
Comput Mech (2011) 48:515–528
DOI 10.1007/s00466-011-0605-6

ORIGINAL PAPER

Fundamental-solution-based hybrid FEM for plane elasticity
with special elements

Hui Wang · Qing-Hua Qin

Received: 23 November 2009 / Accepted: 26 April 2011 / Published online: 12 May 2011
© Springer-Verlag 2011

Abstract The present paper develops a new type of hybrid
finite element model with regular and special fundamental
solutions (also known as Green’s functions) as internal inter-
polation functions for analyzing plane elastic problems in
structures weakened by circular holes. A variational func-
tional used in the proposed model is first constructed, and
then, the assumed intra-element displacement fields satisfy-
ing a priori the governing partial differential equations of the
problem under consideration is constructed using a linear
combination of fundamental solutions at a number of source
points outside the element domain, as was done in the method
of fundamental solutions. To ensure continuity of fields over
inter-element boundaries, conventional shape functions are
employed to construct the independent element frame dis-
placement fields defined over the element boundary. The
linkage of these two independent fields and the element stiff-
ness equations in terms of nodal displacements are enforced
by the minimization of the proposed variational functional.
Special-purpose Green’s functions associated with circular
holes are used to construct a special circular hole element
to effectively handle stress concentration problems with-
out complicated local mesh refinement or mesh regeneration
around the hole. The practical efficiency of the proposed ele-
ment model is assessed via several numerical examples.
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1 Introduction

In the context of hybrid stress equilibrium finite elements, in
which the equilibrating stresses with undetermined param-
eters in the element domain and the boundary displace-
ments in terms of nodal displacements are independently
approximated, pioneering applications are proposed by Pian
[1]. As a variant of the hybrid stress equilibrium finite ele-
ment methods, the hybrid Trefftz finite element method (HT-
FEM) has been established by further constraining the stress
basis to be associated with the satisfaction of all the gov-
erning equations of the problem in the element domain and
has proved to be an efficient computational tool for solv-
ing engineering problems with local effects due to load-
ing and/or geometry without troublesome mesh adjustment
[2–4]. In the past decades, the HT-FEM has been successfully
applied to problems of elasticity [5–7], plate bending [8,9],
elastodynamic problems [10,11], transient heat conduction
analysis [12], geometrically nonlinear plates [13], elasto-
plasticity [14,15], piezoelectric materials [16], and nonlin-
ear minimal surface problems [17]. Unlike the conventional
finite element method (FEM) and boundary element method
(BEM), the hybrid Trefftz FEM is based on a hybrid model
which includes the use of independent auxiliary inter-element
frame fields defined on each element boundary and indepen-
dent intra-element fields chosen so as to a priori satisfy the
homogeneous governing differential equations by means of a
suitably truncated T-complete function set of homogeneous
solutions. Inter-element continuity is enforced by using a
modified variational principle, which is used to construct the
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standard sparse symmetric force-displacement relationship,
that is, the stiffness equation, and to establish a linkage
between frame fields and internal fields of the element under
consideration. The property of nonsingular element bound-
ary integrals appearing in the hybrid Trefftz FEM enables
us to conveniently construct arbitrarily shaped elements and
special elements to effectively handle local effects, such as
the elliptic hole element [4]. However, the general and spe-
cial T-complete functions required by the HT-FEM may be
difficult to generate for some physical problems.

As an alternative to the HT-FEM, a hybrid finite ele-
ment formulation based on the fundamental solutions, called
the HFS-FEM, was recently developed for solving two-
dimensional linear or nonlinear thermal problems [18,19]
and orthotropic elastic problems [20], which inherits the
advantages of the HT-FEM over the FEM and the BEM,
such as the possibility of high accuracy using coarse meshes
of high-degree elements, enhanced insensitivity to mesh dis-
tortion, great liberty in element shape, possibility of accu-
rately representing various local effects without troublesome
mesh adjustment, etc, and avoids some disadvantages of the
HT-FEM. In the HFS-FEM, the used fundamental solutions,
instead of T-complete functions, also exactly satisfy a priori
the governing partial differential equations for the problem
under consideration. Due to this property of fundamental
solutions, they are used to interpolate the element internal
displacement fields with suitable combination and thus to
transfer the element domain integral to the element boundary
integrals in the modified hybrid variational functional using
two independent variables, i.e. displacements on the element
boundary and inside the element. The resulting system of
equations is written in terms of nodal displacements only with
symmetric stiffness matrix, which is easy to implement into
the standard FEM. Compared to the HT-FEM, the proposed
HFS-FEM has simpler interpolation kernel expressions and
avoids the coordinate transformation procedure required in
the HT-FEM to keep the matrix inversion stable, due to the
usage of fundamental solutions. With the objective of making
the computation more effective and making the meshing sim-
pler around holes or other local defects, this paper derives the
hybrid finite element formulation with general or special fun-
damental solutions kernels for plane elastic problems based
on the variational principle presented in [18–20] and devel-
ops the concept of a special-purpose element. In particular,
a special circular hole element is constructed to effectively
handle the stress concentration around the hole boundary
with reduced mesh refinement and regeneration effort.

The paper begins with a brief review of the basic equa-
tions of a plane elastic problem in Sect. 2 and the related
fundamental solutions in Sect. 3. Then, a detailed derivation
of the proposed HFS-FEM for plane elasticity and the cor-
responding algorithm is given in Sect. 4. Several numerical
examples are presented in Sect. 5 to assess the efficiency of

Fig. 1 Schematic diagram of plane elastic problem with circular cut-
outs and mesh used in the HFS-FEM

the proposed element model and some concluding remarks
are provided in Sect. 6.

2 Basic equations for plane elasticity

For a well-posed plane elastic problem with circular cut-
outs in an arbitrary domain �, as shown in Fig. 1, the corre-
sponding partial differential governing equations under the
assumption of small deformation are given in matrix form as

[L] {σ } + {b̄} = {0}
{ε} = [L]T {u}
{σ } = [D] {ε}

⎫
⎬

⎭
in � (1)

where {σ } = {σ11 σ22 σ12}T and {ε} = {ε11 ε22 γ12}T

denote stress and strain vectors, respectively,
{
b̄
}={b̄1 b̄2

}T

body force vector, {u} = {u1 u2}T displacement vector, and

L =
[
∂,1 0 ∂,2
0 ∂,2 ∂,1

]
(2)

the differential matrix, in which a comma denotes partial dif-
ferentiation, i.e. ∂,i = ∂/∂Xi , and Xi (i = 1, 2) are the global
Cartesian coordinates. The stress-strain matrix is given by

D = E∗

1 − ν∗2

⎡

⎣
1 ν∗ 0
ν∗ 1 0
0 0 1−ν∗

2

⎤

⎦ (3)

with E∗ = E, ν∗ = ν for a plane stress problem and E∗ =
E/(1 − ν2), ν∗ = ν/(1 − ν) for a plane strain problem. E
and ν denote respectively the elastic modulus and the Pois-
son’s ratio.

Besides, following boundary displacement and traction
conditions should be complemented to keep the system
complete

{u} = {ū} on �u

{s} = [A]{σ } = {s̄} on �s

}
(4)
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where the overbar represents a given value, and

[A] =
[

n1 0 n2

0 n2 n1

]
, {s} = { s1 s2

}T
(5)

with ni representing the i th component of the unit outward
normal to the boundary � = �u + �s .

Rearranging Eq. (1) leads to the following Cauchy-Navier
equations in terms of displacements

[L] [D] [L]T {u} + {b̄} = {0} (6)

3 Fundamental solutions

For plane elastic problems involving holes, it is convenient
to express the fundamental solutions in terms of complex
variables. In plane elastic theory, all components of elastic
fields including the stresses σ11, σ22, σ12, the displacements
u1, u2 and the resultant forces P1, P2 along a curve can be
expressed in terms of two complex analytic functions φ(z)
and ψ(z) [21] as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2G(u1 + u2I) = κφ(z)− zφ′(z)− ψ(z)
σ11 + σ22 = 4Re

[
φ′(z)

]

σ22 − σ11 + 2σ12I = 2
{
z̄φ′′(z)+ ψ ′(z)

}

P1 + P2I = 2I
{
φ(z)+ zφ′(z)+ ψ(z)

}
(7)

where G = E/2/(1 + ν), κ = (3 − ν)/(1 + ν) for plane
stress and κ = 3 − 4ν for plane strain, z = x1 + x2I is the
complex coordinate in the z-plane with I = √−1, the over-
bar denotes complex conjugation, Re denotes the real part of
the function and prime denotes differentiation with respect
to the argument z.

3.1 A point force in an infinite plane

If a concentrated force F = F1 + F2I is located at the point
z0 = xs

1 + xs
2I in the infinite plane, the complex functions

can be written as [21]
{
φ(z) = M ln(z − z0)

ψ(z) = N ln(z − z0)− M z̄0
z−z0

(8)

where

M = − F

2π(1 + κ)
, N = −κ M̄

Obviously, the complex functions in Eq. (8) are singular at
the point z0, which can be taken as the basis for constructing
more complex fundamental solutions.

By substituting Eq. (8) into Eq. (7), the classical formation
of the Kelvin solution can be obtained. For example, for plane
strain problems, if u∗

li (z, z0) and σ ∗
li j (z, z0) are the induced

displacements and stresses at z due to l-direction unit force

at z0, we have [22]

u∗
li = 1

8πG(1 − ν)

[
(3 − 4ν) δli ln

1

r
+ r,lr,i

]

σ ∗
li j = 1

4π (1 − ν) r

[
(1 − 2ν)

(
r,lδi j − r, jδil − r,iδ jl

)

− 2r,i r, j r,l
]

(9)

where r stands for the distance between z and z0.

3.2 A point force in an infinite plane with circular hole

Consider a point force F = F1 + F2I at z0 in an infinite plane
with a centered circular hole of radius a. Using the complex
variable formalism above, the fundamental solution sought
can be expressed in the form
{
φ(z) = φs(z)+ φr (z)
ψ(z) = ψs(z)+ ψr (z)

(10)

where φs andψs are the singular terms for the infinite homo-
geneous body, which is the Kelvin’s solution expressed in
terms of complex variable listed above, and φr and ψr are
regular terms to be determined so that the resultant tractions
on the surface of the circular hole become zero. Further-
more, the vanishing stress conditions at infinity should also
be satisfied.

Using the analytical continuation approach, the regular
terms (also called imaging terms) can be obtained as [23]
{
φr (z, z∗

0) = −zφ′
s(z

∗, z0)− ψs(z∗, z0)

ψr (z, z∗
0) = −φs(z∗, z0)− z∗φ′

r (z, z∗
0)

(11)

where z∗ = a2/z̄, z∗
0 = a2/z̄0.

Substituting the known singular terms and retaining the
main parts of Eq. (11) gives the following solutions:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φr (z, z0) = −N̄ ln
(

z−z∗
0

z

)
− M̄

z0−z∗
0

z−z∗
0

z∗
0

z̄0

ψr (z, z0) = −M̄ ln
(

z−z∗
0

z

)
+ N̄ a2

z−z∗
0

1
z − N̄ a2

z2

−M̄
z∗2

0 (z0−z∗
0)

z(z−z∗
0)

2 + M
z∗

0
z

(12)

Having determined the two complex functions, the related
displacement and stress solutions can be obtained using
Eq. (7).

4 Development of HFS finite element formulation

In this section, the procedure for developing a hybrid finite
element model with the fundamental solutions as the interior
trial functions is described for solving the boundary value
problem (BVP) defined by Eqs. (1), (4) and (13) below.

As in the hybrid Trefftz FEM, the main aim of the pro-
posed approach is to establish a hybrid finite element for-
mulation whereby intra-element continuity is enforced on
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Fig. 2 Illustration of continuity between two adjacent elements ‘e’
and ‘ f ’

nonconforming internal displacement fields formed by a
linear combination of fundamental solutions at source points
outside the element domain under consideration, while aux-
iliary frame displacement fields are independently defined
on the element boundary to enforce field continuity across
inter-element boundaries. But unlike the hybrid Trefftz FEM,
the intra-element fields in the HFS-FEM are constructed
based on the fundamental solutions, rather than a truncated
T-complete function set. Subsequently, a variational func-
tional associated with the new displacement trial functions
inside the element and displacements on the element bound-
ary is required to generate the related stiffness matrix equa-
tion. As the solution domain is divided into a number of
elements denoted by �e with the element boundary �e, the
following inter-element continuity related to displacements
and tractions is usually required on the common boundary
�I e f between any two adjacent elements ‘e’ and ‘ f ’ (see
Fig. 2):

{ue} = {u f
}

{se} + {s f
} = {0}

}
on �e ∩ � f (13)

in the proposed hybrid FE approach.

4.1 Non-conforming intra-element fields

In the absence of body forces, and motivated by the method
of fundamental solution (MFS) [24] to remove the singu-
larity of the fundamental solution, for a particular element
shown in Fig. 3, say element e, which occupies the sub-
domain �e, we first assume that the field variable defined
in the element domain is approximated by a linear combi-
nation of fundamental solutions centered at different source
points (see Fig. 3) as

{ue} =
ns∑

j=1

[
u∗

11

(
x, y j
)

u∗
21

(
x, y j
)

u∗
12

(
x, y j
)

u∗
22

(
x, y j
)
] {

c1 j

c2 j

}

= [N] {ce} (∀x ∈ �e, y j /∈ �e) (14)

Fig. 3 Intra-element fields and frame fields in a particular element in
the HFS-FEM

where ns is the number of virtual sources outside the element
domain, {ce} = [c11 c21 · · · c1ns c2ns

]T is an unknown
coefficient vector (not nodal displacements), and the coeffi-
cient matrix

[N] =
⎡

⎣
u∗

11 (x, y1) u∗
21 (x, y1) | · · · | u∗

11

(
x, yns

)
u∗

21

(
x, yns

)

| |
u∗

12 (x, y1) u∗
22 (x, y1) | · · · | u∗

12

(
x, yns

)
u∗

22

(
x, yns

)

⎤

⎦

where x and yi are the field point and source point defined in
the local coordinate system (x1, x2), respectively.

In practice, the generation of virtual sources outside the
element domain can be placed on the so-called pseudo-
boundary similar to the physical boundary of the element
and can usually be given by means of the formulation
[18–20,25,26]

y = xb + γ (xb − xc) (15)

where γ is a dimensionless coefficient, xb is the elementary
boundary point and xc the geometrical centroid of the ele-
ment. Typically, for simplicity in the proposed approach we
use the nodes of the element to generate related source points.

Similar to the procedure in the MFS, the theoretical deter-
mination of the locations of sources in the proposed HFS-
FEM is an open question. However, numerical experiments
show that there is a large interval to select the suitable value
of γ , by which satisfying accuracy and stability can be
achieved [18–20]. In this paper, similar numerical tests in
the context of plane elasticity is performed to illustrate this
issue.
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Fig. 4 Typical quadratic interpolation for the frame fields

Subsequently, differentiating Eq. (14) and substituting it
into Eq. (1) yields the corresponding stress fields

{σ e} = [T] {ce} (16)

with

[T] =

⎡

⎢
⎢
⎢
⎣

σ ∗
111 (x, y1) σ

∗
211 (x, y1) | · · · | σ ∗

111

(
x, yns

)
σ ∗

211

(
x, yns

)

| |
σ ∗

122 (x, y1) σ
∗
222 (x, y1) | · · · | σ ∗

122

(
x, yns

)
σ ∗

222

(
x, yns

)

| |
σ ∗

112 (x, y1) σ
∗
212 (x, y1) | · · · | σ ∗

112

(
x, yns

)
σ ∗

212

(
x, yns

)

⎤

⎥
⎥
⎥
⎦

Furthermore, the element boundary traction vector {se} is
evaluated by

{se} = [Q] {ce} (17)

where [Q] = [A] [T].

4.2 Auxiliary conforming frame fields

In order to enforce conformity on the displacement vector {u}
along the inter-element boundary, for instance {ue} = {u f

}

on �e ∩ � f , of any two neighboring elements e and f , aux-
iliary inter-element frame fields {ũe} are assumed in terms
of the nodal degrees of freedom (DOF), {de}, as used in the
conventional FEM. For example, for the element shown in
Fig. 3 containing 10 nodes, the frame fields {ũe} over the
second edge consisting of nodes 3, 4, and 5 are written as

{ũe} = [Ñ] {de} (18)

in which the shape function matrix [Ñ] and the nodal vector
{de} are given by

[Ñ] =
[

0 0 | · · · | Ñ1 0 |Ñ2 0| Ñ3 0 | · · · | 0 0
0 0 | · · · | 0 Ñ1 |0 Ñ2| 0 Ñ3 | · · · | 0 0

]

{de} =
{

u1
1 u1

2 | · · · | u3
1 u3

2| u4
1 u4

2| u5
1 u5

2| · · · | u10
1 u10

2

}T

and Ñi (i = 1, 2, 3) stands for shape functions in terms of the
natural coordinate ξ defined in Fig. 4, uk

i (i = 1, 2) denotes
the nodal displacement at nodal k.

4.3 Variational principle and stiffness equation

4.3.1 Variational functional

For the boundary value problem defined in Eqs. (1)–(4)
and 13, since the stationary conditions of the traditional
potential or complementary variational functional cannot
guarantee satisfaction of the inter-element continuity condi-
tions required in the proposed model, a modified variational
functional based on two independent displacement fields is
defined as follows:

�m =
∑

e

�me =
∑

e

⎡

⎢
⎣
∫

�e

Uεd�−
∫

�e

b̄i ui d�

−
∫

�s
e

s̄i ũi d� +
∫

�e

si (ũi − ui ) d�

⎤

⎥
⎦ (19)

where Uε is the strain energy density defined as

Uε = 1

2
σi jεi j (20)

In Eq. (19), the governing Equation 6 holds true, a priori,
within the element domain due to the use of the fundamental
solutions as intra-element trial functions, and the boundary
displacement satisfies the essential boundary conditions. It
should be mentioned that the variational functional (19) is
different from that used in Refs [2,27] in which three inde-
pendent variables are used. The similar principle to construct
variational functional with two independent variables can be
found for potential problems [18,19,28]. The boundary �e

of a particular element e consists of the following parts

�e = �u
e ∪ �s

e ∪ � I
e (21)

where �u
e = �e ∩ �u, �

s
e = �e ∩ �s and � I

e stands for the
inter-element boundary of the element ‘e’.

4.3.1.1 Stationary condition of the proposed variational
functional

Next we will show that the stationary condition of the func-
tional (19) leads to the governing Eq. (1), boundary condi-
tions (4), and continuity conditions (13). For this purpose,
the first-order variational of Eq. (19) yields

δ�me =
∫

�e

δUεd�−
∫

�e

b̄iδui d�−
∫

�s
e

s̄iδũi d�

+
∫

�e

δsi (ũi − ui ) d� +
∫

�e

si (δũi − δui ) d� (22)

in which the first term is given as

123



520 Comput Mech (2011) 48:515–528

∫

�e

δUεd� =
∫

�e

σi jδεi j d� =
∫

�e

σi jδui, j d� (23)

Using the Gaussian theorem

∫

�

f,i d� =
∫

�

f ni d� (24)

we have

∫

�e

δUεd� =
∫

�e

siδui d� −
∫

�e

σi j, jδui d� (25)

Then, substituting Eq. (25) into Eq. (22) gives

δ�me = −
∫

�e

(
σi j, j + b̄i

)
δui d�−

∫

�s
e

s̄iδũi d�

+
∫

�e

δsi (ũi − ui ) d� +
∫

�e

siδũi d� (26)

For the stress-based method, the displacement conformity is
satisfied in advance, that is,

δũi = 0 on �u
e (∵ ũi = ūi )

δũe
i = δũ f

i on � I
e f (∵ ũe

i = ũ f
i )

(27)

then, Eq. (26) can be rewritten as

δ�me = −
∫

�e

(
σi j, j + b̄i

)
δui d�+

∫

�s
e

(si − s̄i ) δũi d�

+
∫

� I
e

siδũi d� +
∫

�e

δsi (ũi − ui ) d� (28)

from which the governing equation in the domain �e and
boundary conditions on �s

e can be obtained

σi j, j + b̄i = 0 in �e

si = σi j n j = s̄i on �s
e

ũi = ui on �u
e

(29)

by using the stationary condition δ�me = 0 and the arbitrar-
iness of quantities δui , δũi and δsi .

As to the continuity requirement between the two adjacent
elements ‘e’ and ‘ f ’ given in Eq. (13), we can obtain it in
the following way. When assembling elements ‘e’ and ‘ f ’,
we have

δ�m(e+ f ) = −
∫

�e+� f

(
σi j, j + b̄i

)
δui d�

+
∫

�s
e+�s

f

(si − s̄i ) δũi d�

+
∫

� I
e f

(
sie + si f

)
δũi d�+

∫

�e+� f

δsi (ũi − ui ) d�

(30)

from which the vanishing variation of �m(e+ f )leads to the
continuity condition sie + si f = 0 on the inter-element
boundary � I

e f .

4.3.1.2 Theorem on the existence of extremum

If the expression

∫

�

δ2Uεd�−
∑

e

⎡

⎢
⎣
∫

�e

δsie(δũie−δuie)d�+
∫

� I
e

δsieδũied�

⎤

⎥
⎦

(31)

is uniformly positive (or negative) in the neighborhood of ui0,
where the displacement ui0 has such a value that�m(ui0) =
(�m)0, and where (�m)0 stands for the stationary value of
�m , we have

�m ≥ (�m)0 [or �m ≤ (�m)0] (32)

in which the relation that ũie = ũi f is identical on �e ∩ � f

has been used. This is due to the definition in Eq. (13) of
Sect. 4.

Proof The proof of the theorem on the existence of extre-
mum may be completed by way of the so-called “second
variational approach” [29]. In doing this, performing vari-
ation of δ�m and using the constrained conditions (1), we
find

δ2�m =
∫

�

δ2Uεd�−
∑

e

⎡

⎢
⎣
∫

�e

δsie(δũie − δuie)d�

+
∫

� I
e

δsieδũied�

⎤

⎥
⎦ = expression (31) (33)

Therefore the theorem has been proved from the sufficient
condition of the existence of a local extreme of a functional
[29]. This completes the proof. ��

4.3.2 Stiffness equation

Having independently defined the intra-element fields and
frame fields in a particular element (see Fig. 3), the next
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step is to generate the element stiffness equation from the
proposed functional.

The functional�me corresponding to a particular element
e of the present problem can be written as

�me = 1

2

∫

�e

σi jεi j d�−
∫

�e

b̄i ui d�−
∫

�s
e

s̄i ũi d�

+
∫

�e

si (ũi − ui ) d� (34)

Appling the Gaussian theorem again to the above functional
and considering the equilibrium equation σi j, j + b̄i = 0, we
have the final expression for the HFS finite element model

�me = −1

2

∫

�e

si ui d� − 1

2

∫

�e

b̄i ui d�−
∫

�s
e

s̄i ũi d�

+
∫

�e

si ũi d� (35)

In the absence of body forces, substituting Eqs. (14), (17)
and (18) into the functional (35) produces

�me = −1

2
{ce}T [He] {ce} − {de}T {ge} + {ce}T [Ge] {de}

(36)

in which

[He] =
∫

�e

[Q]T [N] d�

[Ge] =
∫

�e

[Q]T [Ñ]d� (37)

{ge} =
∫

�s
e

[Ñ]T {s̄} d�

To enforce inter-element continuity on the common element
boundary, the unknown vector {ce} should be expressed in
terms of nodal DOF {de}. The minimization of the functional
�me with respect to {ce} and {de}, respectively, yields

∂�me

∂ {ce}T = − [He] {ce} + [Ge] {de} = 0

∂�me

∂ {de}T = [Ge]T {ce} − {ge} = 0
(38)

from which the optional relationship between {ce} and {de},
and the stiffness equation can be produced

{ce} = [He]−1 [Ge] {de}
[Ke] {de} = {ge}

(39)

where [Ke] = [Ge]T [He]−1 [Ge] stands for the element stiff-
ness matrix, which is symmetric.

It is worth pointing out that the evaluation of right-handed
vector {ge} in Eq. (39) is the same as that in the conven-
tional FEM, so it is convenient to incorporate the proposed
HFS-FEM into the standard FEM program. Besides, the
stress and traction estimations are directly computed from
approximations (16) and (17), respectively. The boundary
displacements, sufficient to draw the deflected shape of the
structure, are computed directly from approximation (18).
However, the displacements at interior points of the hybrid
stress elements have to be determined from approximation
(14) with recovered rigid-body modes in each element by
post-processing operations as below.

4.4 Recovery of rigid-body motion

By checking the above procedure, we know that the solu-
tion fails if any of the functions u∗

li is in a rigid body motion
mode. As a consequence, the matrix [He] is not in full rank
and becomes singular for inversion. Therefore, special care
should be taken to discard all rigid body motion terms from
{ue} to prevent the element deformability matrix [He] from
being singular.

However, it is necessary to reintroduce the discarded rigid-
body modes in the internal field {ue} of a particular element
and then to calculate corresponding rigid-body amplitude
by requiring local or average fitting, for example, the least
squares adjustment of {ue} and {ũe}. In this case, these miss-
ing terms can easily be recovered by setting for the aug-
mented internal field [2,3,5]

{
ûe
} = {ue} +

[
1 0 x2

0 1 −x1

]
{c0} (40)

where the undetermined rigid-body amplitude vector {c0}
can be calculated using the least square matching of {ue} and
{ũe} at n element nodes

n∑

i=1

[(
ui

1 − ũi
1

)2 +
(

ui
2 − ũi

2

)2
]

= min (41)

which finally yields

[Re] {c0} = {re} (42)

with

[Re] =
n∑

i=1

⎡

⎣
1 0 x2i

0 1 −x1i

x2i −x1i x2
1i + x2

2i

⎤

⎦ (43)

{re} =
n∑

i=1

⎧
⎨

⎩

di
e1 − ui

e1
di

e2 − ui
e2(

di
e1 − ui

e1

)
x2i − (di

e2 − ui
e2

)
x1i

⎫
⎬

⎭
(44)

As a result, once the nodal field {de} and the interpolation
coefficient {ce} are determined by solving Eqs. (39), then
{c0} can be evaluated from Eq. (42). Finally, the complete
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displacement field
{
ûe
}

at any interior point in a particular
element can be obtained by means of Eq. (40).

5 Numerical assessment

A number of examples are presented to illustrate the effec-
tiveness of the proposed method in this section. Firstly, the
patch test is carried out, and then the accuracy and stabil-
ity of the proposed numerical model are studied by con-
sidering uniform pressure applied to the internal boundary
of a cylinder. Subsequently, we consider a bimaterial prob-
lem to investigate the effect of mesh distortion and show
the feasibility of the proposed numerical method for treating
multi-material problems, by comparison with other Green’s-
functions-based methods such as the MFS and the BEM.
As the final example, an infinite plate with a circular hole
subjected to remote tension is studied to demonstrate the
appealing performance of the proposed special-purpose ele-
ment model.

Besides, for the purpose of error estimation and conver-
gence studies, the percentage relative error

Rerr(u) = |ue − un|
|ue| × 100% (45)

and the normalized Euclid norm error

Nerr(u) = 1

N

√√
√
√

N∑

i=1

(
ue

i − un
i

)2 (46)

are defined. In Eqs. (45) and (46), superscripts (e) and (n)
refer to the exact and numerical solutions, respectively. N is
the number of sample points.

5.1 Patch test

To conduct the patch test, a square of dimension [0, 1]×[0, 1]
is considered and a known linear displacement profile [27]

u1 = 2X1 + 3X2, u2 = 3X1 + 2X2 (47)

is specified on all boundaries.
In the present calculation, the patch test is carried out for

a plane strain state with E = 2.5 and ν = 0.25. The square
patch is modeled with one 8-node element and 5 random
interior points and 9 uniformly spaced interior points are
arranged in the domain. The displacements at the interior
points and the boundary tractions are computed for the pur-
pose of patch test. Table 1 lists the approximated displace-
ments of the internal points and they are compared with the
analytical solutions given by Eq. (47). It is observed that
the linear field can be approximated by the superposition of
finite number of the fundamental solutions with relatively
high accuracy. Moreover, the computed tractions along the

Table 1 Percentage relative errors at various internal points for the
patch test

Coordinate Rerr(u1)(×10−3) Rerr(u2)(×10−3)

(0.3404, 0.5060) 0.0000 0.0000

(0.5853, 0.6991) 0.0000 0.0000

(0.2238, 0.8909) 6.4096 4.0763

(0.7513, 0.9593) 0.0000 2.3966

(0.2551, 0.5472) 0.0000 0.0000

(0.2500, 0.2500) 0.0000 0.0000

(0.2500, 0.5000) 0.0000 0.0000

(0.2500, 0.7500) 3.6364 4.4444

(0.5000, 0.2500) 0.0000 0.0000

(0.5000, 0.5000) 0.0000 0.0000

(0.5000, 0.7500) 0.0000 0.0000

(0.7500, 0.2500) 4.4444 3.6364

(0.7500, 0.5000) 0.0000 0.0000

(0.7500, 0.7500) 0.0000 0.0000

Fig. 5 Traction distributions over the square boundary for the patch
test

boundary and the related exact solutions are shown in Fig. 5,
in which the horizontal axis denotes the length of the bound-
ary starting from the origin and measuring in anti-clock direc-
tion. The figure shows that the results vary smoothly and
agree with the exact solutions on the boundary. So it is very
appealing that the patch test is passed successfully.

5.2 Thick-walled cylinder under interior pressure

Consider a long, thick-walled cylinder with inner radius
ri = 5 and outer radius ro = 20. Uniform pressure p = 10 is
applied to the inner circular boundary. The elastic modulus
E is assumed to be 1000, and the Poisson’s ratio ν to be 0.3.
The analytical solutions of the displacements and stresses
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Fig. 6 A quarter model of the thick-walled cylinder under uniform
internal pressure

conforming to plane strain condition are given by

ur = 1 + ν

E

[
− A

r
+ 2C (1 − 2ν) r

]
, uθ = 0 (48)

and

σr = A

r2 + 2C, σθ = − A

r2 + 2C, σrθ = 0 (49)

where

A = − r2
i r2

o p

r2
o − r2

i

, C = r2
i p

2
(
r2

o − r2
i

)

Considering the axisymmetric property of the problem, only
one quarter of the solution domain is studied (see Fig. 6) and
nine 8-node elements shown in Fig. 7 are utilized to model
the domain of interest.

In the proposed model, it is important to explore the influ-
ence of the position of source points on the accuracy and
stability of numerical results. Figs. 8 and 9 show respec-
tively variations of the hoop stress and the condition number
of matrix H with parameter γ . As expected, it can be seen
from these two figures that the results of both stress and
condition number are stable within a wide range of param-
eter γ (2 < γ < 10). Generally, for the small value of
γ (γ < 2), which means that the source points are close
to the element boundary, the disturbance of singularity of
the fundamental solutions on numerical accuracy may be
strong. Conversely, too large γ means that the source points
are remote from the element boundary, so that the potential
round-off error in floating point arithmetic will produce the
matrix H with nearly same elements and thus causes a larger

Fig. 7 Configuration of mesh division with nine 8-node elements for
both HFS-FEM and ABAQUS

Fig. 8 The variation of hoop stress caused by different γ

Fig. 9 The variation of condition number caused by different γ
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Fig. 10 Radial displacement along the radial direction

condition number of the H matrix, which is disadvantageous
to the inverse manipulation of the H matrix [30]. Thus, it is
suggested to choose parameter γ in the range [2,10]. In the
following computation, the parameter γ is chosen to be 4 to
produce reliable results. Results for the radial displacement,
hoop and radial stress components are plotted in Figs. 10
and 11, respectively, from which we can see that the pro-
posed HFS-FEM and ABAQUS with same mesh provide
almost the same displacements along the radial direction,
whereas for stress distribution adjacent to the internal bound-
ary there are some discrepancies between the results from
the two approaches. It appears that the proposed approach
has superior accuracy to that of ABAQUS. Further, to assess
the performance of the proposed HFS-FEM relative to HT-
FEM, numerical results from both HFS-FEM and HT-FEM
are presented in Table 2, in which the results of HT-FEM
is obtained with the available codes in Reference [3] and
the number of Trefftz functions for each element is taken to
be 15. It can be seen from Table 2 that the performance of
the HFS-FEM is better than that of the HT-FEM with same
mesh density in this example. Finally, to demonstrate the
convergence performance of the proposed approach, three
different meshes of 4, 9, 16 elements are used for modeling
the problem. Fig. 12 displays the convergence behavior of
radial displacement and radial and hoop stresses with mesh
refinement. The convergent rate is indicated by the normal-
ized error given in Eq. (46). Although Fig. 12 does not show
a uniform convergent rate, the error of the results from the
proposed formulation decreases along with an increase in the
number of nodal DOFs (two DOFs at each node).

5.3 Bimaterial problem

As the third example, we consider a bimaterial problem
taking from Ref. [31] as shown in Fig. 13a, subject to

Fig. 11 Hoop and radial stress components along the radial direction

Table 2 Numerical comparison of the present HFS-FEM and HT-FEM

r

5.000 6.496 10.394 16.078 20.000

HFS-FEM
ur 0.071 0.056 0.037 0.027 0.024

σr −9.930 −5.679 −1.799 −0.366 0.010

σθ 11.312 6.975 3.127 1.697 1.342

HT-FEM
ur 0.070 0.056 0.037 0.027 0.024

σr −7.076 −5.731 −1.817 −0.372 0.084

σθ 8.118 7.059 3.144 1.702 1.231

EXACT
ur 0.071 0.056 0.037 0.027 0.024

σr −10.000 −5.652 −1.802 −0.365 0.000

σθ 11.333 6.985 3.135 1.698 1.333

the Dirichlet boundary conditions which are applied by the
following exact solutions
{

uI
1 = uII

1 = X1

uI
2 = uII

2 = X2
(50)

with E I = 2.10, νI = 0.3 and E II = 2.70, νII = 0.1 for
plane stress state. This presents a combination of steel and
a higher stiffness material and gives constant stress distri-
butions in each domain, i.e. σ i

11 = σ i
22 = Ei/(1 − νi ) and

σ i
12 = 0 for i = I, II.

To investigate the sensitivity of the proposed formulation
to mesh distortion, the solution domain is modeled utiliz-
ing 16 8-node elements with a different distortion parameter
e (see Fig. 13b). The results displayed in Figs. 14 and 15
show that the presented approach has very good accuracy for
the case of a bimaterial problem compared to the available
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Fig. 12 Convergence demonstration of the presented method

Fig. 13 Illustration of (a) bimaterial modeling and (b) distorted mesh

Fig. 14 Displacement variation along the interface for distorted and
undistorted hybrid element meshes

Fig. 15 Stress variation along the interface for distorted and undis-
torted hybrid element meshes

analytical solutions, and the maximum percentage relative
error in stressσ11 is just 1.4%, even for highly distorted mesh,
that is e = 0.10. The proposed hybrid formulation exhibits,
therefore, remarkable insensitivity to mesh distortion. Simul-
taneously, the feasible treatment for multi-material cases is
displayed in the solution procedure of the HFS-FEM, com-
pared to other Green’s-functions-based methods such as the
MFS and BEM, in which extra equations must be supplied
to meet the requirement of interface continuity.

5.4 Plate with a circular hole under tension

The stress concentration near a hole is a critical issue for
the strength of many engineering structures, and the purpose
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Fig. 16 Square plate with centered circular hole under remote tension

of this example is to illustrate the mesh reduction technique
with a specially developed circular hole element in the pre-
sented method. Fig. 16 presents a 3 × 3 square plate with

a central circular hole subjected to uniaxial uniform tensile
load p in the X1 direction. The rim of the hole is free of
forces. In particular, when the outer edges tends to infinity,
corresponding analytical solutions are available in the polar
coordinate (r, θ) by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σr = q
2

(
1 − a2

r2

)
+ q

2

(
1 + 3a4

r4 − 4a2

r2

)
cos 2θ

σθ = q
2

(
1 + a2

r2

)
− q

2

(
1 + 3a4

r4

)
cos 2θ

σrθ = − q
2

(
1 − 3a4

r4 + 2a2

r2

)
sin 2θ

(51)

from which we can observe that the hoop stress at the upper
and lower critical points of the hole is tensile and three times
as high as the remote tensile stress, whereas at the left and
right ends of the hole the hoop stress is compressive and has
a value equal to the remote stress.

To simulate stress concentration on the hole boundary, we
first assume that the radius of the hole is a = 0.4, and a spe-
cial element with side length l = 0.85 is used in conjunction
with 32 conventional elements, as shown in Fig. 17, in the

Fig. 17 HFS-FEM mesh (a),
ABAQUS mesh (b), and special
circular hole element (c)
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Fig. 18 Variation of hoop stress on the rim of the circular hole

Table 3 Stress concentration factor at the upper point of the hole

Radius a Stress concentration factor
(

SCF = σθ
p

)
Rerr (SCF)

ABAQUS HFS-FEM

0.425 3.775 3.575 5.29%

0.400 3.678 3.636 1.14%

0.300 3.358 3.191 4.97%

0.200 3.156 3.131 0.79%

0.100 3.023 3.030 0.23%

0.050 2.978 3.007 0.97%

computation. Plane stress is assumed with E = 21000 and
ν = 0.3. The hoop stress along the hole boundary is plotted
in Fig. 18, in which the results from ABAQUS with 261
8-node quadrilateral elements in a 1/4 model are provided
for comparison. It is clear that the results of the proposed
approach agree well with those from ABAQUS: the stress
concentration factor at the upper point of the hole is 3.633 in
HFS-FEM whereas the value is 3.678 in ABAQUS. However,
the proposed HFS-FEM uses fewer elements than ABAQUS.

Next, to investigate the effect of the ratio of the radius of
the hole to the side length of the plate on the performance of
the special circular hole element, we keep the mesh invari-
able, and solve the problem by changing the radius of the
hole. The numerical results for stress concentration at the
upper point of the hole are listed in Table 3. Good agree-
ment is observed between the HFS-FEM and ABAQUS, and
the maximum relative error is about 5%. This means that a
larger element can be used to enclose a circular hole without
a dramatic decrease of accuracy. Moreover, it can be seen
that as the hole becomes smaller, the maximum stress con-
centration factor tends to 3.0, which corresponds to the ana-
lytical solution (51) in an infinite domain. Numerical results

show that the proposed approach can deal with local defects
effectively by using proper special fundamental solutions
with less meshing effort. Moreover, it can be seen that the
adjustment of the radius of circular hole doesn’t require the
mesh regeneration in the proposed algorithm.

6 Conclusions

Details of the implementation of the proposed fundamental
solution-based hybrid finite element formulation with stan-
dard elements and special circular hole element were dis-
cussed in this paper. As in the fundamental solutions-based
method such as boundary element method, all integrals in the
present formulation are performed along the element bound-
ary only, instead of in the entire element domain of inter-
est. The hybrid functional developed in the present method
enables us to construct arbitrarily shaped elements and guar-
antee the continuity conditions of fields between adjacent
elements. The numerical examples considered demonstrate
that the hybrid approach presented can achieve stable results
of good accuracy with a relatively small number of elements.
The exciting feature of the HFS-FEM, perhaps, is that the use
of special elements to model critical regions around a hole
is especially effective and can significantly reduce modeling
effort and computing cost during analysis. Simultaneously
the algorithm can avoid mesh regeneration when the radius
of circular hole is changed.
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