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a b s t r a c t

A meshless model based on radial basis function and method of fundamental solution (RBF–MFS) is
developed to investigate bioheat transfer problems. First, A time-stepping h-method is used in handling
the time variable in the Pennes bioheat equation. Then, the particular solution is approximated by a linear
combination of radial basis functions, and the homogeneous solution is approximately determined by the
method of fundamental solution. The multi-subdomain RBF–MFS technique is implemented for analysing
problems containing different materials and/or multi-connected regions. The efficiency of the proposed
method is assessed by several examples including normal tissue, tissue with tumor and burned tissue.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Thermal methods of temperature measurement at the skin
surface, which require solutions of generalized bioheat equations
under various specific internal and boundary conditions to simu-
late the real case, are becoming recognized as more attractive
than other non-invasive thermometry like MRI, microwave and
ultrasound [1] because they are more economic and safer[2]. Re-
search on the prediction of living tissue temperature has devel-
oped continuously since the Pennes equation was proposed in
1948 [3]. Numerical methods used to solve the Pennes equation
have included the finite difference method (FDM) [4–6], finite ele-
ment method (FEM) [7–11], boundary element method (BEM)
[12,13], dual reciprocity boundary element method (DRMBEM)
[2,14] and Monte Carlo method (MCM) [15,16]. In addition, the
Trefftz FEM [17,18] and meshless method [19] have also been
successfully used to solve transient heat conduction problems.
Among the above methods, the major drawback of FDM appears
to be in its inability to handle effectively the solution of problems
over arbitrarily shaped complex geometries because of interpola-
tion difficulties between the boundaries and the interior points in
order to develop finite difference expressions for nodes next to
the boundaries. FEM is widely used because it can manage com-
plex shapes well, but its main disadvantage is that it requires do-
main discretization which is time-consuming. BEM involves
discretization of the boundary only, which is an important advan-

tage over FEM, but it has difficulty dealing with transient or non-
homogeneous problems which still need domain discretization.
Fortunately, DRMBEM can overcome this drawback by combining
radial basis functions and conventional BEM to transform domain
integrals to the boundary integral. An alternative numerical
method is MCM, which differs from the classical numerical meth-
ods listed above because it is based on a random process ap-
proach and depends weakly on the dimension of the problem,
providing an alternative way to deal with multidimensional
problems.

Unlike the above approaches, in this paper a meshless RBF–
MFS model is developed by combining radial basis function
(RBF) approaches and the method of fundamental solutions
(MFS) [19,20], to predict the temperature distribution in skin tis-
sue. Firstly, the time dependence in the Pennes equation is re-
moved by a time-stepping process and then the system is
replaced by a set of inhomogeneous modified Helmholtz equa-
tions. Then, RBF approximation and the method of fundamental
solution are employed to construct the particular and the homo-
geneous solution of the modified Helmholtz equation, respec-
tively. The muti-subdomain method is employed to extend this
model to problems with two inhomogeneous domains, such as
skin with tumor, which can induce different frequencies in the
modified Helmholtz equation system. The paper is organized
into the following sections. In Section 2 a detailed numerical
implementation is described and some important points of the
proposed model are discussed. Section 3 provides some numeri-
cal examples which cover typical situations in thermal diagnos-
tics, to demonstrate the effectiveness of the proposed method.
Finally, Section 4 presents some conclusions from the presented
analysis.
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2. Numerical method and algorithms

2.1. Pennes bioheat mathematical model

The well-known Pennes equation, which involves the effects of
blood perfusion and metabolic heat generation, is used to simulate
the thermal behaviour of biological tissue [3]:

qc
@uðx; tÞ
@t

¼ r � ½kruðx; tÞ� þxbqbcb½ua � uðx; tÞ� þ Q m þ Qrðx; tÞ

ð1Þ

where q, c, k are the density, specific heat, and thermal conductivity
of the tissue, respectively; xb, qb, cb represent blood perfusion, den-
sity and specific heat of blood, respectively. ua is the arterial tem-
perature which is treated as constant, u(x, t) is the tissue
temperature; Qm is the metabolic heat generation and Qr(x, t) is
the heat source due to spatial heating. For convenience, a new sym-
bol Qt(x, t) = Qr(x, t) + Qm including metabolic heat and special heat-
ing is introduced.

From the Pennes’ equation, it can be seen that the first term on
the right side represents conduction of heat in the tissue, caused by
the temperature gradient. The second term describes the heat
transport between the tissue and microcirculatory blood perfusion.
The third term on the right depicts internal heat generation due to
metabolism and the last term is spatial heating caused by external
heat sources.

Practically, a rectangular area is often used in two-dimensional
bioheat transfer problem (see [2,16,21]). A schematic of the 2D cal-
culation geometry is depicted in Fig. 1

Without losing generality, the following boundary conditions
and initial condition are applied to the four boundaries to make
the system complete:

� Dirichlet/necessary condition

uðx; tÞ ¼ �uðx; tÞ 2 Cu ð2Þ

� Newman/nature condition

qðx; tÞ ¼ �qðx; tÞ 2 Cq ð3Þ

� convective condition

qðx; tÞ ¼ he½uðx; tÞ � ue� 2 Cc ð4Þ

� initial condition

uðx; 0Þ ¼ u0 2 X ð5Þ

where q represents the boundary normal heat flux defined as
q ¼ �k @u

@n and n is the unit outward normal to the boundary C of
the domain of interest X.

For convenience, boundary conditions (2)–(4) are expressed in a
general form as

B1uðx; tÞ þ B2qðx; tÞ ¼ B3ðx; tÞ ð6Þ

where B1, B2, and B3 are known coefficients and can be written
respectively as

Nomenclature

Alphabetical symbols
c specific heat of tissue (J/kg/�C)
cb specific heat of blood (J/kg/�C)
h1 conventional coefficient (W/m2/�C)
k thermal conductivity of tissue (W/m/�C)
M number of collocation points on the boundary
NI number of interpolation points in the domain
NS number of source points outside the domain
Qm metabolic heat of tissue (W/m3)
Qr spatial heating (W/m3)
Qt sum of metabolic heat and spatial heating (W/m3)
q normal heat flux (W/m2)
t time (s)
u temperature (�C)
u0 initial temperature (�C)
ua artery temperature (�C)
ue environmental temperature (�C)
uw temperature contact with probe (�C)

Greek symbols
k frequency of the modified Helmholtz equation

a parameter defined in Eq. (19)
b parameter defined in Eq. (28)
c parameter defined in Eq. (31)
s time step size
q density of tissue (kg/m3)
qb density of blood (kg/m3)
xb blood perfusion (m3/s/m3 tissue)
h temporal weighting in time-stepping method

Superscripts
1 subdomain X1

2 subdomain X2

n time level n
n + 1 time level n + 1

Subscript
I interface boundary between tissue domain and tumor

domain.

Fig. 1. Schematic diagram of computational area.
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B1 ¼ 1;B2 ¼ 0;B3 ¼ �u on Cu

B1 ¼ 0;B2 ¼ 1;B3 ¼ �q on Cq

B1 ¼ he;B2 ¼ �1; B3 ¼ heue on Cc

8><
>: ð7Þ

2.2. Time-stepping scheme

There are two approaches in the literature for handling the time
variable: (1) the Laplace transform, and (2) finite difference in
time. Because numerical inversion of the Laplace transform is often
ill-posed, here we apply the finite difference scheme to handle
time variable. For a typical time interval [tn, tn+1]� [0,T], u(x, t),
its derivative with respect to time variable t and Qt (x, t) are
approximated as [22]:

uðx; tÞ ¼ hunþ1ðxÞ þ ð1� hÞunðxÞ
Q tðx; tÞ ¼ hQ nþ1

t ðxÞ þ ð1� hÞQn
t ðxÞ

@uðx; tÞ
@t

¼ unþ1ðxÞ � unðxÞ
s

ð8Þ

where the superscripts n and n + 1 refer to subsequent time in-
stances and s = tn+1 � tn is the time step size. h (0 � h � 1) is a real
parameter that determines whether the method is explicit (h = 0),
implicit (h = 1) or a linear combination of both types [23].The spe-
cial choice of h ¼ 1

2 is known in the literature as the Crank-Nicolson
scheme.

It is easily verified that the conditions which prevent oscillation
in the explicit case are exactly the same as the commonly cited suf-
ficient conditions which ensure that it is stable. Furthermore, even
though a Crank-Nicolson approach is unconditionally stable, it per-
mits the development of spurious oscillations unless the time step
size is no more than twice that required for an explicit method to
be stable. Although an implicit scheme is only first-order accurate
in time, it has been proved that the partial differential equation can
be solved accurately using the implicit scheme [24]. Hence, we use
h = 1 in our analysis.

Substituting Eq. (8) into Eqs. (1) and (6) and rearranging it gives
the following modified Helmholtz-type equation that must be
solved at each time step tn+1 for the unknown un+1(x):

unþ1ðxÞ � sk
qc
r2unþ1ðxÞ þ sxbqbcb

qc
unþ1ðxÞ

¼ unðxÞ þ sxbqbcb

qc
ua þ

s
qc

QtðxÞ ð9Þ

½B1unþ1ðxÞ þ B2qnþ1ðxÞ� ¼ Bnþ1
3 ðxÞ ð10Þ

Note that the right-hand side of Eq. (9) is well defined in terms of
the approximate solution un calculated on the previous time step
t = tn. To start the procedure we take u(x, 0) = u0, the initial condi-
tion of the transient bioheat problem.

For simplicity, considering the single step formula, Eq. (9) can
be written as

ðr2 � k2ÞuðxÞ ¼ f ðxÞ ð11Þ

where,

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qc
sk
þxbqbcb

k

r
ð12Þ

f ðxÞ ¼ �qc
sk

unðxÞ �xbqbcb

k
ua �

Q t

k
ð13Þ

Eq. (11) is a sequence of inhomogeneous modified Helmholtz equa-
tions whose RBF–MFS solution is discussed in Sections 2.3 and 2.4
below.

2.3. RBF–MFS scheme for modified Helmholtz equations

Due to the linear property of Eq. (11), its solution can be ex-
pressed as a summation of the particular solution up and the homo-
geneous solution uh, that is

u ¼ up þ uh ð14Þ

where up satisfies the nonhomogenous equation

ðr2 � k2ÞupðxÞ ¼ f ðxÞ x 2 R2 ð15Þ

but does not necessarily satisfy the boundary conditions (2)–(4),
and uh satisfies

ðr2 � k2ÞuhðxÞ ¼ 0 x 2 R2 ð16Þ

uhðx; tÞ ¼ �uðx; tÞ � upðx; tÞ x 2 Cu

qhðx; tÞ ¼ �qðx; tÞ � qpðx; tÞ x 2 Cq

h1uhðx; tÞ � qhðx; tÞ ¼ h1u1 � h1upðx; tÞ þ qpðx; tÞ x 2 Cc

8><
>:

ð17Þ

Similar to the treatment of Eq. (6), Eq. (17) can be written in general
form,

½B1uhðxÞ þ B2qhðxÞ� ¼ B3ðxÞ ð18Þ

The particular solution up can be evaluated by RBF approximation
[25]. To do this, the right-hand term of Eq. (15) is approximated by

f ðxÞ ¼
XNI

i¼1

aiuiðxÞ x 2 X ð19Þ

where NI is the number of interpolation points in the domain under
consideration. ui(x) = u(r) = u(|x-xi|) denotes radial basis functions
with reference point xi and ai are interpolating coefficients to be
determined.

At the same time, the particular solution up is similarly ex-
pressed as

upðxÞ ¼
XNI

i¼1

aiwiðxÞ ð20Þ

where wi represent corresponding approximated particular solu-
tions which satisfy the following differential equations:

ðr2 � k2Þwi ¼ ui ð21Þ

noting the relation between the particular solution up and function
f(x) in Eq. (15).

By enforcing Eq. (20) to satisfy Eq. (15) at all nodes, we can ob-
tain a set of simultaneous equations to uniquely determine the un-
known coefficients ai. In this procedure, we need to evaluate the
approximate particular solutions in terms of the RBF u. The stan-
dard approach is that u is selected first, and then the corresponding
approximate particular solutions are determined by solving Eq.
(21) analytically. For the Laplace operator, w can be obtained by re-
peated integration, but for the Helmholtz-type operator this has
proven difficult [26,27]. A significant result for Helmholtz-type
operators was given by Chen and Rashed in which analytic formu-
lae were given for w when u was a TPS [28]:

u ¼ r2 ln r ð22Þ

wðrÞ ¼ � 4
k4 � 4 ln r

k4 � r2 ln r
k2 � 4K0ðkrÞ

k4 r – 0

wðrÞ ¼ � 4
k4 þ 4c

k4 þ 4
k4 ln ðk2Þ r ¼ 0

(
ð23Þ

where c � 0.5772156649015328 is Euler’s constant.
Another scheme for obtaining approximate particular solutions

is a reverse approach [29,30]. Namely, w is first chosen directly and
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then u is evaluated from Eq. (22). For example, the particular solu-
tions w are directly chosen as follows [31]:

wðrÞ ¼ r2

4
þ r3

9
ð24Þ

and the corresponding / is obtained as

uðrÞ ¼ 1þ r � k2 r2

4
þ r3

9

� �
ð25Þ

It is difficult to prove mathematically under what conditions
this approach is reliable, although it seems to work well so far
for many problems [29,30,32].

An additional polynomial term p is required to assure nonsingu-
larity of the interpolation matrix if the RBF is conditionally positive
definite such as TPS [33,34]. And also, to achieve higher conver-
gence rates for f(x), the higher order splines are considered [35].
For example,

u ¼ r2n ln r n 	 1; inR2 ð26Þ

Then

f ðxÞ ¼
XNI

i¼1

aiu
½n�
i ðxÞþPn ð27Þ

where Pn is a polynomial of total degree n. Let fbjgln
j¼1 be a basis for

Pn (ln ¼
nþ d

d

� �
is the dimension of Pn; d = 2 for two-dimensional

problems). The corresponding boundary conditions are given by

XNI

i¼1

aiblðPlÞ ¼ 0; 1 � l � ln ð28Þ

Since the inhomogeneous term f(x) in Eq. (11) is a known function
depending on the temperature field un, the coefficients ai can be
determined by solving Eq. (11) and Eq. (28). Then the particular
solution can be obtained from Eq. (20).

The next step is to solve the homogeneous solution uh by MFS.
In the implementation of MFS, the homogeneous solution is
approximated in a standard collocation fashion

uhðxÞ ¼
XNS

j¼1

bju


j ðxÞ ð29Þ

where bj are the coefficients to be determined. u
j ðxÞ ¼ u
ðjx� xjjÞ
are the fundamental solutions of the modified Helmholtz operator
ðr � k2Þ. Here the source points fxjgNS

j¼1 are placed outside the solu-
tion domain.

Typically, for a two-dimensional problem, the fundamental
solution is

u
j ðxÞ ¼
1

2p
K0ðkrÞ ð30Þ

where K0 is a modified Bessel function of the second kind with order
zero.

Noting that uh in Eq. (30) automatically satisfies the given dif-
ferential Eq. (17) , all we need to do is to enforce uh to satisfy the
modified boundary conditions (18) as up has already been calcu-
lated separately. By the collocation method, we choose the same
number of collocation points as source points on the physical
boundary to fit the boundary condition (18), leading to a system
of linear algebraic equations in matrix form:

½A�fbg ¼ fbg ð31Þ

with

fbg ¼ fb1b2 . . . bNS
g; fbg ¼ fb1b2 . . . bNSg ð32Þ

Once {b}is obtained, uh can be computed at any location in the do-
main using Eq. (29).

Additionally, the generation of source points outside the do-
main is a curious problem, which affects accuracy and stability.
At present, there is no uniform approach to generate these source
points properly. In our work, a strategy is employed [36]

yj ¼ xj þ cðxj � xcÞ ð33Þ

where xj are boundary nodes, xc is the geometric center of the do-
main and c is a dimensionless parameter.

Based on above operations, the complete solution uðxÞ for the
modified Helmholtz equation can be written as

uðxÞ ¼
XNI

i¼1

aiwiðxÞ þ
XNS

j¼1

bju


j ðxÞ x 2 X ð34Þ

Furthermore, the normal heat flux can be obtained as

qðxÞ ¼ � @uðxÞ
@n

¼ �
XNI

i¼1

ai
@wiðxÞ
@n

�
XNS

j¼1

bj

@u
j ðxÞ
@n

x 2 X ð35Þ

2.4. Multi-subdomain method for multi-material problem

As can be seen from Eq. (12) , the parameter k in the modified
Helmholtz Eq. (11) depends on the material properties of the skin,
such as q, c, wb, qb, cb. So when the problem is a multi-material
problem, k will be different for the domain with different material
and correspondingly, the modified Helmholtz equation in that do-
main will be different. For example, in the case of a tumor situated
underneath the skin (see Fig. 2), we need to solve two different
modified Helmholtz equations in each domain (the simply con-

 tumor 

Skin surface
1Γ

Tumor surface 
(Interface

IΓ ) 

Virtual boundary for tumor domain   
^

2Γ

^

TΓ

^

EΓ
^

2Γ

Virtual boundary for tissue domain  
^ ^ ^

1 T EΓ = Γ ∪ Γ

Boundary node Interface node 

Source point for tissue domain 

Source point for tumor domain 

Fig. 2. Illustration of a computational domain and point discretization on the
physical and virtual boundaries.
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nected domain for the tumor area and the multi-connected domain
for the tissue area). It should be mentioned that, unlike other mul-
ti-connected domain problems in which the boundary conditions
are known on the whole multi-connected boundary, here the
boundary conditions are known on the skin surface only, and are
unknown on the inner boundary of the skin tissue. Moreover, the
equivalences of the temperature and its normal derivative at each
node of the interfaces are required to satisfy the continuity on the
interface between tissue and tumor. In addition, it should be men-
tioned that the continuity condition is for the total value of u
(=up + uh), whereas Eqs. (36) and (37) below are for uh only. This
leads to the complex form of Eqs. (39) and (40). Based on the dis-
cussion above, we propose the multi-subdomain method for the
application of MFS in the interface condition between two different
material domains in the following.

In the multi-subdomain method, the solution domain is divided
into the two subdomains X1 and X2, where X1 represents the tis-
sue domain and X2 the tumor domain. In Fig. 2, boundaries C1 and
CI denote respectively the real boundaries of the skin surface and
the interface between skin tissue and tumor. For the multi-con-
nected tissue domain X1, 2 M source nodes are placed on two aux-
iliary surfaces (C1

^
¼ CT

^
[CE

^
) which are determined by inflation/

deflation of the tissue surfaces (skin surface and interface), where
M is the number of collocation points on the boundary. The virtual
boundary corresponding to the skin surface CT

^
and interface CE

^
is

obtained by scaling the skin surface and interface with the factor
c in Eq. (33) as 1.2 and �0.8 respectively. For the single connected
tumor domain X2, M source nodes are placed on one auxiliary sur-
face (C2

^
) which is determined by inflation of the tumor surface

(interface, see Fig. 2).
In the MFS formulation for the tissue domain X1, we have

½A1�fb1g ¼ fb1g ð36Þ

For the tumor domain X2, we have

½A2�fb2g ¼ fb2g ð37Þ

where the superscripts 1 and 2 stand for variables associated with
the subdomains X1 and X2, respectively.

On the interface boundary CI, the following conditions must be
satisfied:

fu1
I g ¼ fu2

I g ¼ fuIg
fq1

I g ¼ �fq2
I g ¼ fqIg

ð38Þ

where subscript ‘I’ represents the interface boundary between the
tissue domain and the tumor domain.

Rearranging the elements of the matrices and vectors in Eqs.
(36) and (37) and making use of Eq. (38) yields

A1
1

A1
Iu

A1
Iq

2
664

3
775

3M�2M

½b1�2M�1 ¼
b1

1 � b1
p1

u1
I � u1

p1

q1
I � q1

p1

8>><
>>:

9>>=
>>;

3M�1

¼
b1

1 � b1
p1

uI � u1
p1

qI � q1
p1

8>><
>>:

9>>=
>>;

3M�1

ð39Þ

A2
Iu

A2
Iq

" #
2M�M

½b2�M�1 ¼
u2

I � u2
p2

q2
I � q2

p2

( )
2M�1

¼
uI � u2

p2

�qI � q2
p2

( )
2M�1

ð40Þ

where the subscripts u and q denote respectively the boundary con-
ditions on which temperature u and heat flux q are known.

Collecting the terms with the same variable in Eqs. (39) and (40)
above and rearranging them, we have

A1
1 0

A1
Iu �A2

Iu

A1
Iq A2

Iq

2
664

3
775

3M�3M

b1

b2

" #
3M�1

¼
b1

1 � b1
p1

�u1
P1 þ u2

p2

�q1
I � q2

p2

8>><
>>:

9>>=
>>;

3M�1

ð41Þ

It can then be further written as

½A�fbg ¼ fbg ð42Þ

from which all unknown coefficients {b} can be determined. Fur-
ther, the temperature field at any point within the domain can be
evaluated from Eq. (34)

3. Numerical examples

Here we consider four cases of transient heat transfer in skin
tissue. The four cases cover normal tissue, tissue with tumor and
burned tissue. It should be mentioned here that the purpose of
these examples is to provide an insight into performance and the
applicability of the proposed numerical method, the computational
model is, therefore, not physiologically realistic.

In the following computation, typical tissue properties includ-
ing q = qb = 1000 kg/m3, c = cb = 4000 J/(kg �C), k=0.5 W/(m �C),
ua = 37 �C, uc = 37 �C and u0 = 37 �C are employed [2]. As time iter-
ation is required in the algorithm, the convergence criterion for
determining the final steady-state is set as

junþ1 � unj � 10�3 ð43Þ

3.1. Rectangular domain of solid subjected to temperature impact

For the purpose of validating the program, a benchmark exam-
ple of a rectangular domain subjected to temperature impact is
considered. Referring to Fig. 1, the entire body has a width of
0.03 m along the x1 direction and a length of 0.08 m along the x2

direction. The boundary conditions are:

uðx1; x2; tÞ ¼ us ¼ 45
�
C; x1; x2 2 I

qðx1; x2; tÞ ¼ 0; x1; x2 2 II; IV

uðx1; x2; tÞ ¼ uc ¼ 37
�
C; x1; x2 2 III

The initial condition is u(x1, x2; 0) = 33 �C, x1; x2 2 X.
The steady-state analytical solution without metabolic heat of

the rectangular domain is given by [37]

uðx1Þ ¼ ua þ
ðus � uaÞ sinh½lðL� x1Þ� þ ðuc � uaÞ sinhðlx1Þ

sinhðlLÞ ð44Þ

with l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xbqbcb=k

p
.

As stated above, the purpose of this example is to assess the
efficiency of the proposed scheme with respect to different RBF
schemes (standard approach and reverse approach) and time
increment s. Moreover, for the standard approach, splines with dif-

Table 1
Comparison of absolute maximum error (�10�2) by different particular solutions in RBF.

s S1 S2 S3 S4 PS1 PS2 PS3 PS4 Inverse method

100 6.835 6.928 6.851 6.881 6.908 6.887 6.966 6.857 6.885
500 6.849 6.908 6.855 6.866 6.858 6.862 6.881 6.856 6.900
1000 6.851 6.891 6.856 6.862 6.862 6.859 6.870 6.856 6.894
2000 6.853 6.880 6.857 6.859 6.859 6.858 6.863 6.857 7.694
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ferent orders are considered. In Table 1, Si (i = 1–4) denote the re-
sults obtained by using splines u=r2i ln r in Eq. (19) and without
additional polynomial terms. For comparison purposes, PSi (i = 1–
4) denote the results obtained by using Eq. (27) with additional
polynomial terms pi.

Although the numerical results in Table 1 show that the stan-
dard method is more accurate than inverse method except for
s = 100, the inverse method can save considerable computing time,
as calculating the modified Bessel function is quite complex and
time-consuming. For orders 1 and 3, adding an additional polyno-
mial term can increase the accuracy, but for orders 2 and 4 the re-
verse is observed. In general, the results improve with higher order
polyharmonic splines and reduced time steps, but this is not al-
ways the case. Although more accurate results can be obtained
by using higher order polyharmonic splines for elliptic boundary
value problems, from the above results we see limited improve-
ment in time-dependent problems presumably because the domi-
nant error was caused by the time-stepping scheme. Moreover, the
higher order polyharmonic splines result in inferior conditioning of
the linear system associated with the homogeneous solution. Con-
sidering these factors, in the following numerical simulation we
choose time step s = 500 and the inverse method which can reduce
the computing time dramatically. In Fig. 3, which shows the final
steady-state temperature along the depth of skin tissue under
the applied surface temperature, it can be seen that the results
agree well with the exact ones. Furthermore, to investigate the
influence of blood perfusion on temperature distribution in the liv-
ing tissue, the simulation is also applied to different value of xb

(xb = 0.0005, 0.0015, 0.0030 ml3/s/ml3). Fig. 3 shows that the effect
of blood perfusion rate on temperature distribution is significant. A
larger blood perfusion rate results in a quick drop in the tissue
temperature. This is reasonable as larger blood perfusion rates
can carry away more heat. In addition, to assess the convergent
performance of the model, different numbers of internal interpola-
tion points in the domain, 55, 120, 231, 435 and 780, are employed
in the calculation (wb = 0.0005 is used here and same after). Fig. 4
shows the absolute maximum error using different interpolation
points. As expected, the results gradually converge to the exact val-
ues along with the increase in the number of interpolation points.
Moreover, to evaluate the merit of the proposed method, calcula-
tions have also been conducted using Trefftz finite element meth-
od. The element mesh used in the calculation is shown in Fig. 5b,
whose number of nodes is the same as those used in RBF–MFS
(see Fig. 5). The convergent result is achieved at t = 7500 s in terms
of the analytical solution. It can also be seen from Table 2 that the
proposed meshless method can achieve higher accuracy than Tre-
fftz FEM on the specified points and the average relative error for
the whole domain is 2.2167e�2 and 2.8192e�2 for RBF–MFS
meshless method and Trefftz FEM, respectively (the average rela-
tive error on a variable f is introduced as Arerrðf Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
ðfnum�fanaÞ2iPN

i¼1
ðfanaÞ2i

s
). It indicates that the proposed meshless method

can achieve higher accuracy than that from Trefftz FEM. Further-
more, the proposed algorithm is easy to implement into the stan-
dard computer program.

Fig. 3. Steady-state temperature distribution along the depth of skin for different
blood perfusion rate.
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Fig. 4. Absolute maximum error using different interpolation points.

Fig. 5. (a) Profile of interpolation points for RBF–MFS. (b) Mesh division for Trefftz
FEM.

Table 2
Comparison of the results from the two numerical methods.

X1 0.0000 0.0075 0.0150 0.0225 0.0300 Arerr for whole
domain

Analytical
solution

45.0000 40.4973 38.4912 37.5495 37.000

RBF–MFS 45.0000 41.8241 39.7267 38.2579 37.000 2.2167e�2
Trefftz FEM 45.0000 42.7443 40.8305 39.1767 37.000 2.8192e�2
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3.2. Tumor hyperthermia

It is known that the distribution of both blood perfusion and
metabolic heat generation is affected by the presence of a tumor
[2]. The distribution of temperature at the skin surface is different
from the normal distribution. It is a benefit that this difference can
be used for non-invasive diagnostics of the physiological stage of
the biological body. In this example, a vascularised tumor situated
beneath the skin demonstrates that benefit. The calculation model
is taken from Ref. [2]. Fig. 6 shows the size and location of the tu-
mor. The boundary conditions are:

qðx1; x2; 0Þ ¼ 0; x1; x2 2 I; II; IV

uðx1; x2; 0Þ ¼ 37
�
C; x1; x2 2 III

and xb ¼ 0:0005 m3=s=m3;Qm ¼ 420 W=m3 for healthy tissue

xb ¼
0:0005m3=s=m3 x1; x2 R L

0:002m3=s=m3 x1; x2 2 L

(
Fig. 6. Illustration of tissue with tumor.

Fig. 7. Demonstration of virtual source points, collocations and interpolation points.
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Qm ¼
420 W=m3 x1; x2 R L

4200W=m3 x1; x2 2 L

(

for tissue with a tumor, where L # ½jx2j � 0:01m;0:005m �
x1 � 0:015m� is prearranged as the tumor domain.

The multi-subdomain formulation given in Eq. (41) is em-
ployed to predict the temperature distribution in both healthy
tissue and the tumor domain. In the calculation, 80 field nodes
on the real boundary and 287 uniform distributed interpolation
nodes within the solution domain are used. Further, 80 field
nodes are placed on the interface, 160 source nodes over the
healthy tissue domain, and 80 source nodes over the tumor do-
main, as shown in Fig. 7. Fig. 8 shows the spatial temperature
profiles for both healthy tissue and tumor tissue. As expected,
the temperature distribution in the tumor tissue is higher than
that in the healthy skin, due to the increased blood perfusion
and metabolic heat generation caused by the tumor. Additionally,
the temperature of the skin over the tumor is found to be several
degrees higher than that of the surrounding area. This difference
can serve as a clinical sign for tumor detection. Fig. 9 shows a
comparison of the skin temperature of two types of tissue. The
trend matches well with the results in reference [2].

3.3. Detection of skin burn injury

Skin burn is caused by the accidents such as fire exposure, con-
tact with objects which have an extremely high temperature, elec-
tricity, harmful radiation, etc. Accurate early assessment of skin
damage in a burn injury can greatly improve subsequent care [2].
Therefore, it is necessary to develop a quick and convenient
numerical way to simulate, detect and evaluate the harmful skin
burn injury. In this example, comparison of different responses of
burned skin with normal skin is illustrated by imposing spatial
heating such as a low power of laser radiation to analyse the detec-
tion of skin burns. Referring to Fig. 1, the domain has a 0.004 m
width in the x1 direction and 0.008 m length in the x2 direction.
The boundary conditions are:

qðx1; x2; tÞ ¼ hðu� u1Þ x1; x2 2 I

qðx1; x2; tÞ ¼ 0; x1; x2 2 II; IV

uðx1; x2; tÞ ¼ 33
�
C; x1; x2 2 III

The initial condition is u(x1, x2; 0)=33 �C, x1, x2 2X and the func-

tion for the laser radiation used is Qr ¼ bIðtÞe�b
ffiffiffiffiffiffiffiffiffi
x2

1þx2
2

p
¼ bI0e�b

ffiffiffiffiffiffiffiffiffi
x2

1þx2
2

p

[38]. Other properties used are: q0c0 = 3.96 � 106 J/m3 K, b = 700,
I0 = 500 w/m3, h = 10 W/m2 K, u1 = 33 �C.

Moderate laser radiation is applied to the surface of the skin
including both healthy and burned skin. Heat conduction and
blood perfusion for normal tissue are assumed to be k = 0.425 W/
m �C and xb = 0.0005 ml/s/ml respectively. In comparison, the low-
er values of heat conduction and blood perfusion used for burned
tissue are k = 0.235 W/m �C and xb = 0.0001 ml/s/ml, respectively.

Fig. 10 shows the spatial temperature profiles for normal tissue
and burned tissue. The larger amplitude for the temperature in
burned tissue is the result of the loss of water in the tissue and
destruction of the vascular bed in burned tissue.

4. Conclusion

A RBF–MFS algorithm was developed for analysing transient
two-dimensional bioheat transfer problems. A special multi-do-
main MFS formulation was presented to handle multi-material
and multi-connected domain problems using RBF–MFS formula-
tion. It should be mentioned that, unlike the traditional domain
decomposition method in which the boundary conditions are
known on the whole multi-connected boundary, the boundary
conditions are here known on the skin surface only, and are un-
known on the inner boundary of the skin tissue. Moreover, it

Fig. 8. Steady state temperature distributions of healthy and tumor tissue.

Fig. 9. Skin temperature of two types of tissue.
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should be mentioned that the continuity condition over the inter-
face between two domains with different materials is for the total
value of u (=up + uh), whereas Eqs. (36) and (37) are for uh only. As a
result, the complex forms of Eqs. (39) and (40) are induced. To
illustrate applications of the proposed methods, several typical
examples often occurred in therapeutic treatment are considered,
which include normal tissue, tissue with tumor, and burned tissue.
The results show that the proposed method is an efficient meshfree
method, which is easy to understand, has a simple solution proce-
dure, high accuracy, and stability, and can analyse thermal behav-
iour of inhomogeneous materials.
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