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Intramolecular junctions (IMJs) of carbon nanotubes hold a promise of potential applications in nano-
electromechanical systems. However, their structure-property relation is still unclear. Using the revised
second-generation Tersoff–Brenner potential, molecular dynamics simulations were performed to study
the mechanical properties of single-walled to four-walled carbon nanotubes with IMJs under uniaxial
tension. The dependence of deformation and failure behaviors of IMJs on the geometric parameters was
examined. It was found that the rupture strength of a junction is close to that of its thinner carbon
nanotube segment, and the rupture strain and Young’s modulus show a significant dependence on its
geometry. The simulations also revealed that the damage and rupture of multi-walled carbon nanotube
junctions take place first in the innermost layer and then propagate consecutively to the outer layers.
This study is helpful for optimal design and safety evaluation of IMJ-based nanoelectronics.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Since their discovery in 1991 [1], carbon nanotubes (CNTs) have
become a closely watched frontier in many scientific and tech-
nological fields due to their striking structure and superior me-
chanical, physical, and chemical properties [2–9]. They possess ex-
tremely high tensile Young’s modulus of about 1 TPa or above,
and chirality-dependent electrical conductivity [4–14]. Intramolec-
ular junctions (IMJs), which seamlessly fuse two different CNTs
together, have also been proposed to display a range of other in-
teresting functions, different from the constituent CNTs [14–25].
For example, two single-walled CNT (SWNT) segments, one metal-
lic and the other semiconducting, can be connected to form an
IMJ which behaves like a rectifying diode with nonlinear trans-
port characteristics [15]. Owing to the potential usage of IMJs to
miniaturize electronics to the nanometer scale, considerable re-
search efforts have been directed towards the investigation of their
formation and properties [16,24]. Iijima et al. [17] observed IMJs
repeatedly by transmission electron microscope and ascribed their
formation to the decrease and increase of the flux of carbon atoms.
Yao et al. [18] experimentally found that varying temperature can
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tune the diameter and generate IMJs along SWNTs: the diame-
ter of a growing SWNT becomes smaller at higher temperatures,
and vice versa. Using scanning tunneling microscopy, Ouyang et al.
[19] determined the atomic structures and electronic properties of
IMJs, and constructed IMJ models based on the observed struc-
tures. Their tight-binding calculations of electronic properties of
IMJs showed good agreement with experimental results. Melchor
et al. [20] developed a computer algorithm to study the atomic
structure of IMJs. Chernozatonskii et al. [21] designed and coated
IMJs and other multi-terminal CNTs with thin-walled silica nan-
otubes to protect these carbon devices from influences of the envi-
ronment. Via molecular dynamics (MD) simulations, Hanasaki et al.
[22] suggested IMJs as molecular nozzles to conduct water flow.
They found that the stream velocity increased dramatically in the
junction region.

The IMJ configurations of CNTs depend on topological defects
at the junctions [19,23]. Although the electronic properties of IMJs
have been widely studied, whether and how the defects affect the
mechanical properties of the CNTs still remains unclear. In the
present Letter, we perform a series of MD simulations to investi-
gate the mechanical properties of single- to multi-walled IMJs with
defects and under uniaxial tension. The revised second-generation
Tersoff–Brenner (TB-G2) potential [26] is adopted in the simula-
tions.
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2. Simulation model

An IMJ of CNTs typically comprises three portions: two seg-
ments of CNTs with different diameters, and a conical part con-
necting the two CNTs [17,19,23]. In this Letter, a single-walled
IMJ is characterized by (n1,m1)–(n2,m2) [19], where (n1,m1) and
(n2,m2) represent the chiral vectors of the thinner and the thicker
SWNTs, respectively. Such an IMJ can be synthesized by modifying
the temperature during growth, and most IMJs (>95%) are found
to be either semiconducting–semiconducting or metallic–metallic
type [18]. Figs. 1(a) and (b) show, for example, an armchair (5,5)

SWNT connected to an armchair (9,9) SWNT and a zigzag (9,0)

SWNT connected to a zigzag (14,0) SWNT, respectively. The two
tubes are connected by introducing a pentagon and a heptagon
along the cylindrical axis to the otherwise perfect hexagonal lat-
tice. We use this configuration because it has been found to be the
most stable case after full relaxation among different distributions
of defects that allow the connection of two CNTs [25].

From a simple geometrical analysis, the IMJ length along the
axial direction can be given approximately as

l = l1 + l2 + l3, l3 = π(d1 − d2)

2 tan(π/6)
, (1)

where l1 and l2 are the lengths of the thinner and the thicker
SWNTs, respectively [Fig. 1(c)]. di (i = 1,2) is the diameter of a
SWNT which is related to the chiral vector (ni,mi) by

di =
√

3
(
n2

i + m2
i + nimi

)
acc/π, (2)

where acc = 1.42 Å is the length of a C–C bond at equilibrium. The
geometric parameters of the ten single-walled IMJs studied in this
Letter are summarized in Table 1.

For the sake of simplicity, we use the engineering strain ε =
(l′ − l)/l to describe the deformation of an IMJ in the axial di-

Fig. 1. Simulation model of (a) (5,5)–(9,9) IMJ, (b) (9,0)–(14,0) IMJ viewed from
the front, and (c) (5,5)–(10,10) IMJ viewed from the side.

rection, where l and l′ are the initial and the current lengths,
respectively. The tensile stress of the IMJ is defined as the applied
force F divided by the cross-sectional area of the thinner CNT. The
wall thickness of the CNTs is assumed to equal the interlayer dis-
tance in graphite, h = 3.4 Å [10]. The applied force F is calculated
by summing the interatomic forces on all the atoms at the end
of the tube where the displacement is imposed. Provided that the
strain rate is sufficiently slow, the simulation results have no evi-
dent dependence on the strain rate and the equilibration time.

3. MD method

The MD program IMD [27,28] is used to simulate the deforma-
tion process of IMJs under uniaxial tension. The forces acting on
the carbon atoms are calculated using two different methods, de-
pending upon the distance between atoms. The TB-G2 potential
[26] is utilized to describe the covalent bonds within an IMJ over a
short range, whereas the Lennard–Jones (LJ) potential is employed
for a longer range beyond the cut-off of the TB-G2 potential.

The bond-order TB-G2 potential, which has been successfully
used to study the deformation and failure behavior of CNTs [29],
takes the form [26]

Eb =
∑

i

∑
j(>i)

f c(ri j)
[
V R(ri j) − bij V A(ri j)

]
, (4)

where V R and V A are the pair-additive interactions representing
all the interatomic repulsion and attraction, respectively, ri j is the
distance between the atoms i and j, and bij is a bond-order func-
tion which depends on the bond lengths and bond angles involving
the atoms i and j. The cut-off function fc(ri j) which restricts the
pair potential to the nearest neighbors is given by

f c(ri j) =

⎧⎪⎨
⎪⎩

1, ri j < r1,

1
2

[
1 + cos

(ri j−r1)π
(r2−r1)

]
, r1 < ri j < r2,

0, ri j > r2,

(5)

where r1 and r2 are the onset and the offset of the cut-off function,
respectively. As suggested by Sammalkorpi et al. [7], we increase r1
from 1.8 Å to 2.05 Å to avoid overestimation of the force needed
to break a bond [5,29]. Previous studies have demonstrated the
efficiency of this treatment to study the mechanical properties of
CNTs and other CNT structures [7,30].

The following Lennard–Jones (LJ) potential suggested by Mao
et al. [31] is employed in our analysis

E L J (ri j) =

⎧⎪⎪⎨
⎪⎪⎩

0, ri j < r2,

c3,k(ri j − rk)
3 + c2,k(ri j − rk)

2, r2 < ri j < r3,

εi j
[( σi j

ri j

)12 − 2
( σi j

ri j

)6]
, r3 < ri j < r4,

(6)

Table 1
Geometric and physical parameters of ten IMJs with representative structural parameters. l1, l2 and l3 are the lengths of the thinner CNT, the thicker CNT, and the conical
segment, respectively (Fig. 1(c)), d1 and d2 the diameters of the two CNT segments with d2 � d1, E is the average potential energy of the atoms between the pentagon-
heptagon pair in the axial direction after sufficient relaxation

Structure l1 (Å) l2 (Å) l3 (Å) d1 (Å) d2 (Å) E (eV/atom)

(5,5) 46.9 – – 6.78 – −7.300
(5,5)–(6,6) 100.2 100.1 3.6 6.78 8.14 −7.277
(5,5)–(7,7) 100.2 100.0 7.3 6.78 9.49 −7.296
(5,5)–(8,8) 100.3 99.9 11.1 6.78 10.85 −7.306
(5,5)–(9,9) 100.3 99.8 14.8 6.78 12.20 −7.314
(5,5)–(10,10) 100.3 99.7 18.6 6.78 13.56 −7.321

(9,0) 49.5 – – 7.05 – −7.300
(9,0)–(10,0) 98.7 98.7 2.2 7.05 7.83 −7.287
(9,0)–(11,0) 98.8 98.7 4.3 7.05 8.61 −7.290
(9,0)–(12,0) 98.9 98.7 6.4 7.05 9.39 −7.298
(9,0)–(13,0) 98.8 98.7 8.5 7.05 10.18 −7.303
(9,0)–(14,0) 98.8 98.7 10.7 7.05 10.96 −7.308
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where cn,k are cubic spline coefficients. The parameters in Eq. (6)
are given as r3 = 3.2 Å, εi j = 4.2038 × 10−3 eV, σi j = 3.783 Å, and
r4 = 10.0 Å. It should be noted that the LJ potential has a nonzero
value only after the TB-G2 potential goes to zero.

We simulate a segment of IMJ of single-walled or multi-walled
CNTs (MWNTs) under uniaxial tension. The diameters d1 and d2 as
well as the wall number of the CNT are varied in order to examine
the dependence of its mechanical properties on geometric param-
eters. An example of the simulation sample of a single-walled IMJ
is shown in Fig. 1(c). The calculated atomic sample is initially re-
laxed to optimize its potential energy, using the microconvergence
method [27,28]. The carbon atoms at the left end of the system
are fixed in the axial direction, while a gradually increasing dis-
placement with a low rate of 16.7 m/s along the axial direction
is applied to the atoms at the right end. All the atoms are free
in the radial and circumferential directions. Using a Nose–Hoover
extended ensemble [32], simulations are performed at a constant
temperature of 300 K. The force–displacement curve is recorded
during the entire tension process, and thereby the elastic modulus,
rupture strength and strain can be determined.

4. Results and discussion

4.1. Single-walled IMJs

We begin with comparisons of the mechanical properties of
single-walled IMJs with several representative combinations of the
diameters d1 and d2, with d2 � d1. Their geometric parameters are
listed in Table 1. Two typical groups of IMJs, each consisting of
either two armchair or two zigzag CNTs, are chosen, which are
marked as armchair–armchair (A–A) and zigzag–zigzag (Z–Z) IMJs
and have different electric properties. In each group, we hold the
value of d1 fixed and vary d2 consecutively. It is noted that af-
ter full initial relaxation, the average equilibrium energy E of the
atoms around the junction depends on the combination of the di-
ameters d1 and d2. For a fixed d1, the average equilibrium energy
E decreases with the increase of d2. This can be easily understood
from the fact that the average energy E of a normal and defect-free
CNT decreases quadratically with respect to its radius [33].

In spite of the predominant advantages of the TB-G2 potential,
the artificial introduction of the cut-off function in it leads to a
remarkable increase in the interatomic force at r = r1 and a some-
what overestimation on the maximal tensile strength, as has been
argued, following simulations of SWNTs and other CNT structures,
in [5,7,29,30]. For this reason, we compare the results calculated by
taking r1 = 1.8 Å and r1 = 2.05 Å in order to examine the effect of
the cut-off function. The curves obtained for the stretching force F
with respect to the tensile strain ε for the (5,5)–(10,10) IMJ are
given in Fig. 2. The two force–strain curves, each with the differ-
ent cut-off onsets, have good coincidence until the strain reaches a
threshold value (e.g., point A in Fig. 2). Thereafter, the two curves
deviate gradually from each other. One may ascribe the flat re-
gion following the threshold to the bond elongation corresponding
to the cut-off value. The beginning of the plateau is interpreted
as the bond rupture point, with the corresponding rupture force
denoted as Frup, the rupture strain as εrup, the rupture potential
energy as Erup, and the rupture stress as σrup. For clarity, the F –ε
curves with r1 = 2.05 Å for all the A–A and Z–Z IMJs are given
in Figs. 3(a) and 3(b), respectively. The mechanical parameters for
these IMJs are summarized in Table 2.

The force–strain curve of an IMJ before the occurrence of rup-
ture can be divided into three regions. The first stage corresponds
to elastic deformation, which is mainly attributed to the relative
rotation and small elongation of the C–C bonds. In this stage, the
applied force F increases linearly with increasing tensile strain, as
shown in Figs. 2 and 3. The Young’s modulus Y at this stage is cal-

Fig. 2. Force–strain curves of the (5,5)–(10,10) IMJ under uniaxial tension with cut-
off onsets of r1 = 1.8 Å and r1 = 2.05 Å. Insets are snapshots of the deformation
process. The atoms are colored according to their potential energy. (For interpre-
tation of the references to color in this figure, the reader is referred to the web
version of this Letter.)

Fig. 3. Force–strain curves of (a) armchair IMJs of (5,5)–(6,6), (5,5)–(7,7), (5,5)–
(8,8), (5,5)–(9,9) and (5,5)–(10,10), and SWNT of (5,5) under uniaxial tension
and (b) zigzag IMJs of (9,0)–(10,0), (9,0)–(11,0), (9,0)–(12,0), (9,0)–(13,0) and
(9,0)–(14,0), and SWNT of (9,0) under uniaxial tension. The inset shows the linear
fit (LF) of the force–strain curves before 10% strain.

culated by linear fitting of the F –ε curve with ε < 10%, as shown
in the square inserts of Figs. 3(a) and (b) for the selected A–A and
Z–Z IMJs. In Eq. (7) below, Y is defined as the slope of the line
divided by the cross-sectional area of the thinner CNT. For a speci-
fied diameter d1 of the thinner CNT, Y increases with the increase
in the diameter d2 of the thicker CNT, as shown in Table 2 for each
group of A–A and Z–Z IMJs. This variation tendency of Y can be ex-
plained by continuum elasticity theory. By using the series model
of springs and noticing that the lengths l1 and l2 are much greater
than l3, the Young’s modulus of an IMJ can be estimated by

Y = ld2

l1d2 + l2d1
YC , (7)

where YC is the Young’s modulus for a normal, defect-free SWNT
[33]. The Young’s modulus YC can be obtained from continuum
theory [14] or direct atomistic simulation. According to our MD
simulations, the Young’s moduli of the defect-free (5,5) and (9,0)

SWNTs are YC = 638.0 GPa and YC = 668.5 GPa, which can be
adopted in Eq. (7) for the two considered groups of A–A and Z–Z
IMJs, respectively. Thus from Eq. (7), one can easily understand the
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Table 2
Mechanical parameters of ten IMJs with representative structural parameters. Erup represents the potential energy at rupture, Frup the rupture force σrup, the rupture stress,
εrup the rupture strain, and Y the Young’s modulus before strain 10%

Structure Erup (eV/atom) Frup (eV/Å) σrup (GPa) εrup (%) Y (GPa)

(5,5) −6.429 41.2 91.1 22.1 638.0
(5,5)–(6,6) −6.687 40.6 89.8 17.2 724.6
(5,5)–(7,7) −6.775 40.7 90.0 16.1 764.1
(5,5)–(8,8) −6.834 40.8 90.3 15.4 759.3
(5,5)–(9,9) −6.881 40.6 89.8 14.8 807.7
(5,5)–(10,10) −6.925 39.7 87.8 14.3 825.5

(9,0) −6.854 35.2 74.9 13.9 668.5
(9,0)–(10,0) −6.853 35.7 76.0 13.4 750.0
(9,0)–(11,0) −6.888 36.2 77.1 12.7 792.2
(9,0)–(12,0) −6.913 35.6 75.8 12.5 791.5
(9,0)–(13,0) −6.971 36.0 76.6 11.3 816.5
(9,0)–(14,0) −7.014 35.8 76.2 10.5 825.1

[(5,5)–(10,10)]@[(10,10)–(15,15)] −6.869 125.1 92.4 16.7 805.7
[(5,5)–(10,10)]@[(10,10)–(15,15)]@[(15,15)–(20,20)] −6.902 248.8 91.9 16.2 765.0
[(5,5)–(10,10)]@[(10,10)–(15,15)]@[(15,15)–(20,20)]@[(20,20)–(25,25)] −6.839 421.5 93.4 17.7 748.2

simulation results that the Young’s modulus Y of IMJs increases as
the diameter ratio d1/d2 decreases.

In the second stage, the F –ε relation becomes nonlinear due
to the nonlinear constitutive relation of SWNTs at higher tension
strains. As can be seen from Table 2, the IMJs in each of the two
groups of A–A type and Z–Z type have almost identical values of
Frup and σrup. This indicates that the strength of an IMJ depends
mainly on the strength of its weakest segment, i.e., the thinner
CNT. However, both εrup and Erup of the two groups of IMJs de-
crease with the decrease in d1/d2. For example, the (5,5)–(6,6)

IMJ has εrup = 17.2% and Erup = −6.687 eV/atom, whereas the
(5,5)–(10,10) IMJ has εrup = 14.3% and Erup = −6.925 eV/atom.
The underlying reason for this phenomenon lies in the fact that
for a smaller value of d1/d2, the applied tensile deformation be-
comes more centralized in the thinner segment, and simultane-
ously the thicker segment undergoes less deformation. Therefore,
the rupture energy and rupture strain depend mainly on the thin-
ner and weaker CNT. Our simulations also show that the rupture
of a single-walled IMJ always initiates at the junction end con-
nected to the thinner CNT, as shown by the insert of snapshots
in Fig. 2. This phenomenon is also understandable by considering
the asymmetrical geometry of the junction and the stress concen-
tration at that position. In the IMJ configurations considered, the
thicker segment is not ideally coaxial with the thinner one, leading
to a bending moment and hence a nonuniform tensile stress dis-
tribution on the cross section of the CNT. Therefore, the C–C bonds
of the upper part of the thinner segment are more susceptible
to breakage, especially at the connecting end where a heptago-
nal defect exists. Then the rupture propagates until the complete
breakage of the junction occurs (see the snapshots in Fig. 2), which
is very similar to the tension-bending rupture mode of defect-free
SWNTs [13].

The plateau following the initiation of rupture results from the
artificial elongation of some C–C bonds [30], and the rapid drop
of the applied force in the force–strain curve corresponds to the
unstable breaking of C–C bonds. However, as mentioned previously,
the F –ε curve in this region is very sensitive to the onset value r1
of the cut-off function in the potential (5) [7,29]. Therefore, the
rupture curves in this region may not be accurate and should be
viewed as a rough estimation only.

4.2. Multi-walled IMJs

We further study the mechanical properties of multi-walled
IMJs under uniaxial tension. To examine the effect of the wall
number N , the following four IMJs are simulated and compared:

Fig. 4. Force–strain curves of multi-walled IMJs with the number of layers N varying
from 1 to 4.

(i) a single-walled IMJ, (5,5)–(10,10);
(ii) a double-walled IMJ, [(5,5)–(10,10)]@[(10,10)–(15,15)];
(iii) a triple-walled IMJ, [(5,5)–(10,10)]@[(10,10)–(15,15)]@

[(15,15)–(20,20)], and
(iv) a four-walled IMJ, [(5,5)–(10,10)]@[(10,10)–(15,15)]@

[(15,15)–(20,20)]@[(20,20)–(25,25)].

The force–strain relations of the four IMJs are shown in Fig. 4,
where the cut-off onset r1 = 2.05 Å, and their mechanical proper-
ties are summarized in Table 2. It is observed from Table 2 that as
the number of layers N increases from 1 to 4, the rupture strain
σrup and Young’s modulus Y vary in different manners. For ex-
ample, the values of σrup and Y of the four-walled IMJ are 3.4%
higher and 77.3 GPa lower than those of the single-walled IMJ,
respectively. The rupture force Frup increases from 39.7 eV/Å for
the single-walled IMJ to 421.5 eV/Å for the four-walled IMJ. How-
ever, there is little difference among the values of σrup and Erup
for these IMJs.

Finally, the rupture features of multi-walled IMJs are explored.
Figs. 5(a)–(d) show, for example, the failure process of the four-
walled IMJ with the increase in the applied displacement. It should
be noted that the applied strains in these figures have already ex-
ceeded the rupture strain. It is obvious that as the strain increases,
the innermost layer of the tube breaks first before the onset of
damage in the other layers. After the innermost layer fails totally,
the next inner layer starts to break, and this process continues
until the outermost layer breaks. This is a different phenomenon
from that which occurs in perfect MWNTs, in which the rupture
occurs first in the outermost layer [6]. The above rupture feature
of IMJs is understandable by considering the fact that the different
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Fig. 5. Simulation snapshots of the four-walled IMJ of [(5,5)–(10,10)]@[(10,10)–(15,15)]@[(15,15)–(20,20)]@[(20,20)–(25,25)] under tension at 300 K. The atoms are
colored according to their potential energy. (For interpretation of the references to color in this figure, the reader is referred to the web version of this Letter.)

layers of an IMJ have different diameter ratios d1/d2 and differ-
ent magnitudes of stress concentration. For the four-walled IMJ,
the outermost layer has d1/d2 = 0.8 while the innermost layer
has only d1/d2 = 0.5. Thus the tensile strain and stress are more
uniform in the outermost layer but more centralized in the thin-
ner segment of the innermost layer. Therefore, it is the differential
stress concentrations that determine the rupture sequence from in-
side to outside. In contrast, however, there is no differential stress
concentration in each layer of a perfect MWNT.

5. Conclusions

The mechanical properties of the IMJs of CNTs under uniax-
ial tension are investigated using MD simulations based on the
TB-G2 potential. It is found that the rupture strength of a single-
walled IMJ is similar to that of its thinner segment, while the
rupture strain decreases and Young’s modulus increases with the
decrease in the diameter ratio d1/d2 of the two constituent CNT
segments. The rupture of a single-walled IMJ generally initiates at
the junction end connected to the thinner CNT. Different mechan-
ical properties (e.g., rupture strain, rupture stress, rupture energy,
and Young’s modulus) of IMJs show different dependences on the
number of layers. It is also shown that the rupture of a multi-
walled junction takes place first in the innermost layer and then
propagates outwards with increasing applied strain. This study is
helpful not only for understanding the mechanical properties of
IMJs but also for optimal design of IMJ-based nanodevices and sys-
tems with enhanced performance.
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