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Abstract Using a recently established liquid crystal model
for vesicles, we present a theoretical method to analyze the
morphological stability of liquid crystal vesicles in an electric
field. The coupled mechanical–electrical effects associated
with elastic bending, osmotic pressure, surface tension, Max-
well pressure, as well as flexoelectric and dielectric proper-
ties of the membrane are taken into account. The first and
second variations of the free energy are derived in a com-
pact form by virtue of the surface variational principle. The
former leads to the shape equation of a vesicle embedded in
an electric field, and the latter allows us to examine the stabil-
ity of a given vesicle morphology. As an illustrative exam-
ple, we analyze the stability of a spherical vesicle under a
uniform electric field. This study is helpful for understand-
ing and revealing the morphological evolution mechanisms
of vesicles in electric fields and some associated phenomena
of cells.
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1 Introduction

Living cells can adapt to variations in their micro-environ-
ment by continuously altering their shapes and internal struc-
tures. The shape transitions of cell membranes under electric
fields are crucial for a wide range of critical physiological
functions (e.g., directed migration, adhesion, and differen-
tiation) and manipulation techniques (e.g., electroporation,
electrofusion, electrophoresis, electro-deformation and rota-
tion) of cells [1–8]. As a result, considerable attention has
been paid in the past decades to the critical conditions and
physical mechanisms underlying these phenomena and to the
processes of biomembranes associated with electric effects.
Full understanding of these issues will be not only of the-
oretical but also clinical importance for various biomedical
engineering applications (e.g., wound healing, cell repair of
bones, muscles and nerves) and other micro- and nano-bio-
techniques (e.g., separation, hybridization, delivery of mol-
ecules or drugs into cells).

Vesicles have been widely utilized as a representative
model of cells, both in experimental observations and theo-
retical analysis. Recent experiments have demonstrated that
vesicles in an electric field can undergo shape transitions
among sphere, prolate, and oblate, depending on the con-
ductivity of the surrounding medium and the electric field
frequency [9–11]. For example, Riske and Dimova [11]
observed that when subjected to a strong electric pulse a
vesicle assume have a disc-, square-, or tube-like shape or
other unusual morphologies. Rey [12] derived a membrane
shape equation that includes tension, bending, pressure, and
flexoelectric effects. However, there is still a lack of investi-
gation on the critical stability conditions of vesicles or cell
membranes that can predict such shape transitions.

Theoretically, the stability condition of a vesicle in an elec-
tric field can be derived from the electromechanical collapse
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6 L. Gao et al.

model, electrohydrodynamic instability model, or wave insta-
bility model [13]. Mitov et al. [14] theoretically investigated
the influence of an alternating electric field on the shape
and thermal fluctuations of giant vesicles. Their experiments
showed that at high frequencies vesicles deform into oblate
ellipsoids with the symmetry axis parallel to the electric
field, while at low frequencies they deform into prolate ones.
Accounting for the dielectric anisotropy of phospholipid ves-
icles, Peterlin et al. [15] analyzed the prolate-to-oblate tran-
sition of vesicle shape with the increase in the electric field
frequency. However, these established models have certain
restrictions in practical application due to various assump-
tions. In particular, they cannot interpret some important
experimental phenomena [10,11]. Very recently, Gao et al.
[16] proposed a more generic liquid crystal model for vesi-
cles under an arbitrary electric field. Their study revealed that
although the flexoelectric energy is only a small portion of
the total free energy, it plays a significant role in the morphol-
ogy transition of vesicles. On the basis of this model, they
developed an energetic phase field method to simulate vesicle
shape transitions under an electric field [17]. The formation
of several typical morphologies observed in experiments was
theoretically interpreted by analyzing the vanishing first var-
iation of the free energy functional. However, they did not
address the morphological stability of a vesicle exposed to
an electric field.

To predict the stability behavior of a vesicle shape, the sec-
ond variation of the energy functional must be considered.
Ou-Yang et al. [18] derived a second variation formulation of
the Helfrich free energy to investigate the stability of a spher-
ical bilayer under mechanical loading. Using a two-dimen-
sional model, Rosso et al. [19] computed the second variation
of the energy functional of a lipid vesicle adhering to a rigid
curved substrate, and studied the efficiency of adhesion of a
tubular vesicle with an extroverted bump or an introverted
groove. Brinkmann et al. [20] gave a stability criterion for
the wetting morphology of a droplet on a solid substrate by
deriving the second variation of the free energy of the sys-
tem. Most of these previous investigations are based on the
classical theory of differential geometry, which is quite com-
plex and case-dependent. Recently, Tu and Ou-Yang [21,22]
developed a more general and canonical geometric frame-
work to deal with such problems. Their surface variational
approach is based on the exterior differential form in modern
differential geometry theory [23]. One of its advantages is
that the derivations of shape equations and second variations
are general, without the restriction of a specific coordinate
system.

The present work aims to study the morphological stabil-
ity of vesicles in an electric field. The stability analysis is
based on a newly developed electromechanical liquid crystal
model of vesicles [16] combined with the theoretical frame-
work of Tu and Ou-Yang [21,22]. We account for such effects

as elastic bending, osmotic pressure, surface tension, flexo-
electricity, dielectricity, and Maxwell electric pressure. Both
the shape equation and stability conditions of vesicles are
obtained by way of the liquid crystal model. The stability of
a spherical vesicle under a uniform electric field is considered
as an illustrative example and analyzed in detail.

2 Free energy

According to the recently established electromechanical
model by Gao et al. [16], the Helmholtz free energy of a
vesicle is written as

F0 = Fbm + Ffm + Fdm + Fde + λ1(V − V0)

+ λ2(A − A0), (1)

where Fbm is the elastic energy due to bending, Ffm the flexo-
electric energy of the membrane, Fdm the dielectric energy
of the membrane, and Fde the dielectric energy of the elec-
trolyte. The two Lagrange multipliers λ1 and λ2 correspond
to the osmotic pressure �p and the surface energy γ , respec-
tively. V and A are the volume and surface area of the evolu-
tionary vesicle, with V0 and A0 being their pre-specified or
initial values, respectively.

The elastic bending energy is given by [24]

Fbm =
∫

�

[
1

2
k(2H + c0)

2 + kk K

]
dA, (2)

where � denotes the surface of the vesicle, k and kk are elas-
tic constants, H the mean curvature, K the Gauss curvature,
and c0 the spontaneous curvature.

The flexoelectric energy Ffm associated with the electro-
elastic coupling effects of the lipid membrane is written as
[25]

Ffm = −
∫

�

d∫

0

P fm · EdrdA, (3)

where d is the membrane thickness and E is the electric
field intensity. The polarization P fm caused by bending is
expressed as

P fm = −e11(∇ · n)n, (4)

where e11 is the flexoelectric coefficient and n is the outward
unit normal vector to the membrane surface.

The dielectric energy reads

Fdm = −1

2

∫

�

d∫

0

De · EdrdA, (5)

where the electric displacement De can be decomposed as

De = (ε⊥ + ε‖)Enn + ε⊥EuY ,u + ε⊥EvY ,v, (6)
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Morphological stability analysis of vesicles with mechanical–electrical coupling effects 7

where ε‖ and ε⊥ denote the anisotropic dielectric constants
parallel and normal to the n direction [25], respectively, Eu

and Ev are the intensities of the electric field in the Y ,u and
Y ,v directions. The parameterized function Y = Y(u, v)

describes the membrane surface shape in terms of two vari-
ables u and v, as shown in Fig. 1, which may have different
forms in different coordinates. The normal vector n and the
two tangential vectors Y ,u and Y ,v form a local orthogo-
nal coordinate system. We also denote guu = Y ,u · Y ,u and
gvv = Y ,v · Y ,v .

The dielectric energy of an electrolyte is expressed as

Fde = −
∫

�

1

2
εr

∣∣∇φ
∣∣2dV, (7)

where εr denotes the dielectric constant of the electrolyte and
φ the electric potential.

3 Variation of free energy

3.1 Surface variational method

The free energy defined in Eq. (1), which involves both
surface and volume integrals, is rewritten in the following
general form [21]

F =
∫

M

�(2H, K )dA + λ1

∫

V

dV , (8)

Fig. 1 Schematic of a vesicle described by a parameterized shape func-
tion Y = Y(u, v) subjected to a small disturbance δY (u, v)n

where M stands for the vesicle surface. The first surface var-
iation of the free energy of Eq. (8) can be derived as

δF =
∫

M

{
∂�

∂(2H)

[
2(2H2 − K )�3dA + d ∗ d�3

]

+ ∂�

∂K
(2K H�3dA + d∗̃d̃�3)

− (2H)�dA + λ1�3dA

}
. (9)

Here, �3 = δY (u, v) denotes a small variation of the surface
in the normal direction, as illustrated in Fig. 1, d ∗ d�3 =
∇2�3dA, d∗̃d̃�3 = ∇ · ∇̃�3dA, with d being the exterior
differential operator, ∗ the Hodge star, and ∗̃ the Gauss map-
ping of the Hodge star. Moreover, the second variation is

δ2 F =
∫

M

{
∂2�

∂(2H)2

[
2(2H2 − K )�3dA + d ∗ d�3

]

+ ∂�

∂K
K�3dA + ∂2�

∂K∂(2H)
(2K H�3dA + d∗̃d̃�3)

−
[

2H
∂�

∂(2H)
+ �

]
�3dA

}
δ3(2H)

+
{
−2

∂�

∂(2H)
�3dA + ∂2�

∂K∂(2H)

×
[
2(2H2 − K )�3dA + d ∗ d�3

]

+ ∂2�

∂K 2 (2K H�3dA + d∗̃d̃�3)

}
δ3(K )

+
[

2
∂�

∂(2H)
(2H2 − K ) + 2

∂�

∂K
K H

+ (−2H� + λ1)

]
�3δ3(dA)

+ ∂�

∂(2H)
δ3(d ∗ d�3) + ∂�

∂K
δ3(d∗̃d̃�3), (10)

where

δ3(2H) = 2(2H2 − K )�3 + ∇2�3,

δ3(K ) = 2K H�3 + ∇ · ∇̃�3,

δ3(d ∗ d�3) = [∇(2H�3) · ∇�3 + 2H�3∇2�3

− 2∇�3 · ∇̃�3 − 2�3∇ · ∇̃�3]dA,

δ3(d∗̃d̃�3) = [∇(8H2�3 + ∇2�3) · ∇�3

+ (8H2�3 + ∇2�3)∇2�3−∇(4H�3) · ∇̃�3

− 4H�3∇ · ∇̃�3 − ∇(2H�3) · ∇̄�3

− 2H�3∇ · ∇̄�3]dA,

∇ = gαβY ,α

∂

∂β
, ∇̃ = K L̄αβ gα

∂

∂β
,

∇2 = 1√
g

∂

∂α

(√
ggαβ ∂

∂β

)
,

(gαβ) = (gαβ)−1, (α, β) = (u, v).
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8 L. Gao et al.

Equations (9) and (10) simplify the differential geometry
approaches in the derivation of the first and second variations
of the free energy with surface effects, and hence the formu-
lations in Refs. [18–20] can be easily derived by using the
present scheme. In what follows, we will give the first and
second variations of a vesicle in an electric field.

3.2 First and second variations

Substituting Eq. (1) into Eq. (9), the first variation of a vesicle
with coupled mechanical–electrical effects is derived as

δF0 =
∮

[k(2H + c0)(2H2 − c0 H − 2K ) + λ1 − 2λ2 H

+ fi − fo + Uint Em H + 2e11 Eint Emn K ]�3dA

+
∮

(2k H + kc0 − e11 Eint Emn)d ∗ d�3. (11)

From the condition δF0 = 0, the Euler-Lagrange equation
for the shape for a vesicle under mechanical and electric fields
is obtained as

k(2H + c0)(2H2 − c0 H − 2K ) + λ1 − 2λ2 H

+∇2(2k H + kc0) + fi − fo + Uint Em H

+ 2e11 Eint Emn K − e11∇2 Eint Emn = 0, (12)

where

Uint Em =
d∫

0

[
(ε⊥ + ε‖)E2

n + ε⊥guu E2
u + ε⊥gvv E2

v

]
dr,

Eint Emn =
d∫

0

Endr = �φn, fi = εi

(
E2

in − 1

2
E2

i

)
,

fo = εo

(
E2

on − 1

2
E2

o

)
,

εi and εo are the dielectric constants of the inner and outer
electrolytes, Ei and Eo are the electric field intensities in the
inner and outer electrolytes, Ein = Ei · n and Eon = Eo · n
are the normal components of the electric field on the inner
and outer surfaces, respectively.

Substituting Eq. (1) into Eq. (10) and eliminating λ2 by
using the shape equation (12), the second variation is obtained
as

δ2 F0 =
∮

{[2k(−c0 K 2 −8H3 K + 8H5)+2e11 Eint Emn K 2

+ ( fi − fo + λ1 + ∇2G)K

− 2( fi − fo + λ1)H2]�2
3/H

+[(−2K H + c0 K + 12H3 + 2c0 H2)k

− e11 Eint Emn(K + 2H2)

− 1

2
( fi − fo + λ1 + ∇2G)]�3∇2�3/H

− 4G�3∇ ·∇̃�3 +k(∇2�3)
2 +G∇(2H�3) ·∇�3

− 2G∇�3 · ∇̃�3}dA, (13)

where G = 2k H + kc0 − e11 Eint Emn. The stability condi-
tion of a vesicle with a specific morphology under an arbi-
trary electric field requires that δ2 F0 > 0. In what follows, a
spherical vesicle under a uniform steady electric field is con-
sidered as an example to show the application of the proposed
formulation to stability analysis.

4 Stability of a spherical vesicle in an electric field

4.1 First and second variations

For a spherical vesicle surrounded by a steady electric field
(Fig. 2), one has

∇ · (σ∇φ) = 0, (14)

where the conductivity σ takes the value σo in the outer elec-
trolyte, σi in the inner electrolyte, and σm in the membrane,
respectively. The electric boundary conditions are

φm = φo, σm
∂φm

∂n
= σo

∂φo

∂n
, on �om,

φm = φi, σm
∂φm

∂n
= σi

∂φi

∂n
, on �im, (15)

φo|r→∞ = −E0z,

φo|r→0 = 0,

Fig. 2 An initially spherical vesicle subjected to a uniform electric
field in the z direction
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Morphological stability analysis of vesicles with mechanical–electrical coupling effects 9

where �om and �im denote the outer and inner boundaries
of the membrane, respectively. Moreover, R is the radius of
the vesicle, and d the thickness of the membrane. ε‖ = 0
and ε⊥ = εm are the dielectric constants of the vesicle mem-
brane parallel and normal to the n direction, and εr = εo

and εr = εi are the dielectric constants of the outer and inner
electrolytes, respectively.

The electric potential solutions of the problem have the
form [26]

φR
o =

(
−E0r + Bo

r2

)
cos θ,

φR
i = Air cos θ,

φR
m =

(
Amr + Bm

r2

)
cos θ.

(16)

Thus we can derive the following analytical solutions:

UR
int m = εm

[
d A2

m − (3 cos2 θ − 1)(d + 2R))d Bm Am

R2(R + d)2

+ 1

5

d(3 cos2 θ + 1)(d4 + 10R2d2 + 10R3d + 5R4 + 5Rd3)B2
m

R5(R + d)5

]
,

(17)

f R
i = 1

2
εi A2

i (2 cos2 θ − 1), (18)

f R
o = εo

[(
1

2
E2

0 + 2Bo E0

(R + d)3 + 2B2
o

(R + d)6

)
cos2 θ

+
(

−1

2
E2

0 + Bo E0

(R + d)3 − 1

2

E2
o

(R + d)6

)
sin2 θ

]
, (19)

ER
int Emn = d

[
−Am + (2R + d)Bm

R2(R + d)2

]
cos θ, (20)

where

Ai = −9σoσm E0/σD,

Am = −3σo E0(σi + 2σm)/σD,

Bm = 3σo E0(σi − σm)R3/σD,

Bo = −[(R + d)3(σi + 2σm)(σo − σm)

+ R3(σo + 2σm)(σm − σi)]E0/σD,

σD = (2σo + σm)(2σm + σi)

+ 2(σm − σo)(σi − σm)R3/(R + d)3.

(21)

For a spherical configuration, we also have the following
relations:

H = − 1

R
, K = 1

R2 ,

∇̃ = ∇̄ = − 1

R
∇, ∇ · ∇̃ = − 1

R
∇2,

∇(2H�3) · ∇�3 = − 2

R
∇�3 · ∇�3, (22)

∇�3 · ∇̃�3 = − 1

R
∇�3 · ∇�3,

∇2 = 1

R2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

R2 sin2 θ

∂2

∂2ϕ
.

Substituting Eqs. (17)–(20) and (22) into Eq. (12) and letting
d → 0, the shape equation of the spherical vesicle is arrived
at [16]

�p + 2λ2

R
+ kc2

0

R
− 2kc0

R2 + 6e11 E0

R
cos θ

−
{[

− 9σ 2
o cos2 θ

(2σo + σi)2 + 9

2

σ 2
o

(2σo + σi)2

]
εi

+
[

9

2

(σ 2
i + σ 2

o )

(2σo + σi)2 cos2 θ − 9

2

σ 2
o

(2σo + σi)2

]
εo

+ 9

4

εm R

d
cos2 θ

}
E2

0 = 0. (23)

Similarly, substituting Eqs. (17)–(20) and (22) into Eq. (13)
leads to the second variation as

δ2 F0 =
∮

[(C11 cos2 θ + C12 cos θ + C13)�
2
3

+ (C21 cos2 θ + C22)�3∇2�3 + C31(∇2�3)
2]dA,

(24)

where

C11 = εi
A2

i
R

− εo

[
E2

0
R

+ Bo E0

R(R + d)3 + 5

2

B2
o

R(R + d)6

]
,

C12 = 4e11d(Am R4 + 2Am R3d − 2Bm R − Bmd + R2 Amd2)

R5(R + d)2
,

C13 = 1

2

εo E2
0

R
− Boεo E0

R(R + d)3 + λ1

R
+ 2c0k

R3

− 1

2

A2
i εi

R
+ 1

2

εo B2
o

R(R + d)6 ,

C21 = −1

2
Rεo E2

0 − 1

2

RBoεo E0

(R + d)3 + 1

2
A2

i Rεi − 5

4

Rεo B2
o

(R + d)6 ,

C22 = 1

4
Rεo E2

0 − 1

2

RBoεo E0

(R + d)3 + Rλ1

2
+ (c0 R + 2)k

R2

− 1

4
A2

i Rεi + 1

4

Rεo B2
o

(R + d)6 ,

C31 = k.

4.2 Stability criterion for a spherical vesicle under
a uniform steady electric field

We have already derived the shape equation for a spheri-
cal vesicle from the variational principle of free energy, as
given in Eq. (23). Firstly, the spherical morphology exists in
a uniform electric field only when Eq. (23) has a nontrivial
solution independent of the angular coordinate θ . Clearly,
the existence of such a solution requires that the material
parameters fulfill the condition:

e11= 0, εm = 2d(εoσ
2
i + εoσ

2
o − 2σ 2

o εi)

(σi + 2σo)2 R
. (25)
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10 L. Gao et al.

Since εm ≥ 0, the following condition must also be met:

εo(σ
2
i + σ 2

o ) − 2εiσ
2
o ≥ 0. (26)

Secondly, a stable morphology requires that the second
variation of the free energy functional with respect to any
small disturbance must be positive. For an axisymmetric
configuration, a small disturbance to the surface �3 can be
expanded into a Legendre polynomial as

�3 =
∞∑

l=1

gl Pl(cos θ), (27)

where Pl(x) is the lth-order term of the Legendre polynomial,
and gl is the corresponding coefficient. Then we have

∇2�3 = −
∞∑

l=1

l(l + 1)

R2 Pl(cos θ)gl . (28)

Applying the recursive relation of Legendre polynomials:

Pn+1(x) = (2n + 1)

n + 1
x Pn(x) − n

n + 1
Pn−1(x), (29)

the following relation holds

�3 cos θ =
∞∑

l=1

[
l + 1

2l + 1
Pl+1(cos θ)

+ l

2l + 1
Pl−1(cos θ)

]
gl

=
∞∑

l=0

ḡl Pl(cos θ), (30)

where ḡl = l
2l−1 gl−1 + l+1

2l+3 gl+1, g−1 = 0, and g0 = 0.
Using Eqs. (27)–(30), in conjunction with the orthogonal
integral property of Legendre polynomials, and letting d →
0 and e11 = 0 according to Eq. (25), the second variation of
Eq. (24) is derived as

δ2 F0 =
∞∑

l=0

(Ag2
l + Bḡ2

l ), (31)

where

A = (l + 2)(l − 1)π

(2l + 1)

[
9Rσ 2

o (εi − εo)E2
0

(σi + 2σo)2

+ 2(2kl2 + 2lk − R3λ1 − 2k Rc0)

R2

]
, (32)

B = 9π R(l + 2)(l − 1)(εoσ
2
i + εoσ

2
o − 2σ 2

o εi)E2
0

(2l + 1)(σi + 2σo)2 . (33)

In the absence of an electric field (i.e., E0 = 0), the sta-
bility condition can be obtained by setting A > 0 as

λ1 < λ1c = 2k

R3 (6 − Rc0), (34)

where λ1c is the critical pressure for the stable vesicle. If
condition (34) is fulfilled, δ2 F0 will be always positive for
any gl ; otherwise, δ2 F0 can be negative for some values of
gl . This result is identical with that of Ou-Yang et al. [18],
who did not consider electric effects.

If E0 	= 0, satisfaction of δ2 F0 > 0 requires that Ag2
l +

Bḡ2
l > 0 for all l. The above inequality requires that A > 0

and B > 0. Thus, the critical electric field should be

E2
0c = 2

9

(σi + 2σo)
2(R3λ1 + 2k Rc0 − 12k)

R3σ 2
o (εi − εo)

. (35)

Thus the stability conditions are written as

E2
0 >

2

9

(σi + 2σo)
2(R3λ1 + 2k Rc0 − 12k)

R3σ 2
o (εi − εo)

,

if εi > εo; (36)

E2
0 <

2

9

(σi + 2σo)
2(R3λ1 + 2k Rc0 − 12k)

R3σ 2
o (εi − εo)

,

if εi < εo; (37)

λ1 <
2k

R3 (6 − Rc0), if εi = εo. (38)

For an originally stationary spherical vesicle subjected to a
uniform electric field (Fig. 2), the condition in Eq. (36) can be
automatically fulfilled by considering (34). This means that
when εi ≥ εo the spherical vesicle is always stable except
when the electric field is so strong as to break the integrity of
the vesicle (e.g., electroporation). When εi < εo, on the other
hand, the vesicle can retain its spherical shape only when the
electric field is lower than the threshold value:

E0c =
√

2

9

(σi + 2σo)
2(R3λ1 + 2k Rc0 − 12k)

R3σ 2
o (εi − εo)

. (39)

If the electric field is higher than E0c, the spherical vesicle
will deform into an oblate, a prolate or another shape, as has
been observed in experiments and simulations [10,16,17].

The above analysis shows that although a spherical ves-
icle subjected to a uniform electric field generally evolves
into a prolate or oblate shape, it can also be stable under cer-
tain conditions. The existence of a stable spherical vesicle
in a uniform electric field requires simultaneous satisfaction
of Eq. (25) and anyone of Eqs. (36)–(38). If Eq. (25) and
εo − εi ≤ 0 are satisfied, the spherical shape is always sta-
ble except when the electric field is higher than the critical
breaking electric field Eth, which corresponds to onset of
electroporation. If Eq. (25) and εo − εi > 0 hold, the spher-
ical shape will be stable only when |E0| < E0c.

For clearer illustration, we take the following represen-
tative values measured from vesicles [11,17]: σi = 6 ×
10−4 Sm−1, σo = 1.2 × 10−2 Sm−1, c0 = −1.36 × 105 m,

k = 1019 J, λ1 = 1

2
λ1c, and Eth = 45000 V/m. Then

the stability condition of a spherical vesicle under a uniform
electric field is plotted in Fig. 3 for three different values of
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Fig. 3 Stability condition of a spherical vesicle under a uniform elec-
tric field

radius R. It is seen that the critical electric field E0c decreases
with increasing R. In other words, a smaller spherical vesicle
is more stable than a bigger one. The above discussion also
shows that the dielectric properties of the inner and outer
electrolytes significantly affect the deformation and stability
behavior of vesicles under the action of an electric field.

5 Conclusions

The first and second variations of the free energy functional of
a vesicle subjected to mechanical and electrical loadings have
been derived in a general and compact form. The formulation
is based on a liquid crystal model of vesicles accounting for
the mechanical–electrical coupling nature of biomembranes.
The first variation of the free energy functional determines
the existence of the specific morphology of a vesicle, and the
second variation allows us to judge whether a possible shape
will be stable or not. As a representative example, the stability
condition of a spherical vesicle under a uniform electric field
has been discussed in detail. Its stability depends not only on
such mechanical and geometric parameters as electric bend-
ing constant, osmotic pressure, spontaneous curvature and
size of the vesicle but also on some electric parameters, e.g.,
the dielectric coefficient of the membrane and the conduc-
tivities of the inner and outer electrolytes.
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