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Abstrac-Based on a variational principle, a new approach to derive the exact boundary equation for 
the analysis of nonlinear Reissner plates and a related existing criterion for the solution of the boundary 
integral equation is presented in this paper. In this procedure, the boundary and the domain of the plate 
are discredited to solve the nonlinear problems. All unknown variables are at the boundary. Numerical 
results are also presented here to illustrate the method and demonstrate its effectiveness and accuracy. 

NOTATION 

5Eh/12(1 + v) 
a part of boundary XJ of the solution domain G on 
which the deflection w is prescribed; C, er al. can be 
defined similarly 
Young’s modulus 
core shear modulus 
bending moment tensor 
unit outward normal to Kt 
membrane force tensor 
lateral distributed load 
transverse shear force 
unit tangent to the boundary aR 
plate thickness 
in-plane displacement 
strain energy density 
lateral deflection 
Poisson’s ratio 
average rotation of the normal to mid-surface in ith 
direction 
over a symbol denotes prescribed value 

INTRODUCTION 

Recently, several researchers have investigated the 
finite deformation behaviour of plates, such as 
Kamiya et al. [l], Tanaka [2], Qin [3] for thin plates 
and Lei et al. [4] for moderately thick plates. In the 
work reported by Lei et al. [4], a boundary element 
model for analysing the finite deflection of an 
isotropic plate taking into account the transverse 
shear deformation was deduced by way of a weighted 
residual method. In the course of derivation, the 
nonlinear terms are treated as a pseudo-transverse 
distributed load, which means that the nonlinear 
terms are considered as known external loads in the 
analysis. 

8 Present address: Department of Engineering Structure, 
Sembawang Bethlehem Ltd. 50 Admiralty Road East, 
Singapore 2775, Republic of Singapore. 

In this study, a set of exact boundary integral 
equations of a nonlinear Reissner plate are presented. 
Different from the previous work [4], here the non- 
linear terms are treated as dependent on unknown 
displacements and stresses, rather than the pseudo- 
load. Furthermore, the integral equation is derived 
on the basis of a variational method, not the weighted 
residual method. To make the derivation tractable, a 
modified variational functional for the analysis of a 
geometrically nonlinear plate and the existing cri- 
terion of variational solution for the functional is 
presented originally. Finally as an application of the 
proposed method, a numerical example is illustrated. 
The results are in good agreement with already 
existing solutions. 

VARIATIONAL PRINCIPLES 

Consider an isotropic plate of uniform thickness h 
with mid-plane coordinates x and y. Indices i, j, k 
take values in the range { 1,2} and m takes values in 
the range {3,4,5}. The governing equations[4], 
which include the effects of transverse shear defor- 
mation, are 

R: NiiJ = 0 

1 
(14 

MijJ-Qi=O (lb] 

Q,, + NijW,ij + 4 = 0 (W 

Ni.j= Gh(u, + 24j.i + V(2Ukk + w,k W,ij)6/(1 - V)) (2) 

Mij = (1 - VP(4i.j + 4j.i + 2V6k&aij/( 1 - V))/2 (3) 

Qi = C( w,i - 4i) (4) 
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and the boundary conditions are described by 

c N,r: N,, = Niin,ni = m,,; 

c Nd Nn.v = Niinisi = mm 

c M,,: Al,, = M,,n,n, = ii;i,; 

C,,,,v : M,,,$ = Miinisi = ii-i,, 

CR: R,= Qini+ N,w,,+ N,,w,,= K, (5) 

CUn : u, = uini = U,; C,,: u, = uisi = tis 

Qtj: (Pi&=@‘.; ccp,: (Ps=(PiSi=cj3.r; 

c,,. : w = kc (6) 

(~~=c,uc,,=c,uc~,=c,,uc,, 

where (1) are the equilibrium equations, (2), (3) and 
(4) are constitutive equations, (5) and (6) the bound- 
ary conditions and all unspecified symbols are listed 
in the Notation at the beginning of the paper. 

BOUNDARY INTEGRAL EQUATION 

In what follows we derive a set of exact boundary 
integral equations for a nonlinear Reissner plate by 
way of a modified variational principle. To start with, 
we construct a functional l7; as below 

n;=n,+ 
s 

(4 - u,)N, dc + 
s 

(t7, - u,)N, dc 
‘0” CU., 

+ 
s 

(c% - (in )W dc + 
I 

(& - cp. )M, dc 
W” CVS 

+ 
s 

(E - w)R,dc (7) 
cu 

in which assume that (2)-(4) are identically satisfied. 

Lemma 1 

If the inequality 

- r Sw6R,dc 30 (8) 
J ~8% 

holds in the neighbourhood of the solution of (l)-(6), 
we have 

n; 2 n;,, (9) 

where L’ ;, represents the stationary value of ll ; , and 
the equals sign holds if and only if the arguments of 
the functional Lr; are at the critical point. 

Proof 

Taking the variation of Hi, we see 

i5l7; = { - NijJ6~ - (Mij, - Q)d$i 

z1 

- (Qi., + WjW,ij + q)aWI dfI 

+ 
s 

(G - w)SR, dc + (4” - (in PM, dc 
c. 

+ c (N, - &)du, dc 

sn;-- (2) (3) 0 +(l), (5) and (6), (11) 

which means that (l), (5) and (6) are the stationary 
conditions of II;. Consequently calculating the 
second variation of n;, one obtains 

b217; = 
s 

a2U dQ + the left hand side 
I-I 

of inequality (8). (12) 

It should be noted, here, that the second variation 
S2U in (12) is with respect to variable strain, not 
directly to the displacement. So a2U > 0. a217; will 
be, then, uniformly positive if (8) holds, and lemma 1 
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has been proved from the sufficient condition of local and 3) or the rotations (for q = 4,s) at the field point 
extreme of a functional [5]. Q of an infinite plate when a unit point force (for 

Based on the functional II;, we obtain: p = 1, 2 and 3) or a unit point couple (for p = 4, 5) 

Theorem 1 
is applied at the source point P. For the linear plate 
boundary expression, the fundamental solutions have 

The solutions of (l)-(6) satisfy the following been given in [8,9]. Obviously the membranous 
boundary integral equations 

ax, = - 
s 

f ~,~w,~N;‘~‘dfI 
n 

+ 
5 

(u$‘“‘& - u, N,*“‘) dc 
(‘N” 

+ 
s 

(u,*‘“‘N, - u, NzCk’) dc 
CN”.< 

+ 
s 

(u:‘~’ N, - I& NPk’) dc 
C’O” 

+ 
s 

(afCk’ N, - CS N;tk’) dc 
CO.< 

Ix, = 
5 I-I 

(w *@‘)q - Nij w,~ w,:(“‘)) dC2 

+ 
s 

(cpM,-cpJ%)dc 
CMn 

+ 
s 

(w$‘“‘K, - w@~)) dc 
CR 

+ 
s 

(w *(“‘JR, - GQ;"")) dc 
Cr 

equations (la) and bending ones (1 b, Ic) are indepen- 
dent of each other in the case of linear elasticity, that 
is, x:cm) = 0 and xz(‘j = 0. Thus (11) can be further 
transformed into (13) and (14) by using the property 
of the fundamental vector {x}. The solutions of 
(l)-(6) satisfy (13) and (14) while the existing con- 
dition for the solution of integral equations (13) and 
(14) can be obtained from lemma 1. This completes 
the proof. 

BOUNDARY ELEMENT ANALYSIS 

In order to obtain a solution of (13) and (14) the 
boundary dR and the solution domain R of a plate 

(13) are, respectively, divided into a series of boundary 
elements and internal cells as in the usual BEM. After 
performing the discretization by the use of various 
kinds of boundary element (e.g., constant element, 
linear element or higher-order element), (13) and (14) 
become two sets of linear algebraic equations includ- 

ing the variables N,,, N,, a,,, a,, M,, M,,,, qL 4,, Q, 
w. Of the ten quantities, five need to be prescribed on 
the boundary points and the remaining five are to be 
determined. Since an incremental formulation may 
have a wider applicability to higher nonlinear prob- 
lems it is necessary to express (13) and (14) in 
incremental form. Denoting the incremental variable 
by the superimposed dot, (13) and (14) can be 
expressed in matrix form: 

[Ql{W + Pl{uI = 14 I UW 

Wl{W + [Gl{cp f = (4 1, U6b) 

where [Q], [S], [H] and [G] denote the coefficient 

(14) matrices which can be calculated in a usual way; while 

and the solution of (13) and (14) exists if inequality 
(8) holds, where ix> = {XI x2 x3 x4 x5) = 

{u, u2 w 4, b,} is a displacement vector, 1 a 
conventional boundary shape coefficient, and sym- 
bols (+)(K) and (*)(“‘) represent the related functional 
solution which are well-documented in [6] and [7]. 

Proof 

Noting that the displacement vector {x} in (10) is 
not constrained by the boundary condition (6), the 
quantity 6(x} can be arbitrarily assumed. Naturally 
let 

6(x} =E{x+}~)=(P,Q) @ = 1,2,. ..,5) (15) 

where t is infinitesimal. The components x: (P, Q) of 
{x*}~‘(P, Q) means the displacements (for q = 1, 2 

{R, } and {R,} contain the nonlinear and inhomo- 
geneous terms which can be deduced from eqns (13) 
and (14). To compute the nonlinear terms, an itera- 
tive procedure is required. An efficient iterative 
scheme given by Qin and Huan [6] will be adopted in 
the BE analysis. For the sake of conciseness, we omit 
those which are straightforward. 

NUMERICAL EXAMPLE 

The performance of the present element model is 
investigated by a benchmark problem. To study the 
convergence properties of the present approach, 16 
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Table 1. Central deflection (w/h) of the sandwich plate 

Q 10 20 30 40 

BP cells 0.720 1.311 1.692 1.917 
E El6 0.715 1.289 1.659 I.858 
&5 0.713 I.282 1.647 1.841 
Schmit and 0.70 I .26 1.62 1.82 
Manfortont 

t Values obtained from Fig. 4 on p. 1458 of [8]. 

constant elements on the boundary and three meshes 
of internal cell (3 x 3,4 x 4,5 x 5) are used. The 
convergence tolerance is L = 0.001. 

As an application of the proposed method, con- 
sider a plate consisting of two identical facings 
(E = 0.74 x lo6 kg/cm2, v = 0.3, side length 2a = 
127 cm) which is t = 0.381 cm thick and an alu- 
minium honeycomb core (G, = 0.35 x lo4 kg/cm2) 
which is h = 2.54~1 thick, and subjected to a 
uniform transverse load q; the boundaries of the 
square plate are fully clamped so that the imposed 
displacement boundary conditions are 

u, = u2 = ‘p, = (p2 = w = 0 on the whole boundary. 

Table 1 shows the results for central deflection versus 
load parameter 

Q = 12a3(l - v2)q/(th2E), 

and comparison is made with those obtained by 
Schmit and Manforton [8]. 

It can be seen from those tables that the results 
obtained by employing the present method agree 
excellently with those appearing in [8]. The numerical 
results seem inert to the varying internal mesh from 
the table. In the cause of computation, convergence 
was achieved with between 12 and 18 iterations for 
each loading increment. 

CONCLUDING REMARKS 

In this study, a general and effective method is 
presented for establishing the exact nonlinear bound- 
ary integral equation and for deriving the existing 
criterion of its solution. In fact, the method is based 
on a modified variational principle which is given in 
the paper. The approach shows that a boundary 
integral formulation can be exactly transformed from 
a modified variational functional. Meanwhile, it also 
reveals the intrinsic relations between the variational 
principle and the boundary integral equation. The 
numerical example shows that the aforementioned 
boundary element model is very effective for non- 
linear analysis of Reissner plates. 
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