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ABSTRACT A new type of hybrid finite element formulation with fundamental solutions as in-
ternal interpolation functions, named as HFS-FEM, is presented in this paper and used for solving
two dimensional heat conduction problems in single and multi-layer materials. In the proposed ap-
proach, a new variational functional is firstly constructed for the proposed HFS-FE model and the
related existence of extremum is presented. Then, the assumed internal potential field constructed
by the linear combination of fundamental solutions at points outside the elemental domain un-
der consideration is used as the internal interpolation function, which analytically satisfies the
governing equation within each element. As a result, the domain integrals in the variational func-
tional formulation can be converted into the boundary integrals which can significantly simplify
the calculation of the element stiffness matrix. The independent frame field is also introduced to
guarantee the inter-element continuity and the stationary condition of the new variational func-
tional is used to obtain the final stiffness equations. The proposed method inherits the advantages
of the hybrid Trefftz finite element method (HT-FEM) over the conventional finite element method
(FEM) and boundary element method (BEM), and avoids the difficulty in selecting appropriate
terms of T-complete functions used in HT-FEM, as the fundamental solutions contain usually
one term only, rather than a series containing infinitely many terms. Further, the fundamental
solutions of a problem are, in general, easier to derive than the T-complete functions of that prob-
lem. Finally, several examples are presented to assess the performance of the proposed method,
and the obtained numerical results show good numerical accuracy and remarkable insensitivity
to mesh distortion.

KEY WORDS hybrid FEM, fundamental solution, variational functional, heat conduction

I. INTRODUCTION
During the past decades, research into the development of efficient finite elements has been mostly

concentrated on the following three distinct types of FEM[1–6]. The first is the conventional FEM. It is
based on a suitable polynomial interpolation which has already been used to analyze most engineering
problems. With this method, the solution domain is divided into a number of small cells or elements, and
material properties are defined at element level[1]. The second is the natural-mode FEM. In contrast,
the natural FEM, initiated by Argyris et al.[2], presents a significant alternative to conventional FEM
with ramifications on all aspects of structural analysis. It makes distinction between the constitutive
and geometric parts of the element tangent stiffness, which could lead effortlessly to the non-linear
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effects associated with large displacements. When applied to composite structures, the physically clear
and comprehensible theory with complete quadrature elimination and avoidance of modal (shape)
functions can show distinctly the mechanical behavior of isotropic and composite shell structures[2,3].
The final is the so-called hybrid Trefftz FEM (HT-FEM)[4,6]. Unlike in the conventional and natural
FEM, the HT-FEM couples the advantages of FEM[1] and BEM[7]. In contrast to conventional FEM
and BEM, HT-FEM is based on a hybrid method which includes the use of an independent auxiliary
inter-element frame field defined on each element boundary and an independent internal field chosen so
as to a prior satisfy the homogeneous governing differential equations by means of a suitable truncated T-
complete function set of homogeneous solutions. Inter-element continuity is enforced by using a modified
variational principle, which is used to construct the standard force-displacement relationship, that is,
stiffness equation, and establish linkage of frame fileds and internal fields of the element. The property
of nonsingular element boundary integral that appears in HT-FEM enables us to construct arbitrarily
shaped element conveniently; however, the terms of truncated T-complete functions should be carefully
selected in achieving desired results. Further, they are difficult to develop for some physical problems. To
remove the drawback of HT-FEM, a novel hybrid finite formulation based on the fundamental solution,
named as HFS-FEM, is firstly developed for solving two dimensional heat conduction problems in single
and multilayer-materials. The proposed HFS-FEM can be viewed as the fourth type of FEM which is
significantly different from the previous three types of FEM discussed above. In the analysis, a linear
combination of the fundamental solution at different points is used to approximate the field variable
within the element. The independent frame field defined along the element boundary and the newly
developed variational functional are employed to guarantee the inter-element continuity, generate the
final stiffness equation and establish linkage between the boundary frame field and internal field in the
element. The proposed HFS-FEM inherits all advantages of HT-FEM and removes the difficulty in
constructing and selecting T-functions, so it can reach more extensive applications than the HT-FEM.
Moreover, it is necessary to point out that the developed approach is different from the BEM, although
the same fundamental solution is employed.Using the reciprocal theorem, the BEM obtains the boundary
integral equation, which usually encounters difficulty in dealing with singular or hyper-singular integrals
in the BEM analysis, while the proposed method can remove this weakness. Additionally, the more
flexible element material definition in the HFS-FEM is important for multi-material analysis, rather
than the material definition in the entire domain in the BEM.

The paper begins with a simple description of heat conduction problems in §II. Then, a detailed
derivation of the proposed HFS-FEM and the corresponding algorithm is described in §III to provide
an initial insight on this new finite element model. Several numerical examples are presented in §IV to
validate the proposed algorithm and some concluding remarks are presented in §V.

II. STATEMENT OF HEAT CONDUCTION PROBLEMS
Consider that we are seeking to find the solution of a well-posed heat conduction problem in a general

plane domain Ω
∂

∂X1

(
k
∂u(x)

∂X1

)
+

∂

∂X2

(
k
∂u(x)

∂X2

)
= 0 ∀x ∈ Ω (1)

with the following boundary conditions:
—Dirichlet boundary condition related to the unknown temperature field

u = ū on Γu (2)

—Neumann boundary condition for the boundary heat flux

q = −ku,ini = q̄ on Γq (3)

where k stands for the thermal conductivity, u is the sought field variable and q represents the boundary
heat flux. ni is the ith component of the outward normal vector to the boundary Γ = Γu∪Γq, and ū and
q̄ are specified functions on the related boundaries, respectively. The space derivatives are indicated by
a comma, i.e. u,i = ∂u/∂Xi, and the subscript index i takes values 1 and 2 in our analysis. Additionally,
the repeated subscript indices stand for the summation convention.
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For the sake of convenience, Eq.(3) is rewritten in the matrix form as

q = −kA

{
u,1

u,2

}
= q̄ (4)

with A =
{
n1 n2

}
.

III. BASIC FORMULATION OF HFS FINITE ELEMENT APPROACH
In this section, the procedure for developing a hybrid finite element model with fundamental solutions

as interior trial functions is described based on the boundary value problem (BVP) defined by Eqs.(1)-(3).
Similar to HT-FEM, The main idea of the pro-

posed approach is to establish a hybrid finite ele-
ment formulation whereby intra-element continu-
ity is enforced on a nonconforming internal dis-
placement field formed by a linear combination of
fundamental solutions at points outside the ele-
ment domain under consideration, while an aux-
iliary frame field is independently defined on the
element boundary to enforce the field continuity
across inter-element boundaries. But unlike in HT-

Fig. 1 Illustration of continuity between two adjacent ele-

ments ‘e’ and ‘f ’.

FEM, the intra-element field, is constructed based on the fundamental solution, rather than T-functions.
Consequently, a variational functional corresponding to the new trial function is required to derive the
related stiffness matrix equation. With the problem domain divided into some sub-domains or elements
denoted by Ωe with the element boundary Γe, the additional continuity is usually required on the
common boundary ΓIef between any two adjacent elements ‘e’ and ‘f ’ (see Fig.1):

ue = uf (conformity)
qe + qf = 0 (reciprocity)

}
on ΓIef = Γe ∩ Γf (5)

in the proposed hybrid FE approach.

3.1. Non-conforming Intra-element Field

Activated by the idea of the method of fundamental solutions (MFS)[8] to remove the singularity of
fundamental solutions, for a particular element, say element e, which occupies sub-domain Ωe, we first
assume that the field variable defined in the element domain is extracted from a linear combination of
fundamental solutions centered at different source points (see Fig.2), that is,

ue (x) =

ns∑
j=1

Ne

(
x,yj

)
cej = Ne (x) ce ∀x ∈ Ωe, yj /∈ Ωe (6)

where cej is undetermined coefficients and ns is the number of virtual sources outside the element e.
Ne(x,yj) is the fundamental solution to the 2D heat conduction and generally satisfies

k∇2Ne (x,y) + δ (x,y)= 0 ∀x,y ∈ R
2 (7)

which gives

Ne (x,y) = −
1

2πk
ln r (x,y) (8)

where R
2 refers to the infinite plane space and r (x,y) be the Euclidian distance of x and y.

Evidently, Eq.(6) analytically satisfies Eq.(1) due to the solution property of Ne(x,yj).
In practice, the generation of virtual sources is usually done by means of the following formulation

employed in the MFS[9,10]:
y = xb + γ (xb − xc) (9)

where γ is a dimensionless coefficient, xb is the elementary boundary point and xc the geometrical
centroid of the element. For a particular element shown in Fig.2, we can use the nodes of the element
to generate related source points for simplicity.
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Fig. 2. Intra-element field, frame field in a particular element in HFS-FEM, and the generation of source points for a

particular element.

The corresponding outward normal derivative of ue on Γe is

qe = −k
∂ue

∂n
= Qece (10)

where

Qe = −k
∂Ne

∂n
= −kAT e (11)

with

T e =

⎡
⎢⎣
∂Ne

∂x1
∂Ne

∂x2

⎤
⎥⎦ (12)

3.2. Auxiliary Conforming Frame Field

In order to enforce the conformity on the field variable u, for instance, ue = uf on Γe∩Γf of any two
neighboring elements e and f , an auxiliary inter-element frame field ũ is used and expressed in terms
of the same degrees of freedom (DOF), d, as used in the conventional finite elements. In this case, ũ is
confined to the whole element boundary, that is

ũe (x) = Ñe (x)de (13)

which is independently assumed along the element boundary in terms of nodal DOF de, where Ñe

represents the conventional finite element interpolating functions. For example, a simple interpolation
of the frame field on the side with three nodes of a particular element (Fig.2) can be given in the form

ũ = Ñ1u1 + Ñ2u2 + Ñ3u3 (14)

where Ñi (i = 1, 2, 3) stands for shape functions in terms of the natural coordinate ξ defined in Fig.3.
3.3. Modified Variational Principle and Stiffness Equation

3.3.1. Modified functional

For the boundary value problem defined in Eqs.(1)-(3) and (5), since the stationary conditions of
the traditional potential or complementary variational functional can’t guarantee the satisfaction of
the inter-element continuity condition required in the proposed HFS FE model, a modified potential
functional is developed as follows

Πm =
∑

e

Πme =
∑

e

[
Πe +

∫
Γe

(ũ− u) qdΓ

]
(15)

where

Πe = −
1

2

∫
Ωe

ku,iu,idΩ −

∫
Γqe

q̄ũdΓ (16)
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Fig. 3. Typical quadratic interpolation for the frame field.

in which the governing equation (1) is assumed to be satisfied, a priori, for deriving the HFS FE model.
It should be mentioned that the functional (15) is different from that used in Ref.[5]. The boundary
Γe of a particular element consists of the following parts

Γe = Γue ∪ Γqe ∪ ΓIe (17)

where ΓIe represents the inter-element boundary of the element ‘e’ shown in Fig.2.
• Stationary condition of the proposed functional

Next we will show that the stationary condition of the functional (15) leads to the governing equation
(Euler equation), boundary conditions and continuity conditions. To this end, invoking Eqs.(16) and
(15) gives the following functional for the problem domain

Πme = −
1

2

∫
Ωe

ku,iu,idΩ −

∫
Γqe

q̄ũdΓ +

∫
Γe

q (ũ− u) dΓ (18)

whose first-order variational yields

δΠme = −

∫
Ωe

ku,iδu,idΩ −

∫
Γqe

q̄δũdΓ +

∫
Γe

(δũ− δu) qdΓ +

∫
Γe

(ũ− u) δqdΓ (19)

Using the divergence theorem∫
Ω

f,ih,idΩ =

∫
Γ

hf,inidΓ −

∫
Ω

h∇2fdΩ (20)

for any smooth functions f and h in the domain, we have

δΠme =

∫
Ωe

ku,iiδudΩ −

∫
Γqe

(q̄ − q) δũdΓ +

∫
Γue

qδũdΓ +

∫
ΓIe

qδũdΓ +

∫
Γe

(ũ− u) δqdΓ (21)

For the displacement-based method, the potential conformity should be satisfied in advance, that
is,

δũ = 0 on Γue (ũ = ū)
δũe = δũf on ΓIef (ũe = ũf)

(22)

then, Eq.(21) can be rewritten as

δΠme =

∫
Ωe

ku,iiδudΩ −

∫
Γqe

(q̄ − q) δũdΓ +

∫
ΓIe

qδũdΓ +

∫
Γe

(ũ− u) δqdΓ (23)

from which the Euler equation in the domain Ωe and boundary conditions and Γq can be obtained

ku,ii = 0 in Ωe

q = q̄ on Γqe

ũ = u on Γe

(24)
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using the stationary condition δΠme = 0.
About the continuity requirement between two adjacent elements ‘e’ and ‘f ’ given in Eq.(5), we can

obtain it in the following way. When assembling elements ‘e’ and ‘f ’, we have

δΠm(e+f) =

∫
Ωe+f

ku,iiδudΩ −

∫
Γqe+Γqf

(q̄ − q) δũdΓ +

∫
Γe

(ũ− u) δqdΓ

+

∫
Γf

(ũ− u) δqdΓ +

∫
ΓIef

(
qe + qf

)
δũefdΓ + ... (25)

from which the vanishing variation of Πm(e+f) leads to the reciprocity condition qe + qf = 0 on the
inter-element boundary ΓIef .
• Theorem on the existence of extremum

If the expression

∫
Γq

δqδũds−
∑

e

[∫
ΓIe

δqeδũeds+

∫
Γe

δqeδ(ũe − ue)ds

]
(26)

is uniformly positive (or negative) in the neighborhood of {u}0, where the displacement {u}0 has such
a value that Πm({u}0) = (Πm)0, and where (Πm)0 stands for the stationary value of Πm, we have

Πm ≥ (Πm)0 [ or Πm ≤ (Πm)0] (27)

in which the relation that {ũ}e = {ũ}f is identical on Γe∩Γf has been used. This is due to the definition
in Eq.(5) of §II.
PROOF : For the proof of the theorem on the existence of extremum, we may complete it by way of
the so-called ‘second variational approach’[11]. In doing this, performing variation of δΠm and using
the constrained condition (26), we find

δ2Πm =

∫
Γq

δqδũds−
∑

e

[∫
ΓIe

δqeδũeds+

∫
Γe

δqeδ(ũe − ue)ds

]
= expression (18) (28)

Therefore the theorem has been proved from the sufficient condition of the existence of a local
extreme of a functional[11]. This completes the proof.

3.3.2. Stiffness equation

Having independently defined the intra-element field and frame field in a particular element (see
Fig.2), the next step is to generate the element stiffness equation through a variational approach.

Following the approach described in Ref.[5], the variational functional Πe corresponding to a par-
ticular element e of the present problem can be written as

Πme = −
1

2

∫
Ωe

ku,iu,idΩ −

∫
Γqe

q̄ũdΓ +

∫
Γe

q (ũ− u) dΓ (29)

Applying the divergence theorem (20) again to the above functional, we have the final functional
for the HFS FE model

Πme =
1

2

(∫
Γe

qudΓ +

∫
Ωe

uk∇2udΩ

)
−

∫
Γqe

q̄ũdΓ +

∫
Γe

q (ũ− u) dΓ

= −
1

2

∫
Γe

qudΓ −

∫
Γqe

q̄ũdΓ +

∫
Γe

qũdΓ (30)

Then, substituting Eqs.(6), (10) and (13) into the functional (30) finally produces

Πme = −
1

2
cT

e Hece − dT
e ge + cT

e Gede (31)

in which
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He =

∫
Γe

QT
e N edΓ =

∫
Γe

NT
e QedΓ , Ge =

∫
Γe

QT
e ÑedΓ , ge =

∫
Γqe

Ñ
T

e q̄dΓ

The symmetry of He is obvious from the scale definition (31) of variational functional Πme.
To enforce inter-element continuity on the common element boundary, the unknown vector ce should

be expressed in terms of nodal DOF de. The minimization of the functional Πme with respect to ce

and de, respectively, yields

∂Πme

∂cT
e

= −Hece + Gede = 0,
∂Πme

∂d
T
e

= GT
e ce − ge = 0 (32)

from which the optional relationship between ce and de, and the stiffness equation can be produced

ce = H−1
e Gede and Kede = ge (33)

where Ke = GT
e H−1

e Ge stands for the element stiffness matrix.
It is worthy pointing out that the evaluation of the right-handed vector ge in Eq.(33) is the same

as that in the conventional FEM, which is obviously convenient for the implementation of HFS-FEM
into an existing FEM program.

3.4. Recovery of Rigid-body Motion

Considering the physical definition of the fundamental solution, it’s necessary to recover the missing
rigid-body motion modes from the above results.

Following the method presented in Ref.[5], the missing rigid-body motion can be recovered by writing
the internal potential field of a particular element e as

ue = N ece + c0 (34)

where the undetermined rigid-body motion parameter c0 can be calculated using the least square
matching of ue and ũe at element nodes[5]

n∑
i=1

(Nece + c0 − ũe)
2
∣∣∣
node i

= min (35)

which finally gives

c0 =
1

n

n∑
i=1

Δuei (36)

in which Δuei = (ũe −N ece)|node i and n is the number of element nodes.
Once the nodal field is determined by solving the final stiffness equation, the coefficient vector ce

can be evaluated from Eq.(33), and then c0 is evaluated from Eq.(36). Finally, the potential field u at
any internal point in an element can be obtained by means of Eq.(6).

IV. NUMERICAL ASSESSMENTS
In this section, two numerical examples are considered to demonstrate the basic principle, numerical

accuracy, and insensitivity to mesh distortion of the proposed method. From the discussion above, it is
found that an arbitrarily shaped element can be constructed easily with the model. However, considering
the requirement of accuracy and computational simplification, 8-node parabolic quadrilateral elements
are employed in this work, because they are extremely versatile for boundary matching and most pre-
processing algorithms developed for conventional FEM used here. In other words, we can utilize the
current pre-process procedure of the conventional FEM to obtain the desired mesh division in the
present analysis.

In order to compare the influence of the generation of source points outside the selected 8-node
element, the configurations shown in Fig.4 are employed, in which, 4, 8, 12 and 16 source points are
generated by means of nodal points or middle points on the element boundary respectively and Eq.(9)
is used to evaluate their locations.



· 494 · ACTA MECHANICA SOLIDA SINICA 2009

Fig. 4. Configurations of source points for a typical 8-node element.

In addition, in order to provide a more quantitative understanding of results, the average relative
error (Arerr) on an arbitrary variable f is introduced as

Arerr (f) =

√√√√√√√√

N∑
i=1

(fnumerical − fexact)
2
i

N∑
i=1

(fexact)
2
i

(37)

where N is the number of test points and (f)i is an arbitrary field function, such as the potential at
point i.
Example 1. Heat conduction in a thick-walled cylinder

The first example is designed to verify the accuracy of the proposed formulations and investigate the
effect of the location of source points, which are vital for almost all MFS-based methods. In this example,
a thick cylinder with Dirichlet boundary conditions is considered. Due to the symmetric property of
the problem, only one quarter of the entire domain is modeled and related boundary conditions are
shown in Fig.5. The needed thermal conductivity is taken as 1 for simplicity. The analytical solution
of this problem

u = a+ b ln r (38)

where

a =
ui ln (r0)− u0 ln (ri)

ln (r0/ri)
, b =

u0 − ui

ln (r0/ri)

is used for comparison.
In the calculation, ri = 5, r0 = 20, ui = 10, u0 = 0 are assumed and nine 8-node quadrilateral

elements are employed to model the solution domain (see Fig.6). The average relative error of potential
u (Arerr(u)) at all boundary nodes and elementary central points is presented in Fig.7 for investigating
the effect of the location of source points generated by means of Eq.(9). It can be seen from Fig.7 that
an acceptable numerical accuracy can be achieved when the value of γ falls within the interval [1.5,
3.5] and the number of source points is equal to 8, 12 or 16, while the worst result is observed when
ns = 4 (see Fig.7). On the other hand, it can also be seen that the numerical accuracy of the results
become worse if γ decreases from 1.5. This can be explained as follows. A small value of γ may cause
singularity of the fundamental solution due to the close distance between the source point and field



Vol. 22, No. 5 Hui Wang et al.: Hybrid FEM with Fundamental Solutions as Trial Functions · 495 ·

Fig. 5. Schematic diagram of a quarter of a thick cylinder

and related boundary conditions.

Fig. 6. 8-node quadrilateral element division for the quarter

domain.

Fig. 7. Effect of various dimensionless parameter γ on nu-

merical accuracy.

Fig. 8. Effect of various dimensionless parameter γ on the

condition number of matrix H.

point. Conversely, from the point of view of numerical computation, round-off error in floating point
algorithms may cause another problem when the source points are far from the element boundary, that
is γ has larger value, in this case, a larger condition number of the system matrix, for example the
condition number of matrix H in Fig.8, may be produced. Furthermore, from Fig.8 we also observe
that a larger ns, especially ns = 16, leads to a larger condition number of the matrix H , and the main
reason is that a larger ns unavoidably produces the larger size of the matrix H, which is not beneficial
to its inverse algorithm. Therefore the optimal number of points is ns = 12 and γ = 2.5, which will be
used in the following computation as a general choice, unless there is a special statement. In Table 1,
the distribution of numerical results along the radial direction is compared with the analytical solutions
and HT-FEM. It is found from Table 1 that the results from the proposed HFS-FEM are closer to the
exact solutions than those from HT-FEM.

Table 1. Comparison of HT-FEM, HFS-FEM and analytical solutions

Radius r 5.000 6.667 8.333 10.667 13.000 16.500 20.000

HT-FEM 10.0000 7.9255 6.3101 4.5356 3.1010 1.3889 0.0000
HFS-FEM 10.0000 7.9242 6.3156 4.5332 3.1070 1.3864 0.0000

Exact 10.0000 7.9245 6.3155 4.5342 3.1074 1.3877 0.0000

Example 2. Heat conduction in an L-shaped panel with a circular hole

In the second example, a complicated L-shaped panel with a circular hole is taken into consideration
(see Fig.9) with k = 1. In this test, all outside boundaries are prescribed with the essential boundary
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condition u = 0, while on the remaining inner circular boundary, q = 10 is presented for analysis. In the
computation, the entire domain is modeled with 208 8-node quadrilateral elements and the distribution
of the potential field u is plotted in Fig.10, from which we can see clearly that the results of the proposed
method have a good agreement with ones of ABAQUS obtained with the same mesh division, so the
proposed method can be viewed as an alternative to the conventional FEM. Additionally, although
large amount of regular elements are unavoidably used in the domain division, from result comparison
shown in Fig.10 we can conclude that the proposed HFS-FEM is insensitive to the mesh distortion.

Fig. 9. The L-shaped panel with a circular hole.
Fig. 10. Distribution of u in the L-shaped panel.

Example 3. Heat conduction in a functionally graded plate Finally, a heat conduction case in a square
functionally-graded plate with boundary conditions shown in Fig.11 is studied. Assume that the plate
is graded along the X2-direction and the thermal conductivity k = k0e

βX2 . β is a real parameter and
k0 a constant. In order to utilize the proposed HFS-FEM conveniently, we can introduce a stepwise
constant approximation to the thermal conductivity, as shown in Fig.12. In the computation, k0 = 17
W/m/◦C, β = 0, 20, 50 m−1, the side-length of the plate is a = 0.04 m. Totally 4 × 8 elements are
used to discretize the domain and numerical results are compared to the following analytical solution
with various graded parameter β in Fig.13, from which we cam see that the proposed method has good
accuracy.

u =
e−βX2 − 1

e−βa − 1

(
lim
β→0

u =
X2

a

)
(39)

Fig. 11. Square functionally graded plate.

Fig. 12. Stepwise constant approximation model to the

thermal conductivity.
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Fig. 13. Temperature distribution along the graded direction with various graded parameter β.

V. CONCLUSIONS
A new type of fundamental solution-based FEM formulation has been developed for analyzing two-

dimensional heat conduction problems. In the model, a linear combination of the fundamental solution at
points outside the element domain is used to approximate the field variable within an element domain,
and a frame field defined on the elementary boundary is introduced to guarantee the inter-element
continuity. To adapt the new trial function- fundamental solution, a modified variational functional is
constructed for establishing the corresponding stiffness matrix equation. Numerical results show that
the proposed method is insensitive to mesh distortion and has good accuracy. Typically, the proposed
HFS-FEM has the following features:
• Compared to conventional FEM, the formulation calls for integration along the element boundaries
only, which simplifies the calculation of the stiffness matrix and is easy to generate arbitrary shaped
elements.
• The proposed model is insensitive to the mesh distortion and can provide good numerical accuracy.
• In contrast to the T-complete function used in HT-FEM, the fundamental solution in HFS-FEM
is easy to derive, and further, the determination of source points is easier to operate than selecting
appropriate terms from T-complete series in HT-FEM.
•HFS-FEM can define the fundamental solution at element level and thus can be flexibly used to analyze
problems with different material properties. In contrast, BEM usually uses the fundamental solutions
defined in the full domain which is not convenient for such problems with different materials. Moreover,
the nonsingular boundary integrals are used in the HFS-FEM, instead of singular or hyper-singular
ones in the formulation of the conventional BEM.

Although the proposed formulation and the numerical examples have been confined to heat conduction
problems, extensions to complex engineering problems are possible. For example, the extension to two-
dimensional elastic problems and thin plate bending problems is under way.
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