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a b s t r a c t

Based on the boundary integral equations and stimulated by the work of Young et al. [J Comput Phys
2005;209:290–321], the boundary point method (BPM) is a newly developed boundary-type meshless
method enjoying the favorable features of both the method of fundamental solution (MFS) and the
boundary element method (BEM). The present paper extends the BPM to the numerical analysis of linear
elasticity. In addition to the constant moving elements, the quadratic moving elements are introduced to
improve the accuracy of the stresses near the boundaries in the post processing and to enhance the anal-
ysis for thin-wall structures. Numerical tests of the BPM are carried out by benchmark examples in the
two- and three-dimensional elasticity. Good agreement is observed between the numerical and the exact
solutions.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

For a large class of physical and engineering problems, bound-
ary-type solution methodologies are now well established as viable
alternatives to the prevailing domain-type methods such as the fi-
nite difference method, the finite element method and finite vol-
ume method, because of the computational advantages they offer
and its distinctive feature of requiring only the numerical discret-
isation of the boundary of the solution domain. In particular,
boundary-type methods have the merit of predicting accurate
and complete solutions while reducing the dimensionality of any
given problem by one and thus simplifying the effort involved in
data preparation and computer time. The boundary element meth-
od (BEM) is the most popular and efficient boundary-type solution
procedure, formulated in terms of boundary integral equations
(BIE). In the BIE the governing differential equations are converted
into integral identities applied over the boundary of the domain.
Then the boundary is discretised into small elements in order to
carry out the integration.

For elasto-static problems, the variations of displacements and
tractions can be described in terms of values at a number of nodal
points associated with each element. Shape functions of linear,
ll rights reserved.
quadratic or higher order are used for interpolating between the
nodes. The integrations over the boundary are usually performed
by the Gauss quadrature technique. Details of the BEM can be
found in various publications [1,2]. However, the use of elements
in the BEM with integrations especially in three-dimensions still
puts bourdon on computing efficiency. For example, the BEM re-
quires polygonisation of the boundary surfaces in general 3D cases,
and boundary curves in general 2D cases. The regular, weakly sin-
gular, strongly singular, and hyper-singular integrals need be dealt
with over boundary segments, which is usually a cumbersome and
non-trivial task. The presentation of the boundary contour method
[3–6] is an effort to improve the efficiency by transferring surface
integrals into line integrals via Stokes’ theorem. The boundary
node method (BNM) represents a coupling between the BIE and
the moving least square approximations [7–9]. Using polynomial
or radial basis function (RBF) as basis functions, the point interpo-
lation method has been proposed to construct meshfree shape
function with Kronecker delta function properties [10,11] with
which the boundary conditions can be easily enforced and coupled
with the BIE to construct boundary-type meshfree methods [12].
Remarkable progress has been achieved in solving a wide range
of static and dynamic problems for solids and structures.

The Trefftz method is another noteworthy boundary-type
meshless method featuring conciseness and ease of performance.
The crucial structure of the Trefftz method is the use of a set of trial
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functions, singular or non-singular, which a priori satisfies the gov-
erning differential equation under consideration [13,14]. In the
boundary knot method (BKM), a set of non-singular general solu-
tions is employed as trial functions to solve Helmholtz and convec-
tion–diffusion equations [15,16]. The merits of using non-singular
trial functions such as T-complete functions [17] or general solu-
tions lie in the fact that the collocation and observation points
can be coincident and placed on the real boundary of the problem.
However, the system matrix thus formed may be ill-conditioned or
the condition number of the matrix could become large [17] so that
the scale of solvable problems would be limited.

In the method of fundamental solutions (MFS, sometimes called
also the F-Trefftz method, charge simulation method, or singularity
method), singular functions are taken as the trial functions [18–
23]. Just like the BEM, the MFS are best applicable in situations
where a fundamental solution to the partial differential equation
in question is known. In such cases, the dimensionality of the dis-
cretization is reduced. The MFS has certain advantages over the
BEM that stems mostly from the fact that the pointisation of the
boundary is needed only, which completely avoids any integral
evaluations, and makes no principal difference in coding between
the 2D and the 3D cases. Because of the singular nature of funda-
mental solutions, however, the source points must be placed out-
side the problem domain to avoid the singularity problem,
forming a fictitious non-physical boundary. The location of this
artificial boundary represents the most serious problem of the
MFS and has to be dealt with heuristically, especially for engineer-
ing problems with complicated geometry. If the offset distance is
too small, the diagonal coefficients of the system matrix will di-
verge because of the singular nature of fundamental solutions.
On the other hand, if the artificial boundary is distant from the real
boundary, the system matrices also become ill-conditioned since
the condition number of the influence matrix becomes very large.
The location of the source and observation points is vital to the
accuracy of the solution when implementing the MFS.

A distinct feature in the Trefftz type method including the BKM
and the MFS is that each of the coefficients of system matrices is
computed on only one point, or named integration-free, compared
with element-type methods in which the integration must be per-
formed over elements. This feature, which can be termed one-point
computing, greatly reduces the computing cost. Very recently, by
making use of strongly and hyper-singular fundamental solutions
of Laplace equation with an indirect formulation, Young et al. pro-
posed a modified MFS for 2D potential problems [24] in which both
the source and observation points are located on the real boundary
with a singularity removal technique commonly used in the BIE,
thus avoiding the inconvenience of using an artificial boundary
completely. The only shortcoming of the method seems to be lie
in that the equally spaced nodes have to be used along the bound-
ary since the singularity removal technique depends on the diver-
gence-free properties of the kernels [24].

Enlightened by the above-mentioned work, a novel boundary-
type meshless method—the boundary point method (BPM) is
developed recently for solving the two- and three-dimensional po-
tential problems [25]. The BPM can be looked as something be-
tween the MFS and the BEM. In the BPM, the boundary of the
problem domain is discretized by boundary nodes, each node hav-
ing a territory or support where the field variables are defined. By
making use of the properties of fundamental solutions, the coeffi-
cients of the system matrix in the BPM are computed according to
the distances between the two points, the source and observation
points. In the cases when the distances are not small, the integrals
of kernel functions are evaluated by one-point computing, just like
that carried out in the MFS, which consist of the most off-diagonal
terms of the system matrix. In the cases when the distances are not
large, the integrals of kernel functions are evaluated by Gauss
quadrature over territories. If the two points coincide, the integrals
are treated by the mature techniques available in the BEM [26–28],
which constitute the principal diagonal terms of the system ma-
trix. As the adjacent nodes describe the local features of boundary
such as position, curvature and direction, the so-called moving ele-
ments are introduced in the BPM [25] by organizing the relevant
adjacent nodes tentatively, over which the treatment of singularity
and Gauss quadrature can be carried out for evaluating the inte-
grals in the latter two cases, i.e., the coincidence or the small dis-
tances between the two points.

The current paper extends the BPM to the numerical analysis of
linear elasticity. As the field variables are assumed to be constant
over each of the territories or supports [25], the accuracy of the
field variables in the domain very close to the boundary need to
be improved. However, this can be realized by introducing tenta-
tively the quadratic moving element into the BPM in the present
work. The basic formulations of the BIE in elasticity are presented
in Section 2 as the starting point with the outline of the BPM given
briefly in Section 3. The quadratic moving elements are introduced
in Section 4. The numerical examples are tested in Section 5,
including the comparisons between one-point computing and
Gauss quadrature and some benchmark examples are presented
in the two- and three-dimensional elasticity, showing the feasibil-
ity and accuracy of the proposed method.

2. Basic formulations

Considering a linear elastic domain X surrounded by the piece-
wise smooth boundary C free of body force, the equilibrium equa-
tion is:

rij;j ¼ 0; in X; ð1Þ

where rij is the stress tensor. The corresponding boundary condi-
tions are given by:

uiðxÞ ¼ �uiðxÞ; x 2 Cu; ð2Þ
siðxÞ ¼ rijðxÞnj ¼ �siðxÞ x 2 Cr; ð3Þ

where ui are the displacements, si the tractions, �ui the prescribed
displacements on the displacement boundary Cu, �si the prescribed
tractions on the traction boundary Cr, and ni is the outward unit
that is normal to the boundary C ¼ Cr [ Cu. From the method of
weighted residuals and the constitutive relations of elasticity
[1,2], the direct formulations of integral equations can be written
as:

cðyÞdijujðyÞ ¼
Z

C
sjðxÞu�ijðx; yÞdCðxÞ �

Z
C

ujðxÞs�ijðx; yÞdCðxÞ; ð4Þ

cðyÞdijrjkðyÞ ¼
Z

C
sjðxÞu�ikjðx; yÞdCðxÞ �

Z
C

ujðxÞs�ikjðx; yÞdCðxÞ; ð5Þ

where u�ij and s�ij are the Kelvin’s displacement and the traction
fundamental solutions, u�ikj and s�ikj the derived displacement and
traction fundamental solutions, respectively. c represents the coef-
ficient of the free term of the BIE depending on where the source
point y is located. c(y) = 1 if y 2X, c(y) = 0 if y 2 X [ C, c(y) = 0.5
if y 2 C which is smooth in the neighborhood of the point y. dij is
the Kronecker symbol. With the Cauchy’s relation si = rijnj, Eq. (5)
can be written as follows:

cðyÞdijsjðyÞ ¼ nkðyÞ
Z

C
sjðxÞu�ikjðx; yÞdCðxÞ �

Z
C

ujðxÞs�ikjðx; yÞdCðxÞ
� �

:

ð6Þ

It is known that, in Eqs. (4)–(6), when y 2 C, the integrals with the
kernel u�ij are weakly singular (O(log (r�1)) for 2D or O(r�1) for 3D),
the integrals with the kernels s�ij and u�ikj are strongly singular



482 H. Ma et al. / Advances in Engineering Software 41 (2010) 480–488
(O(r�d)), and the integrals with the kernel s�ikj are hyper-singular
(O(r�d�1)), where d = 1 for 2D and d = 2 for 3D. r is the distance be-
tween the source and the observation points:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � ykÞðxk � ykÞ

p
: ð7Þ

Conventionally, when y 2 C, Eqs. (4) and (6) are called the conven-
tional and the hyper-singular BIE, abbreviated as the CBIE and the
HBIE, respectively. Mathematically, each of the two equations in
combination with the boundary conditions fully describes elasticity
problems, which are the foundation of boundary-type numerical
solutions such as the BEM [1,2], as well as the BPM to be described
in the next section.

3. The boundary point method

In the BPM, one of the features of its implementation is its dis-
cretization, which is simple to implement but slightly different
from that in the BEM using constant boundary elements [25].
Suppose that N nodes are placed on a smooth section of the bound-
ary C, each node being the centroid of a territory or support,
DCm (m = 1, . . ., N), which is locally smooth. A territory is a seg-
ment of curved line in 2D or a piece of curved surface in 3D such
that the node in the BPM locates on the C. All the territories form
the total boundary, that is,

C ¼
[N

m¼1

DCm; DCm ¼
lm ð2DÞ
am ð3DÞ

�
; ð8Þ

where lm and am denote the curved length and the curved
area of territory of the m th node, respectively. The boundary
variables are implied to be constant for a territory. However, the
difference between a territory in the BPM and a constant element
in the BEM can be seen clearly in that an element is a segment of
straight line in 2D or a piece of plane surface in 3D so that in general
the node in the BEM does not locate on the real C. However, the
node in the BPM does locate on the real C. In addition, the curved
line boundary in 2D and the curved surface boundary in 3D can
be correctly described by the use of moving elements when
necessary.

After the discretization of C into territories, Eqs. (4) and (6) can
be written in discrete form as follows:

cðynÞdijujðynÞ ¼
XN

m¼1

sm
j

Z
DCm

u�ijðx;ynÞdCðxÞ�um
j

Z
DCm

s�ijðx;ynÞdCðxÞ
� �

;

ð9Þ

c ynð ÞdijsjðynÞ

¼
XN

m¼1

nkðynÞ sm
j

Z
DCm

u�ikjðx; ynÞdCðxÞ � um
j

Z
DCm

s�ikjðx; ynÞdCðxÞ
� �

;

ð10Þ

where yn 2 C (n = 1, . . ., N) in above two equations. Defining the
integrals of kernel functions as follows:

Gnm
ij ¼

Z
DCm

u�ijðx; ynÞdCðxÞ; ð11aÞ

Fnm
ij ¼

Z
DCm

s�ijðx; ynÞdCðxÞ; ð11bÞ

Tnm
ij ¼ nkðynÞ

Z
DCm

u�ikjðx; ynÞdCðxÞ; ð11cÞ

Hnm
ij ¼ nkðynÞ

Z
DCm

s�ikjðx; ynÞdCðxÞ; ð11dÞ

the CBIE (4) and the HBIE (6) can be written in compact form as:
XN

m¼1

Gnm
ij sm

j ¼
XN

m¼1

Fnm
ij þ cdijdnm

� �
um

j ; ð12Þ

XN

m¼1

Tnm
ij � cdijdnm

� �
sm

j ¼
XN

m¼1

Hnm
ij um

j ; ð13Þ

Using either of Eqs. (12) and (13) incorporated with the boundary
conditions (2) and (3) and rearranging the equation, the system
algebraic equations can be obtained as:

Ax ¼ b: ð14Þ

The 2N (2D) or 3N (3D) boundary unknowns are obtained after the
solution of (14) with the linear algebraic solver. The field variables,
ui and rij, on the boundary (y 2 C) or in the domain (y 2X) of inter-
est can be computed by using the discrete form of Eqs. (4) and (5),
respectively. When x and y are coincident (m = n), the integrals are
weakly singular in (11a), strongly singular in (11b,c) and hyper-sin-
gular in (11d) which constitute the principal diagonal terms of the
system matrix A. The strongly and hyper-singular boundary inte-
grals should be evaluated in the sense of Cauchy principal values
and Hadamard finite part values, respectively.

When m – n or y 2X, all integrals of kernel functions in (11) are
regular and therefore easy to evaluate if the distances r are not too
small. In this case, Brebbia et al. suggested that four-point Gauss
quadrature would have sufficient accuracy for constant elements
in the BEM [1]. However, as demonstrated by the successful use
of the MFS [24] and illustrated in the present work, the use of
one-point computing can achieve reasonable accuracy for integrals
of kernel functions in (11), that is

Gnm
ij � u�ijðxm; ynÞDCm; ð15aÞ

Fnm
ij � s�ijðxm; ynÞDCm; ð15bÞ

Tnm
ij � nkðynÞu�ikjðxm; ynÞDCm; ð15cÞ

Hnm
ij � nkðynÞs�ikjðxm; ynÞDCm: ð15dÞ

As these integrals of kernel functions constitute most of the off-
diagonal terms of the system matrix A, much computing effort
can be saved by the use of one-point computing, just like that per-
formed in the MFS. The reasonable accuracy of integrals of kernel
functions achieved using one-point computing is considered in ef-
fect to derive from the properties of the fundamental solutions
themselves, just the opposite of the features of singularities, which
can be named as the distance effect. For example, if a kernel has a
singular order of O(r�s), where s is an integer, then the decaying or-
der of the integral values of this kernel function is also s with the
increase of the distance r. In addition, the variation of the kernel
function will have the order of O(r�s�1), higher than that of the ker-
nel itself, which means the decaying order of the variation of the
kernel is more quickly than the kernel itself when performing inte-
grations over the boundary elements if r is not too small. In other
words, the values of the kernel function can be well represented
by the value at the center point of the element, or of the territory
in the present work, since the variation along the territory becomes
negligibly small in this case. Therefore, if the distance r is not too
small, one-point computing will achieve reasonable accuracy for
integrals of kernel functions using the approximations (15), which
constitute most of the off-diagonal terms of the system matrix,
and the use of boundary elements is unnecessary.

4. The quadratic moving elements

As discussed above, much computing effort can be saved with
the use of one-point computing for integrals of kernel functions,
which constitute most of the off-diagonal terms of the system
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matrix in the BPM when the distance r is not too small. However, in
cases that the distance between the collocation and field points is
small, or they may even be coincident, these integrals of kernel
functions constitute the principal and the sub-principal diagonal
terms of the system matrix. The treatment of these integrals plays
an important role in the computing accuracy of the BPM, although
their quantity is fairly small compared with the off-diagonal terms.
Noticed that the boundary variables are assumed to be constant on
the support and the adjacent boundary nodes describe the local
features of boundary such as position, curvature and direction,
the problems can be resolved by introducing the constant moving
elements [25] where the relevant adjacent nodes are organized
tentatively.

With the introduction of the constant moving elements, not
only the geometry of curved boundaries can be well described,
but also all of the mature techniques in the BEM become applicable
in the BPM [26–28]. The treatment of singularity and Gauss quad-
rature can be carried out over the integration interval if necessary.
As the integration interval corresponds only to the territory of the
collocation node using the constant moving elements, the algo-
rithm can be changed over readily between the use of Gauss quad-
rature and one-point computing according to the distances
between the source and the field points.

However, difficulties arise when computing the field variables
in the domain very close to the boundary in the post processing
as well as for the analysis of the thin-wall structures since the field
variables are assumed to be constant over each of the territories or
supports. This is partially owing to the near singularities of the ker-
nels with various orders [29–31], partially owing to that a constant
displacement field is locally stress-free at the vicinity near the
boundary. Therefore the quadratic moving elements can be intro-
duced tentatively as shown in Fig. 1. The local coordinate system
of the three-point quadratic moving element for the nodes of inter-
est, k, is shown in Fig. 1a, where nk represent the dimensionless
coordinates of nodes as follows:
1kξ − 1kξ +kξ1− 1+

1k − k 1k +

kl

ξ

Γ

1kl − 1kl +

(a) 

2kξ +1kξ +kξ1− 1+

2k +k 1k +

kl

ξ

Γ

2kl +1kl + 3kl +

3kξ +

3k +

(b) 

1kξ −2kξ − kξ1− 1+

2k − k1k −

kl

ξ

Γ

2kl − 1kl −3kl −

3kξ −

3k −

(c) 

Fig. 1. The local coordinates of the 2D quadratic moving element constructed by (a)
three-points, (b) and (c) four-points.
nk�1 ¼
1
l

lk�1 � 1; nk ¼
1
l

2lk�1 þ lkð Þ � 1;

nkþ1 ¼
1
l

2lk�1 þ 2lk þ lkþ1ð Þ � 1; ð16Þ

where lk denote the territory length of each node and
l = lk � 1 + lk + lk + 1. With the local coordinate system defined in
Fig. 1a and the definitions (16), the shape functions for each node
of the three-point quadratic moving element can be written as
follows:

/k�1 ¼ 1
ðnk�1 � nkÞðnk�1 � nkþ1Þ

ðn� nkÞðn� nkþ1Þ; ð17aÞ

/k ¼ 1
ðnk � nk�1Þðnk � nkþ1Þ

ðn� nk�1Þðn� nkþ1Þ; ð17bÞ

/kþ1 ¼ 1
ðnkþ1 � nk�1Þðnkþ1 � nkÞ

ðn� nk�1Þðn� nkÞ: ð17cÞ

The integration interval for the quadratic moving element is [�1, +1]
corresponding to the territories of the three nodes. It can be seen
that, compared with the constant moving elements, the quadratic
moving element so defined belong to the equal-parametric elements
which can also describe curved boundaries well. When the location
of the source node is near a corner of the boundary, four-point mov-
ing elements can be constructed. Two local coordinate systems of
four-point moving elements are shown in Fig. 1b and c, respectively.
The purpose of using four adjacent nodes to construct an element is
to maintain approximately the same accuracy as that of the three-
point element, because parts of the integration interval [�1, +1]
for the four-point elements around the nodes of interest are deter-
mined by extrapolation (Fig. 1b and c). In Fig. 1b, the dimensionless
coordinates of nodes are defined as follows:

nk ¼
1
l

lk � 1; nkþ1 ¼
1
l
ð2lk þ lkþ1Þ � 1; nkþ2 ¼

1
l
ð2lk þ 2lkþ1 þ lkþ2Þ � 1;

nkþ3 ¼
1
l
ð2lk þ 2lkþ1 þ 2lkþ2 þ lkþ3Þ � 1;

ð18Þ

where l = lk + lk + 1 + lk + 2 + lk + 3. With the local coordinate system
defined in Fig. 1b and (18), the shape functions for each node of
the four-point moving element can be written as follows:

/k ¼ 1
ðnk � nkþ1Þðnk � nkþ2Þðnk � nkþ3Þ

ðn� nkþ1Þðn� nkþ2Þðn� nkþ3Þ;

ð19aÞ

/kþ1 ¼ 1
ðnkþ1 � nkÞðnkþ1 � nkþ2Þðnkþ1 � nkþ3Þ
� ðn� nkÞðn� nkþ2Þðn� nkþ3Þ; ð19bÞ

/kþ2 ¼ 1
ðnkþ2 � nkÞðnkþ2 � nkþ1Þðnkþ2 � nkþ3Þ
� ðn� nkÞðn� nkþ1Þðn� nkþ3Þ; ð19cÞ

/kþ3 ¼ 1
ðnkþ3 � nkÞðnkþ3 � nkþ1Þðnk � nkþ2Þ
� ðn� nkÞðn� nkþ1Þðn� nkþ2Þ: ð19dÞ

Similarly, in Fig. 1c, the dimensionless coordinates of nodes are de-
fined as follows:

nk ¼ �
1
l

lk þ 1; nk�1 ¼ �
1
l
ð2lk þ lk�1Þ þ 1;

nk�2 ¼ �
1
l
ð2lk þ 2lk�1 þ lk�2Þ þ 1;

nk�3 ¼ �
1
l
ð2lk þ 2lk�1 þ 2lk�2 þ lk�3Þ þ 1;

ð20Þ
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where l = lk � 3 + lk � 2 + lk � 1 + lk. With the local coordinate system
defined in Fig. 1c and (20), the shape functions for each node of an-
other four-point moving element can be written as follows:

/k ¼ 1
ðnk � nk�1Þðnk � nk�2Þðnk � nk�3Þ
� ðn� nk�1Þðn� nk�2Þðn� nk�3Þ; ð21aÞ
0r
2x

0r

x

2x

/k�1 ¼ 1

ðnk�1 � nkÞðnk�1 � nk�2Þðnk�1 � nk�3Þ
� ðn� nkÞðn� nk�2Þðn� nk�3Þ; ð21bÞ
y 1x y 1
3x

(a) (b) 

Fig. 2. Schematics in the 2D (a) and the 3D (b) for comparison between one-point
/k�2 ¼ 1
ðnk�2 � nkÞðnk�2 � nk�1Þðnk�2 � nk�3Þ
� ðn� nkÞðn� nk�1Þðn� nk�3Þ; ð21cÞ
computing and Gauss quadrature.
/k�3 ¼ 1
ðnk�3 � nkÞðnk�3 � nk�1Þðnk � nk�2Þ
� ðn� nkÞðn� nk�1Þðn� nk�2Þ; ð21dÞ

In a similar way, the surface moving elements can be constructed
for the 3D cases along the two directions over the boundary surface
as was done in the constant moving elements [25]. It needs to be
pointed out that the characteristics of the last two elements in
Fig. 1b and c are cubic. However, since the number of those ele-
ments is generally small in comparison with those quadratic mov-
ing elements in Fig. 1a used along smooth boundaries, the cubic
moving elements are not specially dressed in the present paper
since they are introduced only for balancing the accuracy with the
quadratic moving elements. With the introduction of the quadratic
moving elements, the distance transformation techniques can be
employed to deal with these near singular integrals [29–31] with-
out difficulty.
0.1
5. Numerical examples

In this section, the comparison of accuracy and efficiency is pre-
sented first between one-point computing and Gauss quadrature.
With the comparison, the range or criterion can be determined
to change appropriately between the two numerical algorithms
during the computation of coefficients of the system matrix. Then
some benchmark examples are presented in elasticity including
thin-wall structures with both the CBIE and HBIE formulations
using the computer program developed based on the BPM. The ef-
fect of the quadratic moving elements in the near singular case is
shown in the numerical example.
011
-0.2

-0.1

0.0

2-D kernels

r0/l

 By quadrature
u *12

τ *11

u *122

τ *222

In
te

gr
al
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s

Fig. 3. Comparison of the 2D integral values computed between one-point
computing and Gauss quadrature as a function of relative distance, r0/l.
5.1. Comparison between one-point computing and Gauss quadrature

Observation nodes x with territories and distances r0 from the
source point y are schematically shown in Fig. 2 for the comparison
of differences between one-point computing and Gauss quadrature
over a constant moving element. Supposing that K represents any
one of the kernels, the integrals over the territories by the one-
point computing method are computed by

I ¼ Kðx; yÞl; ð2DÞ; ð22aÞ
I ¼ Kðx; yÞa; ð3DÞ: ð22bÞ

As a control, the integrals over the territories are computed, respec-
tively, by four-point Gauss quadrature in 2D and 4 � 4-point Gauss
quadrature in 3D for comparison:
I ¼
Z þ1

�1
K xðnÞ; y½ �JðnÞdn; ð2DÞ; ð23aÞ

I ¼
Z þ1

�1

Z þ1

�1
K xðn;gÞ; y½ �Jðn;gÞdndg; ð3DÞ: ð23bÞ

The 2D integral values of various kernels computed by one-point
computing and Gauss quadrature as a function of relative distance,
r0/l, are compared in Fig. 3. It can be seen that the greater the rela-
tive distance, the smaller the integral values, a feature stemming
from the properties of fundamental solutions, the distance effect.
The corresponding relative errors of the 2D integral values are
shown in Fig. 4. It can be seen that the greater the relative distance,
the smaller the errors between the integral values by the two
schemes, a feature also stemming from the properties of fundamen-
tal solutions, the distance effect. In the range of relative distances
exceeding r0/l P 2, the differences in the integral values are negligi-
bly small between the two schemes, in which the integrals can be
computed suitably by one-point computing. The use of Gauss quad-
rature is necessary only within the range of r0/l 6 2.

The 3D integral values of various kernels computed by one-point
computing and Gauss quadrature as a function of relative distance,
r0/a1/2, are compared in Fig. 5, and the corresponding relative er-
rors are shown in Fig. 6. Similar conclusions can be drawn, that
in the range of relative distance exceeding r0/a1/2 P 2, the differ-
ences in the integral values are negligibly small between the two
schemes, in which the integrals can also be computed satisfactorily
by one-point computing. The use of Gauss quadrature is necessary
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Table 1
The conditions for the algorithms used in the BPM.

Algorithm Relative
distance

Computing stages

One-point
computing

>3 All stages

Constant moving
elements

63 and >0.5 All stages using a variable number of
Gauss points

Constant moving
elements

0 Forming system matrix Recovering
boundary stresses

Quadratic moving
elements

60.5 All stages

P

P

R
1x

2x

l

/p P l=

2x

(a) (b) 

Fig. 7. (a) A circular disk with two equal and opposite forces P = 1 acting along the
diameter. (b) The point force P treated as traction p distributed over a territory with
length l.
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Fig. 8. Computed stresses in domain along x2 = 0 in the circular disk with two equal
and opposite forces acting along the vertical diameter.
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only within the range of r0/a1/2
6 2 in the 3D case. It is seen that the

comparison in elasticity comes to the same conclusion with that in
the potential theory [25] as expected. The use of the algorithms in
the present work is summarized in the Table 1 as follows where
the conditions for the use of one-point computing are more rigor-
ously than the results shown in Figs. 3–6.
5.2. Stresses in a circular disk

As shown in Fig. 7a, a circular disk with two equal and opposite
forces P = 1 acting along the vertical diameter is considered. Be-
cause of symmetry, only a quarter of the disk is discretised by uni-
formly distributed nodes along the boundary and no node is
required on the symmetrical axis as the program has the ability
to deal with problems with geometrical symmetry. The point force
P is treated as traction distributed over a territory with length l as
shown in Fig. 7b. The computed results are compared with the ana-
lytical solutions [32]. Fig. 8 shows various stress components nor-
malized by the point load computed in the domain along x2 = 0 in
the circular disk with a total node number N = 20. It can be seen
that the computed results are in good agreement with the exact
solutions. Fig. 9 gives various normalized stress components com-
puted in the domain along x1 = 0 in the circular disk with the same
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total node number N = 20. It can be seen also that the computed re-
sults are in good agreement with the exact solutions except near
the point load as it is approximated by the traction as shown in
Fig. 7b. The root mean square errors of stresses computed both
in the domain and on the boundary nodes of the circular disk are
presented in Fig. 10 as a function of the total node number used,
showing the convergence behavior of the BPM.
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Fig. 12. Stress concentration factors at point A of elliptical hole in the infinite
tension plate as a function of b/a.
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5.3. Infinite plate with an elliptical hole

Another example is an infinite plate with an elliptical hole un-
der far-field uniform tension with p = 1, as shown in Fig. 11. a
and b are the major and minor axes respectively of the ellipse. Be-
cause of symmetry, only a quarter of the hole is discretized along
the boundary of the hole using a total node number N = 20. The
coordinates of nodes are determined using the equations x = a -
sin(h) and y = b sin(h) with equally divided angle h so that the nodes
are distributed uniformly only when a = b. The stress concentration
factors at the vertex (point A, Fig. 11) of the elliptical hole in the
infinite tension plate as a function of b/a are shown in Fig. 12. It
can be seen again that the results computed with the BPM compare
well with the exact solutions [32]. The computed stresses normal-
ized by the far-field load in the domain along x2 = 0 are presented
in Fig. 13. The computed stresses at the places very close to the
boundary just following the range in Fig. 13 are compared in
Fig. 14 with the two algorithms where one constant and one qua-
dratic moving element are used, respectively, around the source
point. It can be seen from Fig. 14 that the results with the constant
00101
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Fig. 10. The root mean square errors of stresses computed in the domain and on the
boundary of the circular disk.

1.0 1.1 1.2 1.3 1.4 1.5 1.6
x1/a

Fig. 13. Computed stresses in domain along x2 = 0 in the infinite tension plate with
an elliptical hole.
moving element are unacceptable since the field variables in the
territory are assumed to be constant although the distance trans-
formation techniques [29,30] are still employed in the computa-
tion. In comparison, the results with the quadratic moving
element are shown in good agreement with the exact solutions
[32].

5.4. The thin-wall cylinder under inner pressure

The next example is the thin-wall cylinder under inner pressure
using 96 nodes equally spaced along both the inner and outer
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surfaces. For these problems, the quadratic moving elements
should be used not only in the stage of post processing but also
in stage of forming the system matrix. In the computation, the
thickness h of the cylinder varies while the mean radius R is kept
constant. The circumferential stresses at the mean radius normal-
ized by the inner pressure are shown in Fig. 15. It can be seen from
Fig. 15 that the results using constant moving elements have no
meaning when h/R is small. However, the results using quadratic
moving elements are in good agreement with the exact solution
in a wide range of h/R. Fig. 16 presents the relative errors of the ra-
dial displacements and circumferential stresses at the mean radius,
showing the effectiveness of the BPM.
5.5. A 3D thick cylinder under inner pressure

The last example is a 3D thick cylinder under inner pressure as
shown in Fig. 17. In the analysis, the boundary of the cylinder is
discretized by 640 boundary nodes over a quarter of the model ow-
ing to the geometrical symmetry. Fig. 18 gives the results of the
surface stresses of the cylinder under inner pressure p = 1, showing
that the computed results are in good agreement with the exact
solution, verifying the effectiveness of the BPM for the 3D analysis
of elasticity.
6. Conclusions

In this study, based on the direct formulations of the BIE, the no-
vel boundary-type meshless method, the BPM, is extended to the
solution of linear elasticity problems. As the source points are lo-
cated on the real boundary in the BPM, the main difficulty of coin-
cidence of the source and observation points as well as the
inconvenience of using fictitious boundary encountered in the
MFS are removed. Comparing with the BEM, the use of the BPM
can improve efficiency by both reducing the burden of data prepa-
ration and taking advantage of the one-point computing for most of
the integrals of kernel functions while keeping a reasonable accu-
racy. With the introduction of the quadratic moving elements, the
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accuracy of the stresses near the boundaries is greatly improved in
the post processing. The thin-wall structure can be analyzed with
no difficulty. Numerical tests of the BPM are carried out by bench-
mark examples in the two- and three-dimensional elasticity. Good
agreement is observed between the numerical and the exact solu-
tions. It is considered also that the BPM would be more feasible to
combine with the fast multipole technique [33] to solve large-scale
problems to be carried out in the near future.
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