of a binormal nanohelix reads

d2P =
∫L

0

⎛
⎝ ∑

i,j=1,2

v2H0

vhivhj
dhidhj

⎞
⎠ ds > 0, (3.33)

where h1 = R and h2 = 4. Equation (3.33) needs the positive determinant of the
Hessian matrix S = det

∣∣v2H0/vhivhj
∣∣ (Zhou et al. 2005; Tu et al. 2006). For a

binormal nanohelix, S is a constant and can be obtained easily.
For a nanowire with isotropic surfaces, the potential energy function takes the

following form:

P = 1
2

∫ [
B∗

0 k2(s) + C ∗
0 t2(s) − Ebh32

0

]
ds +

∫
m0ds, (3.34)

where m0 denotes an anisotropic or non-symmetrical external stimulus associated
with growth or constraints. m0 can be induced by, for instance, the anisotropic
contact between the nanowire and the catalyst (Fonseca et al. 2007). The
coefficients B∗

0 and C ∗
0 are expressed as

B∗
0 = B1 + 1

2E
sbh2 and C ∗

0 = C1 + 1
2G

sbh2, (3.35)

where E s and Gs are the surface elastic modulus and surface shear modulus,
respectively. In general, both the effective bending rigidity B∗

0 and torsional
rigidity C ∗

0 are positive.

Proc. R. Soc. A (2012)

 on January 26, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Surface effects on chiral morphologies 623

Analogous to the derivation of equations (3.25) and (3.26), the governing
equations for the equilibrium shape of a nanowire with isotropic surfaces are
obtained as

2B∗
0 kss + B∗

0 k3 + (3C ∗
0 − 2B∗

0 )kt2 + 4C ∗
0

(ts

k

)
t + 2C ∗

0
t2

s

k
− Ebh32

0 − 2m0 = 0

(3.36)

and (2B∗
0 − C ∗

0 )kst + (B∗
0 − C ∗

0 )kts + C ∗
0

[ts

k
t2 −

(ts

k

)
ss

]
= 0. (3.37)

From equation (3.36), the corresponding shape equation for a nanohelix is
obtained as

B∗
0R

2 + (3C ∗
0 − 2B∗

0 )h
2
0 − Ebh32

0(R
2 + h2

0)
2 − 2m0(R2 + h2

0)
2 = 0. (3.38)

Generally, equation (3.38) can have non-trivial solutions, meaning that a nanowire
with isotropic surface property can also admit a helical shape as a result of
external stimuli, e.g. forces, temperature, growth or shrinkage, which may present
during fabrication. However, in the case of the isotropic surfaces with m0 = 0,
the nanowires will not bend and twist to form the nanohelices after the release
of the axial residual strain. In other words, the mere uniform release of axial
residual strain or stress cannot lead to the formation of a helical shape of
nanowires with isotropic surface properties. In this circumstance, the formation
of a helical morphology requires the presence of anisotropic external stimuli,
e.g. non-symmetrical forces and anisotropic contact between the catalyst and
the nanowire during the growth or fabrication process. On the other hand, the
above theoretical analysis shows that, for nanowires with anisotropic surface
properties, the axial deformation, twisting and bending are usually coupled,
rendering the appearance of helical or more complex shapes. Therefore, the
presence of unbalanced residual surface stresses plays an important role in
the formation of such asymmetric shapes.

4. Discussion

(a) Comparison with relevant experiments

In §3, we have proposed an anisotropic surface stress mechanism for the formation
of chiral morphologies, and the corresponding shape equations have been derived
as equations (3.4) and (3.28). This physical mechanism can explain why many
nanowires in practical fabrication often assume complicated morphologies with
chirality, e.g. twisting and bending morphologies and their assemblies. Here, we
use our recent experiments of polymer lamellae (Ye et al. 2010) to validate these
kinds of surface effects. Their chiral morphologies are successfully controlled
and tuned by varying the anisotropic surface stresses with a chemical method
(Ye et al. 2010).

Microscopic observations have revealed that polymer spherulites are composed
of stacks or aggregations of nanosized twisted lamellae (Xu et al. 2004; Lotz &
Cheng 2005; Ye et al. 2010). These lamellae grow radially from the centre of
the spherulite and usually twist with a definite pitch, as shown in figure 4a
(Ye et al. 2010). As we have pointed out already, the surface stresses play a
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Figure 4. Experimental results on the tuning of the twisting handedness of polymer lamellae. (a) An
individual twisting lamellar crystal in PHBHHx-17 thin film, crystallized at 85◦C. Yellow represents
the twisting polymer lamellar crystal, and dark red represents the substrate film in which the
polymer lamellae crystallized. (b) PHBV random copolymers. (c) Blends of PHB with PHBHHx-
4.6. The co-monomer content is adjusted by changing the blend ratio of the two components, which
are miscible in the melt and will not phase-separate during crystallization. The twisting power is
the reciprocal of the twisting pitch. Right-handed twisting (squares) is defined to be positive and
left-handed twisting (triangles) is negative (Ye et al. 2010).

crucial role in the formation of chiral morphologies of nanomaterials, especially
for such soft materials as polymer lamellae. The twisting growth of polymer
lamellae can be attributed to the surface stresses induced by oriented chain
folding. We took chiral microbial poly(R-3-hydroxybutyrate) (PHB) copolymer
as an example. Surface treatments to the polymer lamellae are performed by
copolymerization or bending, as described in our previous work (Ye et al.
2010). Wide angle X-ray diffraction results demonstrate that the technique of
copolymerization or bending does not change the composition and structure of
the crystalline core, but changes only the surface layer microstructure and the
corresponding anisotropic surface stresses (Ye et al. 2010). By this method, we
successfully tuned the twisting pitch length and the lamellar twisting chirality
of the microbial PHB copolymer lamellae from the left-handed chirality to the
right-handed chirality, as shown in figure 4b,c. The principal directions and
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magnitudes of the surface stresses in the nanosized lamellae depend mainly
on the oriented chain folding and the added co-monomer, and they vary
with the addition of co-monomer. The lamellar core has the same crystalline
structure before and after the surface treatment. Therefore, the variation and
inversion of twisting chirality shown in figure 4 are clearly attributed to the
changes in anisotropic surface stresses. As can be seen from figure 4b,c, both
the twisting chirality and the twisting pitch length show remarkable changes as
the content of the co-monomer increases. For poly(R-3-hydroxybutyrate-co-R-3-
hydroxyvalrate) (PHBV) random copolymer crystals, the twisting pitch length
first increases and then decreases after the twisting chirality has been inversed
from left-handedness to right-handedness. While for the blended crystal of PHB
with poly(R-3-hydroxybutyrate-co-R-3-hydroxyhexanoate) random copolymer
(PHBHHx) with 4.6 mol% 3-hydroxyhexanoate (HHx) content (PHBHHX-4.6),
the twisting pitch length increases to infinite and there is no twisting deformation
with increasing co-monomer content. With the inversion of the twisting chirality
from left- to right-handedness, the twisting pitch length is also changed. Figure
4b,c verifies that the anisotropic surface stresses tuned by the surface treatment
can change not only the twisting chirality of the polymer lamellae but also
their pitch length, as has been predicted by our theory in §3 (Wang et al.
2008). In addition, our experiments showed that, for the twisting lamellar crystal
of poly(R-3-hydroxyvalerate), the twisting along different radial directions can
also lead to opposite twisting handedness (Ye et al. 2009). These experiments
demonstrate the significant role of the anisotropic feature of surface stresses in
the formation of chiral morphologies of quasi-one-dimensional nanomaterials.

(b) Analysis of twisting nanowires

In this subsection, we numerically illustrate the effect of anisotropic surface
properties on the formation of twisting nanowires and the associated size effect.
We consider a thin nanowire (or nanoribbon) of thickness h and width b. Assume
that its front and back surfaces have different orthotropic elastic properties, which
are characterized in terms of the orientation angles q± of the principal axes, the
anisotropy degrees A±

0 and the constants a± (Wang et al. 2008). The anisotropic
surface stresses induced by the differences in q±, A±

0 and a± can bend and twist
the nanowire into a helical shape. The orthotropic elastic constitutive relations
of the surfaces are written as (Quang & He 2007; Wang et al. 2008)

cs±
1111 = cs±

2222 = ls + a±ms,

cs±
1122 = cs±

2211 = ls − a±ms

and cs±
1212 = cs±

1221 = 1
2A

±
0 (cs±

1111 − cs±
1122),

⎫⎪⎬
⎪⎭ (4.1)

where ls and ms designate the surface elastic moduli, and a±
1 are dimensionless

constants. The parameters A+
0 and A−

0 stand for the degree of anisotropy of surface
elasticity in the front and back surfaces, respectively.

In the example, we take the following representative values of material
parameters for the bulk and surface properties of the polymer lamella (Ye
et al. 2010): E = 6.1 GPa (Owen 1997), n = 0.4, A+

0 = A−
0 = 0.1 and a+ = a− = 1.0.

The surface parameters obtained from equations (2.5) and (4.1) are assumed
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Figure 5. Variation of the half-twisting period length of a polymer lamella with respect to its
thickness. (Online version in colour.)

to be mainly attributed to the variation of q±, which can be approximately
determined based on the chain-folding structures on the front and back surfaces
of the polymer lamellae. Based on the twisting and bending deformations of
the full polymer lamellae and the half polymer lamellae, surface elastic moduli
are taken as surface 1: ls = –2.7285 N m–1 and ms = –6.2178 N m–1; and surface 2:
ls = 3.49387 and ms = −5.70915 N m−1 (Ye et al. 2010). For the polymer lamellae,
the twisting pitch length may vary from several hundred nanometres to several
hundred microns, depending on such factors as synthesis conditions. For example,
our experiments showed that the thickness and pitch length of the twisting PHBV
random copolymer lamellae mainly vary in the range of 6–8 nm and 6–82 mm,
respectively.

The theoretical predication for the twisting pitch length of the polymer lamellae
is plotted in figure 5, which has a good agreement with relevant experimental
results. It is reasonable to find that the half-twisting pitch lengths vary with
the lamellar thickness h. In addition, the twisting shape of the lamellae can be
changed from the right-handedness for the case of q+ = −q− = 0.2p to the left-
handedness for the case of q+ = −q− = 0.35p. Therefore, the theoretical results
of the twisting pitch length and the twisting sense inversion agree well with our
experimental results, demonstrating the significant effects of anisotropic surface
stresses on the formation of twisting morphologies. It should be mentioned that
the residual surface stresses may be anisotropic and different in the front and
back surfaces while the elastic modulus of the two surfaces can remain isotropic.
In this case, the nanowires can also be twisted, and can be similarly analysed.

Furthermore, it can be seen that the twisting pitch length and the twisting
sense of a nanobelt depend on its surface properties and cross-sectional size. In
other words, the chiral morphology induced by surface effects exhibits distinct
size dependence, and the effects of surface stresses and surface elasticity on the
morphology of materials will become insignificant at macro-scale. It is worth
noting that, besides the straight twisting nanobelts, anisotropic surface effects can
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Figure 6. Variation of the chiral morphologies of nanowires with respect to the orientation angle q+
of the anisotropic constitutive relation of the surface layer: (a) q− = 30◦ and (b) q− = 0◦. (Online
version in colour.)

also induce the bent twisting nanobelts such as half polymer lamellae, rendering
much more complicated morphologies of quasi-one-dimensional nanomaterials, as
observed in our experiments (Ye et al. 2010).

(c) Analysis of nanohelices

For a nanohelix with anisotropic surface stresses, the equilibrium shape
equation in equation (3.28) or (3.31) provides the dependence relationship of its
helical angle and radius on the elastic properties of the surface and bulk materials
and the cross-sectional geometric parameters. An equilibrium shape should be
stable and energetically favourable; in other words, equation (3.15) should be
satisfied.

Under given anisotropic surface properties, the handedness of a chiral nanohelix
or twisting nanobelt can be easily determined according to the above theory. For
the sake of simplicity, we assume in the following example that the two main
surfaces of a nanoribbon have the same orthotropic elastic properties but different
orientation angles. A schematic phase diagram is given in figure 6a to show the
dependence of the chiral shape on the orientation angle, where we vary only
the value of q+ but fix the other surface parameters as q− = −30◦, A±

0 = 0.2 and
a± = 1.0, ls = −2.7285 and ms = −6.2178 N m−1 (Shenoy 2002). When q+ = q−, the
nanowire is straight because the surface stresses in the front and back surfaces
are identical and balanced. When q+ = −15◦, we have c+

32 = c−
32, c+

22 �= c−
22, and

the nanowires will only have bending deformation, as shown in figure 6a. When
q+ = −q− = 30◦, we have c+

32 = −c−
32 and c+

22 = c−
22. In this case, the material with

not bend but twist, rendering the formation of twisting nanobelts. For other
values of q+, one has |c+

32| �= |c−
32| and c+

22 �= c−
22. Thus, the surface stresses will

simultaneously bend and twist the nanowire into a nanohelix of left- or right-
handedness. The bending direction of the nanowires when −30◦ < q+ < 30◦ is
contrary to that when 30◦ < q+ < 60◦ owing to the different values of c+

22 and c−
22.

In addition, the chiral morphology of nanowires exhibits a periodic dependence
on the increasing value of q+. Figure 6b schematically shows the phase diagram
of nanowires with q− = 0◦. It is interesting to note that, when q− = 0◦, no twisting
nanobelt can be formed.

Under other combinations of q+ and q−, the morphology of a nanowire can also
be determined, but this is omitted in figure 6. It may have a right- or left-handed
chirality, depending on whether c+

32 − c−
32 > 0 or c+

32 − c−
32 < 0. Furthermore, some
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Figure 7. Effect of the residual surface stresses on the R–4 relation of the helical nanowire. (Online
version in colour.)

Table 1. Elastic properties of the surface and bulk and the geometric size of a nanowire.

E ls ms h b
parameter (GPa) n (N m−1) (N m−1) q+ (◦) q− (◦) A±

0 a±
0 (nm) (nm)

value 6.1 0.4 −2.7285 −6.2178 30 0 −0.3 1.0 10 50

other chiral morphologies (e.g. coils and helical tubes) can also be formed for
nanowires with different surface properties, which can be readily analysed by the
present model but are omitted here for conciseness.

Besides the handedness, the chiral shapes of nanowires caused by
residual surface stresses or surface eigenstresses are also investigated. From
equation (3.28), the variation of the helical radius R with the helical angle 4
is plotted in figure 7 under four different values of t±

0 . In the figure, we take
30 = 0.009, and the other parameters are listed in table 1. For simplicity, it is
assumed that t+

0 = t−
0 . A positive value of the helical angle 4 (0◦ < 4 < 90◦)

represents the right-handed chirality of the nanohelix, while a negative value of 4
(−90◦ < 4 < 0◦) represents the left-handedness. It is seen that, when the residual
surface stresses or surface eigenstresses have larger positive values, the nanowire
will have larger bending and twisting deformation, leading to the formation of a
nanohelix with smaller helical radius.

The relation between the helical radius R and the helical angle 4 is shown in
figure 8, where we use q+ = 10◦, 20◦, 30◦, 40◦, and the other material parameters
are listed in table 1. Under the specified material parameters, the helical radius
R decreases with increasing 4 in the range of 40◦ < 4 < 80◦, whereas, for coiled
nanohelices in the range of 0◦ < 4 < 10◦, a larger value of q+ will induce a larger
helical radius. For other combinations of material and geometric parameters, the
chiral morphologies can also be easily predicted by the present theory.

In figure 9, we examine the effect of the anisotropy degree of the surface
layers on the R–4 relation, where the parameters in table 1 have been used.
A stronger anisotropy degree of surface elasticity often induces a larger helical
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Figure 8. The relation between the helical radius R and the helical angle 4 of a nanoribbon under
different values of the orientation angle q+. (Online version in colour.)
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Figure 9. The relation between the helical radius R and the helical angle 4 of a nanoribbon under
different surface elastic constants. (Online version in colour.)

radius under a given helical angle. The helical radius first increases and then
decreases with the increase in 4. Besides the surface parameters, the elastic
properties of the bulk material also have a significant influence on the equilibrium
shapes of the nanomaterials. For example, figure 10 shows the influence of Young’s
modulus E on the morphology of nanohelices under the surface elastic properties
and geometric sizes listed in table 1. For a coiled nanohelix, a larger Young’s
modulus usually leads to a larger helical radius owing to the stiffening effect
of the core. When 4 > 15◦, the helical radius will be decreased with increasing
Young’s modulus.

Finally, we examine the dependence of the chiral morphology of a nanowire on
its cross-sectional sizes. Under several representative thicknesses of the nanowire,
the R–4 curves are given in figure 11, where we set A±

0 = −0.1 and the other elastic
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Figure 11. Effect of the thickness on the R–4 relation of the helical nanowire. (Online
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properties of the surfaces and the bulk are as shown in table 1. It is found that, for
nanohelices with a smaller helical angle 4 < 40◦, the helical radius R increases with
increasing 4. While for nanohelices with a large helical angle 4 > 40◦, the helical
radius decreases with 4. Furthermore, a thinner nanowire normally assumes a
smaller helical radius. Therefore, the chiral morphology of a nanowire exhibits
distinct dependence on its cross-sectional size.

5. Conclusions

In this study, we have developed a refined Kirchhoff rod model for studying
nanowires with anisotropic surface effects. It is used to investigate the formation
of chiral morphologies of quasi-one-dimensional nanomaterials. Our analysis
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demonstrates that anisotropic surface stresses can engender the formation of
various complicated morphologies of nanomaterials, e.g. twisting and bending
nanobelts and nanohelices. Using the variational method of energy, the general
equations controlling the equilibrium shape of nanowires are derived. Our analysis
shows that such geometric parameters as the helical angle, helical radius and
pitch length of chiral morphologies induced by anisotropic stresses depend on
the elastic properties of surface and bulk materials as well as the cross-sectional
sizes of the nanowire. Anisotropic surface stresses can induce the formation of
binormal helical shapes, but not normal helical shapes. These results suggest that
nanobelts or nanoribbons of various spatial shapes can be fabricated and even
modulated by tailoring or functionalizing their surfaces. In addition, this model
can also be applied to analyse the presence of self-assembled helical ribbons and
biological systems such as the spiral flagella of bacteria and the helical virus.
The application of this method in the biological field is underway. Finally, it is
emphasized that there exist some other factors (e.g. dislocations and asymmetric
growth and chirality transfer; Wang et al. 2011) that affect the morphologies of
nanomaterials, and the coupling analysis of surface effects and these mechanisms
will be of great interest.
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