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a b s t r a c t

This paper firstly derives the nonsingular general solution of heat conduction in nonlinear functionally

graded materials (FGMs), and then presents boundary knot method (BKM) in conjunction with Kirchhoff

transformation and various variable transformations in the solution of nonlinear FGM problems. The

proposed BKM is mathematically simple, easy-to-program, meshless, high accurate and integration-free,

and avoids the controversial fictitious boundary in the method of fundamental solution (MFS). Numerical

experiments demonstrate the efficiency and accuracy of the present scheme in the solution of heat

conduction in two different types of nonlinear FGMs.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded materials (FGMs) are a new generation of
composite materials whose microstructure varies from one mate-
rial to another with a specific gradient. In particular, ‘‘a smooth
transition region between a pure ceramic and pure metal would
result in a material that combines the desirable high temperature
properties and thermal resistance of a ceramic, with the fracture
toughness of a metal’’ [1]. In virtue of their excellent behaviors,
FGMs have become more and more popular in material engineering
and have featured in a wide range of engineering applications
(e.g., thermal barrier materials [2], optical materials [3], electronic
materials [4] and ever biomaterials [5])

During the past decades extensive studies have been carried out
on developing numerical methods for analyzing the thermal beha-
vior of FGMs, for example, the finite element method (FEM) [6], the
boundary element method (BEM) [7,8], the meshless local boundary
integral equation method (LBIE) [9], the meshless local Petrov–
Galerkin method (MLPG) [10–13] and the method of fundamental
solution (MFS) [14–16]. However, the conventional FEM is inefficient
for handling materials whose physical property varies continuously;
BEM needs to treat the singular or hyper-singular integrals [17,18],
which is mathematically complex and requires additional comput-
ing costs. It is worth noting that, with the exception of mesh-based
FEM and BEM, the other above-mentioned methods are classified to
the meshless method. Among these meshless methods, LBIE and
ll rights reserved.
MLPG belong to the category of weak-formulation, and MFS belongs
to the category of strong-formulation.

This study focuses on strong-formulation meshless methods
due to their inherent merits on easy-to-program and integration-
free. The MFS distributes the boundary knots on fictitious boundary
[19] outside the physical domain to avoid the singularities of
fundamental solutions, and selecting the appropriate fictitious
boundary plays a vital role for the accuracy and reliability of the
MFS solution, however, it is still arbitrary and tricky task, largely
based on experiences.

Later, Chen and Tanaka [20] develops an improved method,
boundary knot method (BKM), which used the nonsingular general
solution instead of the singular fundamental solution and thus
circumvents the controversial artificial boundary in the MFS. This
study first derives the nonsingular general solution of heat con-
duction in FGM, and then applies the BKM in conjunction with the
Kirchhoff transformation to heat transfer problems with nonlinear
thermal conductivity. A brief outline of the paper is as follows:
Section 2 describes the BKM coupled with Kirchhoff transformation
for heat conduction in nonlinear FGM, followed by Section 3 to
present and discuss the numerical efficiency and accuracy of the
proposed approach in two typical examples. Finally some conclu-
sions are summarized in Section 4.
2. Boundary knot method for nonlinear functionally graded
material

Consider a heat conduction problem in an anisotropic hetero-
geneous nonlinear FGM, occupying a 2D arbitrary shaped region
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O�R2 bounded by its boundary G, and in the absence of heat
sources. Its governing differential equation is stated as

X2

i,j ¼ 1

@

@xi
Kij x,Tð Þ

@TðxÞ

@xj

� �
¼ 0, xAO ð1Þ

with the following boundary conditions.
Dirichlet/essential condition:

TðxÞ ¼ T , xAGD ð2aÞ

Neumann/natural condition:

qðxÞ ¼�
X2

i,j ¼ 1

Kij
@TðxÞ

@xj
niðxÞ ¼ q, xAGN ð2bÞ

Robin/convective condition:

qðxÞ ¼ heðTðxÞ�T1Þ, xAGR ð2cÞ

where T is the temperature, G¼GDþGNþGR and K ¼

fKijðx,TÞg1r i, jr2 denotes the thermal conductivity matrix which
satisfies the symmetry (K12 ¼ K21) and positive-definite
(DK ¼ detðKÞ ¼ K11K22�K2

1240) conditions. nif g the outward unit
normal vector at boundary xA@O,he the heat conduction coefficient
and T1 the environmental temperature.

In this study, we assume the heat conductor is an exponentially
functionally graded material such that its thermal conductivity can
be expressed by

Kij x,Tð Þ ¼ a Tð ÞKije
P2

i ¼ 1
2bixi , x¼ x1,x2ð ÞAO ð3Þ

in which a Tð Þ40,K ¼ fKijg1r i,jr2 is a symmetric positive definite
matrix, and the values are all real constants. b1 and b2 denote
constants of material property characteristics.

By employing the Kirchhoff transformation

fðTÞ ¼
Z

aðTÞdT ð4Þ

Eqs. (1) and (2) can be reduced as the following form:
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FT ðxÞ ¼fðTÞ, xAGD ð6aÞ
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qðxÞ ¼ he FT ðxÞ�jðT1Þ
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where FT ðxÞ ¼jðTðxÞÞand the inverse Kirchhoff transformation

TðxÞ ¼j�1 FT ðxÞð Þ ð7Þ

And then we derive the nonsingular general solution of Eq. (5)
by two-step variable transformations:

Step 1: To simplify the expression of Eqs. (5), let FT ¼

Ce�
P2

i ¼ 1
biðxiþ siÞ. Eq. (5) can then be rewritten as follows:
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where l¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP2
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j ¼ 1 biKijbj

q
. Since e

P2

i ¼ 1
bi xiþ sið Þ40. The Trefftz

functions of Eq. (8) are equal to those of anisotropic modified
Helmholtz equation.
Step 2: To transform the anisotropic Eq. (8) into isotropic one, we set
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where DK ¼ det K
� �
¼ K11K22�K

2

1240.
It follows from Eq. (8) that

X2
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@yi@yi
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 !
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Therefore, Eq. (10) is the isotropic modified Helmholtz equation,
the corresponding nonsingular solution can be found in [20]. Then
the nonsingular solution of Eq. (8) can be obtained by using inverse
transformation (9),

uGðx,sÞ ¼�
1

2p
ffiffiffiffiffiffiffi
DK

q I0ðlRÞ ð11Þ

in which R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP2

i ¼ 1
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q
,r1 ¼ x1�s1,r2 ¼ x2�s2, where-

x,sare collocation points and source points, respectively, and I0

denotes the zero-order modified Bessel function of first kind.
Finally, by implementing the variable transformation

FT ¼Ce�
P2

i ¼ 1
bi xiþ sið Þ, the nonsingular solution of Eq. (5) is in

the following form:
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It is worth noting that the source points are placed on the
physical boundary by using the present nonsingular general
solution uG.

In the boundary knot method, the solution of Eqs. (5) and (6) is
approximated by a linear combination of general solutions with the
unknown expansion coefficients as shown below:

F xð Þ ¼
XN

i ¼ 1

aiuG x,sið Þ ð13Þ

where faig are the unknown coefficients determined by boundary
conditions. AfterFðxÞ is obtained, the temperature solution T to Eqs.
(1) and (2) can be obtained using Eq. (7).

The heat flux can then be given by
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in which
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where I1 denotes the first-order modified Bessel function of
first kind.

In view of the general solution satisfying the governing Eq. (5), a
priori, the presented method only needs boundary discretization to
satisfy boundary conditions

Aa¼ b ð16Þ

in which

A¼

uGðxj,siÞ

Q ðxj,siÞ

Q ðxj,siÞ�heuðxj,siÞ

0
B@

1
CA ð17aÞ
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where source points siA@O, i¼ 1,2,. . .,N, coinciding with the
collocation points xjA@O, j¼ 1,2,. . .,M. In other words, unlike the
MFS, the BKM places the source points and collocation points on the
same set of boundary knots, and M¼N.
3. Numerical results and discussions

In this section, the efficiency, accuracy and convergence of the
proposed BKM are assessed by considering two heat conduction
problems in functionally graded materials (FGMs). The perfor-
mance of the proposed method is compared with MFS solution and
analytical solution. Rerr(w) and Nerr(w) defined below represent
average relative errorand normalized error, respectively:

RerrðwÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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XNT
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NerrðwÞ ¼
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max

1r irNT
wðiÞ
		 		, ð19Þ

where u ið Þ and u ið Þ are the analytical and numerical solutions at xi,
respectively, and NT denotes the total number of uniform test
points in the interest domain. Unless otherwise specified, NT is
taken to be 100 in all following numerical cases.

Example 1. Consider the heat transfer in a nonlinear exponential
heterogeneous FGM [16] whose coefficients of heat conduction are
Fig. 1. (a) The condition number of the interpolation matrix and accuracy variation of (b)

of boundary knots by BKM and MFS with different fictitious boundary parameters (d¼
defined by Eq. (3) with aðTÞ ¼ eT . This example always occurs in
high-temperature environments. Using Kirchhoff transformation,
we can obtain FT ¼ eT , T ¼j�1ðFT Þ ¼ lnðFT Þ.

Let us consider an orthotropic material in the squareO¼ ð�1,1Þ�

ð�1,1Þ in which K ¼
2 0

0 1

� �
and b1 ¼ 0,b2 ¼ 1. The analytical

solution is

TðxÞ ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Tx=Tr

2Tr

r
sinhðTrÞe�Ty

 !
ð20aÞ

FT ðxÞ ¼ eTðxÞ ð20bÞ

where Tx¼ x1=
ffiffiffi
2
p
�1, Ty¼ x2, Tr¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tx2þTy2

p
.

Fig. 1(a) shows the condition number of interpolation matrix in
Example 1 with respect to the number of boundary knots by using
BKM and MFS with different fictitious boundary parameters. The
condition number Cond in Fig. 1(a) is defined as the ratio of the largest
and smallest singular value. It is observed that with increasing
boundary points, the condition numbers of both the BKM and the
MFS grow rapidly, which downplay these two methods. This ill-
conditioned matrix problem is always found in the other collocation
techniques, such as the Trefftz method [21] and the Kansa method
[22]. There are several ways to handle this ill-conditioning problem,
including the domain decomposition method [23], preconditioning
technique based on approximate cardinal basis function, the fast
multiple method [24] and regularization methods [25] such as the
truncated singular value decomposition (TSVD).

This study will use the TSVD to mitigate the effect of bad
conditioning in the BKM and MFS solutions, and the generalized
cross-validation (GCV) function choice criterion is employed to
estimate an appropriate regularization parameter of the TSVD.
Our computations use the MATLAB SVD code developed by
Hansen [25].
temperature, heat flux in (c) x1 and (d) x2 directions of Example 1 against the number

2 and 4).



Fig. 2. Isolines of normalized errors of temperature by 20 boundary nodes BKM in

Example 1.

Fig. 3. Isolines of normalized errors of heat flux in the x1 direction by 20 boundary

nodes BKM in Example 1.

Fig. 4. Isolines of normalized errors of heat flux in the x2 direction by 20 boundary

nodes BKM in Example 1.
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By implementing BKM and MFS coupled with the TSVD to
solve the ill-conditioning matrix system, Fig. 1(b)–(d) shows the
numerical accuracy variation of temperature, heat flux in the x1 and
x2 directions, respectively, against the number of boundary collo-
cation points N. As compared with MFS in Example 1, in general, the
BKM has roughly similar degrees of accuracy compared with the
MFS in heat flux fields. It can be found from Fig. 1 that the BKM
yields more accurate solution than MFS with few knots, however,
with further increasing knots, the BKM solution can not improve
the accuracy better than MFS. This may result from that the BKM
interpolation matrix becomes much worse than MFS.

Figs. 2–4 show the distribution of normalized errors of tem-
perature and heat flux in the x1 and x2 directions, respectively, by
using 20 boundary knots BKM in Example 1. It can be observed that
the BKM results are in good agreement with the analytical solution.
Nevertheless the BKM solution errors tend to become worse from
the central to the boundary-adjacent regions, especially at bound-
ary corners.
Example 2. This example considers another type of nonlinear
exponential heterogeneous FGM in the same geometry
O¼ ð�1,1Þ � ð�1,1Þ. In practice, the dependence of the thermal
conductivity on the temperature may be chosen as linear,
i.e., aðTÞ ¼ 1þmT , where m is a constant. By using Kirchhoff
transformation, we can obtain FT ¼ Tþðm=2ÞT2, T ¼j�1ðFT Þ ¼

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2mFT

p
=m.

The analytical solution in this example is

TðxÞ ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2mFT ðxÞ
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where

K ¼
1 0:25

0:25 3

� �

and b1 ¼ 0:1,b2 ¼ 0:8, andm¼ 1=4.
As in Example 1, Fig. 5(a) shows that the condition numbers of

BKM and MFS interpolation matrices in Example 2 increase rapidly
with the increasing boundary knots. Fig. 5(b)–(d) shows the
convergent rate of temperature and heat flow in Example 2 by
using BKM and MFS coupled with the TSVD. From these figures, it
can be seen that the BKM has better performance with few
interpolation knots than MFS. It is noted that the BKM solution
accuracy improves evidently with modestly increasing boundary
knots, but enhances slowly with a relatively large number of nodes
characterized by visible oscillations, due to the severely ill-condi-
tioned matrix.

On the other hand, the fictitious boundary in the MFS affects its
numerical accuracy and stability in a remarkable way. It can be
observed from the above figures that the MFS with a larger
parameter d (d¼4), which characterizes the distance between



Fig. 6. Isolines of normalized errors of temperature by 16 boundary nodes BKM in

Example 2.

Fig. 5. (a)The condition number of the interpolation matrix and accuracy variation of (b) temperature, heat flux in (c) x1 and (d) x2 directions of Example 1 against the number

of boundary knots by BKM and MFS with different fictitious boundary parameters (d¼2 and 4).

Fig. 7. Isolines of normalized errors of heat flux in the x1 direction by 16 boundary

nodes BKM in Example 2.
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the fictitious and real boundaries, can obtain more accurate
solution than with small parameter d¼2 in this example. However,
in some cases the placement of the fictitious boundary far from
the physical domain can lead to numerical instability or ever
wrong solutions in the MFS [26]. In practical applications, the
determination of the fictitious boundary is still quite tricky and
often troublesome, especially in multi-connected and irregular
domain problems. Therefore, the proposed method has the advan-
tage over the MFS in that no fictitious boundary is required at all.
Figs. 6–8 represent the distribution of normalized errors of
temperature and heat flux in the x1 and x2 directions, respectively,
by using 16 boundary knots BKM in Example 2. It can be found that
the proposed method provides very accurate approximations of the
temperature and heat flux fields. As in Example 1, the errors at
boundary-adjacent region are also worse than the central region. It
is noted that this phenomena is always found in the other
collocation techniques, such as the MFS, the Trefftz method and
the Kansa method.



Fig. 8. Isolines of normalized errors of heat flux in the x2 direction by 16 boundary

nodes BKM in Example 2.
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4. Conclusions

This paper presents the nonsingular general solution for
two-dimensional heat conduction problems in exponential
FGMs by way of the Kirchhoff transformation and coordinate
transformations. The boundary knot method in conjunction with
the truncated singular value decomposition is used for heat
conduction analysis in nonlinear FGMs. Numerical demonstrations
show that the proposed BKM is a competitive boundary collocation
numerical method for the solution of heat conduction in nonlinear
FGMs, which is mathematically simple, easy-to-program, mesh-
less, high accurate and integration-free, and avoids the controver-
sial fictitious boundary in the MFS. Future extension of the
proposed method can be made to cases of three-dimensional
composite materials [27] and transient heat transfer problems in
FGMs [10,28,29].
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