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Abstract

Purpose – The purpose of this paper is to present a new special element model for thermal analysis
of composites.

Design/methodology/approach – A hybrid finite element formulation taking the fundamental
solution as kernel function is presented in this work for analyzing the thermal behavior and predicting
the effective thermal conductivity of fiber-reinforced composites. A representative volume cell
containing single or multiple fibers (or inclusions) is considered to investigate the overall temperature
distribution affected by the inclusions and the interactions among them, and to evaluate the effective
thermal conductivity of the composites using the presented algorithm with special-purpose inclusion
elements. Numerical examples are presented to demonstrate the accuracy and applicability of the
proposed method in analyzing fiber-reinforced composites.

Findings – The independent intra-element field and frame field, as well as the newly-developed
hybrid functional, make the algorithm versatile in terms of element construction, with the result that the
related variational functional involves the element boundary integral only. All numerical results are
compared with the solutions from ABAQUS and good agreement is observed for all cases, clearly
demonstrating the potential applications of the proposed approach to large-scale modeling of
fiber-reinforced composites. The usage of special inclusion element can significantly reduce model
meshing effort and computing cost, and simultaneously avoid mesh regeneration when the fiber
volume fraction is changed.

Practical implications – Due to the fact that the established special elements exactly satisfy the
interaction of matrix and fiber within the element, only element boundary integrals are involved, thus
the algorithm can significantly reduce modeling effort and computing cost with less elements, and
simultaneously avoid mesh regeneration when the fiber volume fraction is changed.

Originality/value – Based on the special fundamental solution, a newly-constructed inclusion
element is applied to a number of test problems involving unit RVCs with multiple fibers to access the
accuracy of the model. The effective thermal conductivity of the composites is evaluated for cases of
single and multiple fibers using the average temperatures at certain points on a data-collection surface.
A new algorithm for evaluating effective properties with special elements is presented.

Keywords Programming and algorithm theory, Thermal properties of materials, Composite materials,
Fiber-reinforced composites, Thermal analysis, Hybrid FEM, Fundamental solution,
Special inclusion element, Representative volume cell

Paper type Research paper

1. Introduction
Fiber-reinforced composites (Chung, 1994) are structural materials that usually consist
of fiber reinforcing phase and matrix phase in which the fiber is embedded at a
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macroscopic level to possibly experience a range of mechanical, thermal and chemical
environment during their service life. The high thermal and electrical conductivity of
fibers, as well as their high specific stiffness and high specific strength, make them
useful as reinforcements for polymers, metals, carbons, and ceramics to increase the
overall macroscopic modulus of the material. In past decades, therefore, fiber-reinforced
composites have been widely used in engineering applications due to the superiority of
their physical properties over the single matrix.

In fiber-reinforced composites, heat conduction behavior is an important and
complex phenomenon and can usually be analyzed by micromechanical analysis using
proper numerical methods, which must be capable of efficiently idealizing the
individual fibers or bundle of fibers embedded within the matrix, and be sophisticated
enough to take into account high-temperature gradients resulting from diffusion of
temperature from the fiber to the matrix and allow for the interaction between fibers
and the matrix.

Among numerical methods, the finite element method (FEM) (Chandrupatla and
Belegundu, 2002) and boundary element method (BEM) (Brebbia et al., 1984; Qin, 1993)
are often used for heat analysis in fiber-reinforced composites. The former is a
domain-type approach and suitable for performing multi-domain analysis. However,
the drawback of this method is that refined meshes are usually required around the
fillers to achieve the desired accuracy. This is not practical for analysis of composites
whose fiber distribution might change repeatedly. Unlike FEM, the BEM simply
requires boundary division of the entire domain under consideration, reducing the
dimensionality of the problem by one. Using this approach, steady-state and transient
heat conduction (Ma et al., 2008), interface performance (Chen and Papathanasiou,
2004; Chen and Liu, 2001; Liu and Xu, 2000), and thermoelastic behavior (Banerjee and
Henry, 1992; Henry et al., 2007; Liu et al., 2005; Wang and Yao, 2007) in fiber-reinforced
composites have been investigated. However, singular or hyper-singular integrals are
unavoidable in BEM. Furthermore, the BEM solution process becomes more complex
when solving multi-material problems like fiber-reinforced composites, due to the
requirement of continuity conditions across the interface between fiber and matrix.
To overcome these difficulties, the hybrid Trefftz finite element (HT-FEM) was
developed (Qin, 2000; Qin and Wang, 2008). This method is based on an independent
intra-element field defined within the element, a frame field defined on the element
boundary, and a hybrid variational functional. The HT-FEM approach finally yields a
system involving boundary integrals only. Thus, it inherits the advantages of both
conventional FEM and BEM, and has been successfully applied to various engineering
problems (Jirousek and Qin, 1996; Qin, 1994, 1995, 2003, 2004).

As an alternative to HT-FEM, a new Green’s function-based hybrid finite element
formulation using a Green’s functions or fundamental solutions instead of T-complete
functions as kernel functions, named as HFS-FEM, was recently presented by Wang
and Qin (2009, 2010) to retain the advantages of HT-FEM over FEM and BEM, and
removes some drawbacks of it. The works in literatures (Wang and Qin, 2009, 2010)
restrict to the isotropic heat transfer and orthotropic elasticity without local defects.
However, HFS-FEM holds promise for solving problems with local effects. Thus, in this
paper, formulations of HFS-FEM for the heat conduction analysis of fiber-reinforced
composites is presented to simulate the effects of inclusions, based on a special
fundamental solution which analytically satisfies the continuity of temperature and
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heat flux on the interface between fiber and matrix. Subsequently, a special purpose
inclusion element is constructed for analyzing the interactions among fibers and
interfacial heat effect in the composites. A representative volume cell (RVC) containing
multiple fibers is constructed for estimating the effective thermal property of the
composites. The accuracy of the numerical results obtained using the proposed method
is assessed by comparing them with those obtained using ABAQUS, one of popular
commercial softwares for finite element analysis. The comparison indicates that the
proposed method is efficient and accurate for analyzing the thermal behavior of
fiber-composites and has the potential to be scaled up to tackle large-scale practical
problems of considerable interest.

2. Statement of heat conduction problems
2.1 Mathematical model
A two-dimensional mathematical model of steady-state heat conduction in the
cross-section of the unidirectional fiber-reinforced composites is considered in this
section. The fibers in the composites are assumed to be infinite parallel and have a
reasonably circular shape with a fairly uniform diameter. For the sake of convenience,
since matrix and fiber occupy different regions, the regions occupied by the isotropic
matrix and fiber inclusions are referred to as regions VM and VF, respectively, and the
quantities associated with these regions are denoted by the corresponding subscripts
M or F (Figure 1).

It is well known that an RVC for real composites with the smallest periodic repeat
volume is usually selected to study the effective properties of composites in the
micromechanics analysis (Figure 1). Without loss of generality, two-dimensional heat
conduction problems in the square RVC with multiple fibers are considered, and the
governing equations in terms of spatial variable X ¼ (X1, X2) in matrix and fibers can,
respectively, be written as:

Figure 1.
Geometrical definition for

plane heat conduction
problems in

fiber-reinforced
composites

Interface

Matrix Fiber

Representative Volume Cell
(RVC)
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ΩF ΓO
M

X2

X1
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kMuM;iiðXÞ ¼ 0 ;X [ VM

kFuF;iiðXÞ ¼ 0 ;X [ VF
ð1Þ

with the following boundary conditions applied on the outer boundary GO
M ¼

Gu < Gq < Gc of the matrix:

uM ¼ �u on Gu

qM ¼ 2kMuM;ini ¼ �q on Gq

qM ¼ henvðuM 2 uenvÞ on Gc

8>><
>>: ð2Þ

and the continuity conditions at the interface (VM > VF) between the fiber and the
matrix for the case of perfect bonding:

uM ¼ uF

qM þ qF ¼ 0

(
ð3Þ

where uM and uF are the temperature fields sought, kM and kF are the thermal
conductivities and ni is the ith component of the unit outward normal vector to the
particular boundary. qM and qF represent the surface normal heat flux along the unit
outward normal. �u and �q are specified functions on the corresponding boundaries. henv is
the convection heat-transfer coefficient or film coefficient, and uenv is the ambient
environment temperature. The space derivatives are indicated by a comma,
i.e. u,i ¼ ›u/›Xi, and the subscript index i takes values 1 and 2 for the two-dimensional
case. Additionally, the repeated subscript indices stand for the summation convention.

2.2 Fundamental solutions
Fundamental solutions play an important role in the derivation of the HFS-FEM
formulation. The fundamental solution represents the material response at an arbitrary
point when a unit point source is applied at a source point in an infinite domain. With
the proposed HFS-FEM, for plane heat conduction problems in fiber-reinforced
composites, two types of fundamental solution are used. One is the temperature
response in an infinite matrix region VM (jzj $ 0) in the absence of fibers (Figure 2(a)),
and the other is the temperature response in an infinite matrix region VM (jzj . R)
containing a circular fiber VF (jzj , R) (Figure 2(b)), where z ¼ x1 þ x2i is a complex
number defined in a local coordinate system x ¼ (x1,x2) with its origin coincident with
the fiber center, and i ¼

ffiffiffiffiffiffiffi
21

p
denotes the unit imaginary number.

(1) Fundamental solution without fiber. For the case of an infinite domain without
fibres, assuming that a unit heat source is located at point z0 in the infinite matrix
domain VM (Figure 2(a)), the temperature response GM at any field point z is given in
the form (Chao and Shen, 1997):

GMðz; z0Þ ¼ 2
1

2pkM
Re lnðz2 z0Þf g ð4Þ

where Re denotes the real part of the bracketed expression. Clearly, the expression (4)
shows singularity as z ¼ z0, which is the inherent feature of the fundamental solution.
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(2) Fundamental solution with fiber. For the case of an infinite domain with a
centered circular fiber, consider a unit heat source located at the source point z0 in the
infinite matrix VM (Figure 2(b)). Then the temperature responses GM and GF at any field
point z in matrix and fiber regions are, respectively, obtained as (Chao and Shen, 1997):

GM ¼ 2
1

2pkM
Re½lnðz2 z0Þ� þ

kM 2 kF

kM þ kF
Re ln

R 2

z
2 �z0

� �� �� �
z [ VM

GF ¼ 2
1

ðkM þ kFÞp
Re½lnðz2 z0Þ� z [ VF

8>>>><
>>>>:

ð5Þ

using the complex potential theory and introducing the continuity condition (3) in the
interface jzj ¼ R. Similarly, the induced temperature GM in the matrix shows a proper
singular behavior at the source point z0, while GF in the fiber is regular because the
source point z0 is outside the fiber. Additionally, it is worth noting that since the
fundamental solutions already include the presence of interface between the fillers and
matrix, it is not necessary to model the temperature and heat flux continuity condition on
the interface and then the analysis will become simpler. This is one of the advantages of
the proposed approach stated below.

3. The hybrid finite element formulation
In this section, the formulation of the hybrid finite element model with fundamental
solution as an interior trial function is presented for heat analysis of two-dimensional
fiber-reinforced composites.

3.1 Non-conforming intra-element field
Applying the method of fundamental solution (Kupradze and Aleksidze, 1964) to
remove the singularity of the fundamental solution, for a particular element, say
element e, occupying a sub-domain Ve embedded with a centered circular fiber of radius
R and defined in a local reference system x ¼ (x1, x2) whose axis remains parallel to the
axis of the global reference system X ¼ (X1, X2) (Figure 3), the temperature field at any

Figure 2.
Fundamental solutions for

plane heat conduction
problems in

fiber-reinforced
composites

Region |z| ≥ 0 Region |z| > R

|z| < R

Interface |z| < R
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field point z field point z

heat source

(a) Infinite domain without fiber (b) Infinite domain with fiber
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point x within the element domain is assumed to be a linear combination of
fundamental solutions centered at different source points xsj, that is:

ueðxÞ ¼
Xns
j¼1

Geðx;xsjÞcej ¼ NeðxÞce ;x [ Ve;xsj � Ve ð6Þ

where cej represents undetermined coefficients, ns is the number of virtual sources
outside the element e, and Ge(x, xsj) represents the corresponding fundamental solution,
which can be conveniently expressed using a unified form:

Geðx;xsjÞ ¼
GMðx;xsjÞ x [ VM

GFðx;xsjÞ x [ VF

(
ð7Þ

In practice, the location of sources affects the final accuracy (Mitic and Rashed, 2004;
Wang and Qin, 2007, 2008; Wang et al., 2006) and can usually be determined by means
of the formulation (Young et al., 2006):

xs ¼ xb þ gðxb 2 xcÞ ð8Þ

where g is a dimensionless coefficient, xb is the elementary boundary point and xc the
geometrical centroid of the element. For a particular element as shown in Figure 3, we
can use the nodes of element to generate related source points using the relation (8).

Figure 3.
Intra-element field, frame
field in a particular
element in HFS-FEM, and
the generation of source
points for a particular
inclusion element

Frame field

x2

X2

X1

x1

R
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Node Source Centroid
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The corresponding outward normal derivative of ue on Ge is defined by:

qe ¼ 2kM
›ue

›n
¼ Qece ð9Þ

where:

Qe ¼ 2kM
›Ne

›n
¼ 2kMATe ð10Þ

with:

A ¼ n1 n2

h i
; Te ¼

›Ne

›x1

›Ne

›x2

h iT

ð11Þ

3.2 Auxiliary conforming frame field
In order to enforce conformity on the field variable u, for instance, ue ¼ uf on Ge > Gf of
any two neighboring elements e and f, an auxiliary inter-element frame field ~u
independent of the intra-element field is introduced in terms of the same nodal degrees
of freedom (DOF), d, as used in conventional FEMs. In this case, ~u is confined to the
whole element boundary, that is:

~ueðxÞ ¼ ~NeðxÞde ð12Þ

where ~Ne represents the conventional finite element interpolating functions. For
example, a simple interpolation of the frame field on any side of a particular element
(Figure 4) can be given in the form:

~u ¼ ~N1u1 þ ~N2u2 þ ~N3u3 ð13Þ

where ~Ni (i ¼ 1, 2, 3) stands for shape functions in terms of natural coordinate j shown
in Figure 4.

Figure 4.
Typical quadratic

interpolation for the
frame field
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3.3 Modified variational principle and stiffness equation
For the boundary value problem defined in equations (1) and (2), since the stationary
conditions of the traditional potential or complementary variational functional cannot
guarantee the satisfaction of the continuity condition on the inter-element boundary,
which is required in the proposed hybrid finite element model, a modified potential
functional (Wang and Qin, 2009) is developed as follows:

Pm ¼
e

X
Pme ð14Þ

with:

Pme ¼ 2
1

2

Z
Ve

ku;iu;idV2

Z
Gqe

�q~udGþ

Z
Ge

q ~u2 uð ÞdG ð15Þ

in which the governing equation (1) is assumed to be satisfied, a priori, due to the use of
the fundamental solution in the HFS FE model. The boundary Ge of a particular
element consists of the following parts:

Ge ¼ Gue < Gqe < GIe ð16Þ

where GIe represents the inter-element boundary of the element “e”.
Appling the divergence theorem:Z

V

f ;ih;idV ¼

Z
G

hf ;inidG2

Z
V

h72fdV ð17Þ

for any smooth functions f and h in the domain, we can eliminate the domain integral
from equation (15) and obtain following functional for the HFS FE model:

Pme ¼ 2
1

2

Z
Ge

qudG2

Z
Gqe

�q~udGþ

Z
Ge

q~udG ð18Þ

Then, substituting equations (6), (9) and (12) into the functional equation (18) produces:

Pe ¼ 2
1

2
cT
e Hece 2 dT

e ge þ cT
e Gede ð19Þ

in which:

He ¼

Z
Ge

QT
e NedG Ge ¼

Z
Ge

QT
e
~NedG ge ¼

Z
Geq

~N
T

e �qdG

To enforce inter-element continuity on the common element boundary, the unknown
vector ce should be expressed in terms of nodal DOF de using the variational approach.
Minimization of the functional Pe with respect to ce and de, respectively, yields:

›Pe

›cT
e

¼ 2Hece þ Gede ¼ 0
›Pe

›dT
e

¼ GT
e ce 2 ge ¼ 0 ð20Þ

from which the optional relationship between ce and de, and the stiffness equation can
be obtained:
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Kede ¼ ge ce ¼ H21
e Gede ð21Þ

where Ke ¼ GT
e H

21
e Ge stands for the element stiffness matrix.

It is worth noting that the evaluation of the right-hand vector ge in equation (21) is
the same as that in conventional FEM, which is obviously convenient for the
implementation of HFS-FEM into existing FEM programs.

4. Four types of elements in the proposed HFS-FEM
One of the advantages of the HFS-FEM procedure described above is that the element
used in HFS-FEM can be arbitrarily constructed to adapt to different geometries of the
problem. In this work, for the sake of convenience, we restrict our analysis to the four
types of elements shown in Table I, from which we can see that GE1 and GE2 are general
elements suitable for a region without inclusions, and SE1 and SE2 are delicate special

Name Description

GE1 General eight-node quadrilateral element used for
region without inclusions

GE2 General 16-node quadrilateral element used for
region without inclusions

SE1 Special-purpose eight-node quadrilateral circular
inclusion element used for region with fibers

a

D

a

SE2 Special-purpose 16-node quadrilateral circular
inclusion element used for region with fibers

a

a

D

Table I.
Illustration of elements

used in this work
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inclusion elements with different nodes suitable for fiber analysis. Owing to the
geometrical symmetry of the circular fiber, the special element is designed as a square
with side length a. If the diameter of the fiber in it is denoted as D, the parameter D/a,
also termed the aspect ratio in this work, is introduced to determine the distance between
the element boundary and the inclusion boundary. Also, the variation of parameter D/a
corresponds to the change of fiber volume fraction.

5. Effective thermal conductivity
The effective thermal conductivity is a very important parameter for engineering
applications of composites. Usually the RVC approach is utilized in micro-mechanical
model development. In this paper, a general square RVC with random multiple
inclusions is used to investigate the effect of fiber size and to evaluate the effective
thermal properties for the case of two-dimensional heat conduction (Figure 5(a)). The
side length of the RVC is taken to be L. Meanwhile, an effective homogeneous model
with the same geometry as the RVC is assumed with constant effective thermal
conductivity kC.

According to Fourier’s law, the thermal conductivity along the i 2 direction is
defined as:

ki ¼ 2
qi

ð›u=›xiÞ
ð22Þ

Therefore, the effective thermal conductivity of the equivalent homogeneous model
(Figure 5(b)) can be computed by applying appropriate boundary conditions. For
example, in the homogeneous model, if:

. a uniform heat flux f . q0 is horizontally applied on the left side of the square;

. the temperature on the right side remains zero; and

. both the top and bottom sides are insulated, then, the temperature distribution in
the model is linear in the horizontal direction; and the heat flux component in the

Figure 5.
Micro-mechanical model
(RVC) and effective
homogeneous model

Data-collection surface

(a) Micro-mechanical model (RVC) (a) Effective homogeneous model

q0 q0

x2 x2

kF

kM

x1 x1

kC
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body is constant, subsequently, the effective thermal conductivity kc in the
horizontal direction can be evaluated by the following formula:

kC ¼ 2
q0

ð›u=›x1Þ
¼ 2

q0

ðDu=Dx1Þ
¼ 2

q0

ðuleft=LÞ
ð23Þ

where Du is the temperature difference between the left and right surfaces and uleft
represents the temperature on the left surface.

On the basis of the above discussion, the effective thermal conductivity can be
estimated from the real RVC with multiple fibers by applying the same boundary
conditions as those applied in the effective model, and using the temperature results on
the left and right, two data-collection sides, that is:

kC ¼ 2
q0

ð~uleft=LÞ
ð24Þ

where ~uleft is the average temperature on the left data-collection surface, which can be
evaluated from nodal temperatures obtained by the presented hybrid finite element
formulation.

6. Numerical accuracy
To demonstrate the accuracy of the presented hybrid algorithm and to investigate the
thermal response induced by the fibers, RVCs with one, five and nine fibers are
discussed in this section. Then the effective thermal properties are evaluated for the
three cases. All results are compared with numerical solutions from ABAQUS for
verifications.

6.1 Unit square RVC with single fiber
To access the accuracy of the present hybrid finite element formulation with special
purpose inclusion elements, as the first verification example, the thermal behavior in a
unit square RVC with a centered circular fiber is studied. In the calculation, a specified
uniform heat flux q0 with value of 2100 is considered. Moreover, the thermal
conductivity in units consistent with that of q0 is assumed to be kM ¼ 1 and kF ¼ 20 for
the matrix and the fiber, respectively.

To study the effect of location of source points which are outside the element, let the
parameter g vary from 0 to 10. In the analysis, the domain is modeled with only one
special element (Figure 6(b) and (c)) and the radius of the fiber is assumed to be 0.1.
The variation of temperature at the central point of the fiber is shown in Figure 7 as a
function of the parameter g. The solution presented is compared with that from
ABAQUS and is found to be in good agreement; however, ABAQUS used 828 elements
(Figure 6(a)). It is also evident from Figure 7 that a stable result can be obtained using
the proposed hybrid special elements when the value of g is within the interval (1, 7).
Meanwhile, we also found that, for the special elements both SE1 and SE2, the use of too
small or too large a value of the parameter g results in low accuracy and an unstable
solution, due to the potential singularity disturbance of the fundamental solution when
the source points are close to the physical element boundary or to the possible round-off
error in floating point arithmetic (Mitic and Rashed, 2004; Wang et al., 2006). Thus, in
the following computation, l ¼ 4.0 is used.
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To demonstrate the efficiency of the constructed circular fiber element, and to
investigate the effect of fiber size on temperature variation, the aspect ratio D/a is
designed to vary from 0 to 1. The corresponding variations of temperature and heat flux
at the central point of the fiber are shown in Figures 8 and 9, respectively. Compared to
the results from ABAQUS, which are achieved by refined meshes around and within the

Figure 6.
Mesh division of
ABAQUS and HFS-FEM
for the case of single fiber

(a) ABAQUS mesh for half model

(b) HFS-FEM mesh with 8 nodes

(c) HFS-FEM mesh with 16 nodes
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fiber in a half model by virtue of symmetry, the special purpose inclusion elements
achieve similar accuracy but with one element only. More importantly, it can be seen
that the increase of aspect ratio corresponding to the increase of fiber volume fraction in
the element does not require the mesh regeneration in the presented approach with
special fiber element, as expected. A slight deviation close to the largest aspect ratio as
observed from the plot (Figure 8) may be attributed to the fact that elements with few

Figure 7.
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nodes cannot fully capture the strong interaction of the fiber and the physical boundary,
so the special element SE2 with 16 nodes are recommended for the following
computation. Simultaneously, we see that the maximum relative error of heat flux in
Figure 9 is less 4 percent when just one special element is used. From these two figures
we can also see that as the aspect ratio increases, which means that the element
boundary is close to the interface of the fiber, the sought temperature tends to decrease.
The reason is that the larger diameter of the fiber implies a larger volume fraction of the
fiber, so the overall conductivity of the RVC under consideration is increased. Hence, the
heat from the applied flux is carried away to the face, which is maintained at 08C at a
higher rate than in the case of pure matrix without fibers.

Figure 10 shows the temperature variation along the line X2 ¼ 0.5 when the radius
of the fiber is maintained at 0.1. As the interface of fiber and matrix plays an important
role in heat conduction from matrix region to fiber region, the interfacial temperature is
shown in Figure 11. Good agreement between HFS-FEM and ABAQUS is again
observed. Furthermore, we can see that the existence of the fiber strongly affects the
temperature distribution, especially in the region near the fiber and on the surface, to
which the uniform heat flux is applied, compared to the temperature without fiber. The
lower surface temperature of the composite is useful for the engineering applications.
We also note that the temperature changes around the fiber are small, the reason being
that the thermal conductivity of the fiber is usually several ten times that of the matrix,
so the heat can flow through the fiber rapidly.

6.2 Unit square RVC with multiple fibers
Next we examine the heat conduction in unit square RVCs with five and nine fibers
(Figure 12). As before, a uniform flux of 100.0 is applied to the left side of the RVC. The
thermal conductivity of the fiber is again assumed to be 20 times that of the matrix and
the radius of the fiber to be 0.1.

Figure 9.
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The HFS-FEM meshes for computation of the RVCs with five and nine fibers are
shown in Figure 13, in which five and nine SE1 elements are used for the cases of
Figure 12(a) and (b), respectively. Figure 14 shows the distribution of temperature field
along the mid-line X2 ¼ 0.5. It can be seen from Figure 14 that the HFS-FEM results are
in good agreement with the corresponding finite element solutions using ABAQUS,
even though many fewer elements are used in the proposed model. As expected,

Figure 11.
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quasi-step curves are also evident in the temperature field near the fibers, and the
surface temperature of the body displays a clear decrease as the number of fibers
increases. For example, the temperature at the mid-point on the data-collection surface
of the body changes from 1008C (without fiber) to 93.748C (single fiber), to 75.668C (five
fibers), and finally to 57.378C (nine fibers). Moreover, comparing the temperature over
the mid-line and the average temperature shown in Table II we can conclude that the
temperature evidences a weak change on the data-collection surface. The temperature
distribution in the entire domain is shown in Figure 15, showing clearly the variation of
temperature due to the presence of fibers.

Finally, the effective thermal conductivity of the fiber-reinforced composites along
the x1-direction is estimated using formula (24). To this end, the average temperature at
all nodes on the data-collection surface is first evaluated and listed in Table II; then, the
desired effective thermal conductivity is obtained by dividing the specified uniform

Figure 13.
HFS-FEM mesh division
for RVC with five (left) and
nine (right) fibers

Figure 12.
RVCs with multiple fiber
inclusions
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heat flux by the obtained average temperature. The results obtained from the
HFS-FEM are listed in Table II and compared with those from ABAQUS. Excellent
agreement is observed, illustrating the efficiency and accuracy of the proposed hybrid
finite element formulation.

One fiber Five fibers Nine fibers

Average temperature on the HFS-FEM 94.541 (16)a 75.125 (180) 59.136 (180)
data-collection surface ABAQUS 94.479 (2,593) 75.105 (5,265) 58.946 (11,557)
Effective thermal conductivity HFS-FEM 1.0577 1.3311 1.6910

ABAQUS 1.0584 1.3315 1.6965

Note: aData in bracket represent the DOF used in the computation

Table II.
Average temperature on

the data-collection
surface and effective

thermal conductivity of
composites

Figure 14.
Temperature variation

along the line X2 ¼ 0.5 for
the cases of five fibers

(left) and nine fibers (right)
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7. Conclusions
A new hybrid finite element model suitable for application to large-scale RVC analysis
of heat conduction problems in fiber-reinforced composites is presented. The
independent intra-element field and frame field, as well as the newly developed
hybrid functional, make the algorithm versatile in terms of element construction, with
the result that the related variational functional involves the element boundary integral
only. Based on the special fundamental solution, a newly constructed inclusion element
is applied to a number of test problems involving unit RVCs with multiple fibers to
access the accuracy of the model. The effective thermal conductivity of the composites
is evaluated for cases of single and multiple fibers using the average temperatures at
certain points on a data-collection surface. All numerical results are compared with the
solutions from ABAQUS and good agreement is observed for all cases, clearly
demonstrating the potential applications of the proposed approach to large-scale
modeling of fiber-reinforced composites. The usage of special inclusion element can
significantly reduce model meshing effort and computing cost, and simultaneously
avoid mesh regeneration when the fiber volume fraction is changed.
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