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Abstract

On the basis of analog equation theory, the method of fundamental solutions coupling with radial basis functions (MFS–RBF), a

meshless algorithm is developed to simulate the static thermal stress distribution in two-dimensional (2D) functionally graded materials

(FGMs). The analog equation method (AEM) is used to obtain the equivalent homogeneous system to the original nonhomogeneous

equation, after which RBF and MFS are used to construct the related approximated particular part and complementary part,

respectively. Finally, all unknowns are determined by satisfying the governing equations in terms of displacement components and

boundary conditions. Numerical experiments are performed for different 2D structures made of FGMs, and the proposed meshless

method is validated by comparing available analytical and numerical results.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) have been
attracting attention due to their continuously and smoothly
varying material properties, which distinguish FGMs from
laminated composite materials, in which the abrupt change
in material properties across the interface between layers
can result in large interlaminar stresses leading to
delamination. FGMs can be made to utilize the desirable
properties of their individual constituents, allowing for
spatial optimization by grading the volume fractions of two
or more constituents to improve the response of structures.
For instance, a smooth transition between a pure metal and
a pure ceramic may result in a multifunctional material
that combines the desirable high temperature properties
and thermal resistance of the ceramic with the fracture
toughness and strength of the metal.

Generally speaking, FGMs can be viewed as special
inhomogeneous materials whose properties are dependent
on spatial coordinates. So far, two models have been used

to characterize the material gradation. One is the
continuum model in which analytical functions such as
exponent and power-law functions are commonly used to
describe the continuously varying material properties.
Although the continuum model may not be physical in
practice, this model is convenient for conducting mathe-
matical analysis. The other is the micromechanics model,
which takes into account the interactions between the
constituent phases and uses a certain representative volume
element (RVE) to estimate the average local stress and
strain fields of the composite, after which the local average
fields are used to evaluate the efficient material properties.
The Mori–Tanaka method and the self-consistent method
are two representatives of these models [1,2]. In this paper,
attention is focused on the continuum model only.
Although analytical approaches can provide closed-form

solutions, they are limited to simple geometries, certain
types of gradation of material properties, specific types of
boundary conditions and special loading cases. To perform
more general analysis, we need to resort to various
numerical methods.
In recent years, as alternatives to the classic finite

element method (FEM) and boundary element method
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(BEM), meshless methods have been used which employ a
set of scattered points instead of elements to approximate
solutions, exhibiting the advantages of avoiding mesh
generation, simple data preparation, easy post-processing
and so on. The corresponding developments in thermal and
stress computation in FGMs include: Rao and Rahman [3]
used element-free Galerkin method (EFGM) to simulate
stress fields near the crack tip in FGMs. The same method
was used by Dai et al. [4] to study thermo-mechanical
behavior of FGM plates. Ching and Yen [5,6] analyzed the
static and transient responses of FGMs under mechanical
and thermal loads by means of the meshless local
Petrov–Galerkin (MLPG) method, which was also used to
perform stress analysis in anisotropic FGMs [7]. Moreover,
Sladek et al. [8] solved dynamic anti-plane shear crack
problem in FGMs by a meshless local boundary integral
equation (LBIE) method. They also used the same method
to analyze the transient heat conduction in anisotropic and
functionally graded media [9]. Qian et al. [10] studied the
static and dynamic deformations of thick functionally
graded elastic plates with higher-order plate theory by
means of MLPG method.

The objective of the paper is to develop a meshless
algorithm, based on AEM, MFS [11], and RBF, for
analyzing two-dimensional (2D) thermo-mechanical pro-
blems in FGMs. It is well known that most MFS-based
meshless numerical methods, such as the virtual boundary
collocation method [12,13], the F-Trefftz method [14], the
charge simulation method [15] and the singularity method
[16], are efficient in solving certain homogeneous problems.
When dealing with nonzero body forces or complex
problems in which the corresponding fundamental solutions
are difficult to be obtained, the abovementioned methods
seem very inefficient. To overcome this difficulty, an efficient
meshless numerical algorithm is proposed by combining use
of radial basis functions (RBF) [17,18], AEM [19], and
MFS. In the algorithm, the analog equation method (AEM)
is used to obtain the equivalent homogeneous system to the
original nonhomogeneous equation, and then RBF and
MFS are used to approximate the related particular part and
complementary part, respectively. Finally, all unknowns are
determined by enforcing satisfaction of the governing
equations at interpolation points and boundary conditions
at boundary nodes. The approach proposed in Refs. [20,21]
is used to conduct steady-state and transient thermal
analysis of FGMs and other inhomogeneous material with
the proposed meshless method.

The paper is organized as follows: Section 2 provides a
full description of the 2D thermo-mechanical system in
FGMs. In Section 3, the detailed solution procedure is
presented. Numerical results are demonstrated and discussed
in Section 4 and conclusions are presented in Section 5.

2. Statement of thermo-mechanical systems in FGMs

In this section, the basic formulations of thermo-elasticity
in FGMs are reviewed, so that the paper is self-contained.

For convenience of presentation, the Cartesian tensor
notation is adopted. The comma in the following equations
indicates a space derivative, and the same subscript
appearing twice in an equation represents summation.
Because FGMs can be viewed without loss of generality as
isotropic nonhomogeneous materials, the following for-
mulations and processes are provided for general thermo-
mechanics problems in general 2D elastic solids.

2.1. Governing equations

Let us consider an isotropic and linear elastic domain O
bounded by the boundary G. The Cartesian coordinates
x ¼ {x1, x2}

T are used to describe infinitesimal static
deformations. Static equilibrium requires

sij;j þ bi ¼ 0 in O, (1)

where sij denotes the components of Cauchy stress tensor
and bi the components of body force per unit volume.
For an isotropic elastic material, the constitutive

equation related to stresses and strains is stated in the form

sij ¼
~ldij�kk þ 2 ~m�ij � ~mdijT , (2)

where ~l¼ð2~n=ð1�2~nÞÞ ~m, ~m¼ ðE=2ð1þnÞÞ, ~m¼ ð~a ~E=ð1�2~nÞÞ.
~E; ~n; ~a have different values for plane stress and plane strain
states such as

~E ¼ E ~n ¼ n ~a ¼ a for plane strain;

~E ¼
1þ 2n

ð1þ nÞ2
E ~n ¼

n
1þ n

~a ¼
1þ n
1þ 2n

a for plane stress;

8><
>:
and parameters E(x), n(x) and a(x) are functions of
space coordinates x and represent elastic modulus, Poisson
ratio, and linear coefficient of thermal expansion, respectively.
T denotes the temperature change the material experiences,
that is, the final temperature minus the original temperature. If
the change in temperature is positive we have thermal
expansion, and if negative, thermal contraction.
If the displacements are small enough that the square

and product of its derivatives are negligible, then the
relation of Cauchy strains and displacements can be
written as

�ij ¼
1

2
ðui;j þ uj;iÞ. (3)

The boundary value problem defined by Eqs. (1)–(3) is
completed by adding the following displacement and
surface traction boundary conditions:

ui ¼ ūi on Gu;

ti ¼ sijnj ¼ t̄i on Gt;
(4)

where ūi is the prescribed displacements on Gu and t̄i is the
given tractions on Gt. Gu and Gt are complementary parts
of the boundary G. nj represents the direction cosines of the
unit outward normal to the boundary.
Substituting Eqs. (2) and (3) into Eq. (1) yields the

second-order partial differential equation (PDE) in terms
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of displacement components

ð~lþ ~mÞuk;ki þ ~mui;kk þ
~l;iuk;k þ ~m;kðui;k þ uk;iÞ

� ~mT ;i � ~m;iT þ bi ¼ 0. ð5Þ

2.2. Graded types of FGM

Material properties of FGMs are usually defined by the
variation in the volume fractions. In the literature, there
two common descriptions to the variation of volume
fractions: the power-law assumption and exponential
assumption [22,23]. In order to clearly show the variation
of material properties with different assumptions, for
example, we consider the material shown in Fig. 1 graded
through the length L along the x direction. If the material
properties of two constituents are P1 and P2, respectively,
then the general material property P of the FGM is given
in Table 1 for two different distributions.

3. Solution procedure

3.1. Analog equation method (AEM)

For the thermo-elastic Eq. (5) describing displacement
responses in general nonhomogeneous media, the funda-
mental solutions are difficult to obtain in a closed form.
However, we can circumvent this obstacle by indirect ways.
From the viewpoint of mathematics, the displacement
fields must be in terms of space coordinates, regardless of
the particular forms of elastic properties and loading types.
So, we can design an equivalent elastic system written as

ðl
_
þ m

_
Þuk;ki þ m

_
ui;kk þ

_

bi ¼ 0 (6)

to replace Eq. (5), where l
_
; m
_

are elastic constants of a
fictitious isotropic homogeneous solid and

_

bi the ‘body

force’ induced by the displacement distributions sought
and the temperature distribution.
In the following, we derive the general solutions of

Eq. (6) by means of RBF approximation and MFS in the
new equivalent system.
The advantage of MFS based on the superposition of

fundamental solutions is that it can conveniently treat
homogeneous problems. To determine the particular
solutions related to fictitious body forces, RBF approx-
imation is employed in the paper. Based on this idea, we
first divide the displacements into two parts:

ui ¼ uh
i þ u

p
i , (7)

where the particular parts u
p
i satisfy

ðl
_
þ m

_
Þu

p
k;ki þ m

_
u

p
i;kk þ

_

bi ¼ 0 (8)

in the infinite domain, while the complementary parts, that
is, the homogeneous parts, satisfy

ðl
_
þ m

_
Þuh

k;ki þ m
_

uh
i;kk ¼ 0. (9)

Obviously, the particular solutions and homogeneous
solutions satisfying Eqs. (8) and (9), respectively are not
unique, without considering the constraints of boundary
conditions.
Next, we use MFS and RBF to obtain the two parts

discussed above.

3.2. Radial basis functions (RBF) approximation

RBF are usually expressed in terms of Euclidian
distance, so they can work well in any dimensional space
and do not increase computational cost. Due to these
advantages, RBFs have been widely used in many aspects
over the past 10 years. In this section, RBFs are used to
derive the displacement particular solutions.
Firstly, the body forces in Eq. (8) are approximated by

_

biðxÞ ¼
XM
m¼1

fm
ðxÞam

i ¼
XM
m¼1

dlif
m
ðxÞam

l , (10)

where M is the number of interpolating points in the domain,
am

i are coefficients to be determined, and fm is a set of RBFs.
Similarly, the particular solution u

p
i is also approximated

by means of the same coefficient set

u
p
i ðxÞ ¼

XM
m¼1

Fm
li ðxÞa

m
l , (11)

where Fm
li is a corresponding set of approximate particular

solutions. Because the particular solution u
p
i satisfies Eq. (8),

the precondition to this process is that such relations as

ðl
_
þ m

_
ÞFm

lk;kiðxÞ þ m
_
Fm

li;kkðxÞ ¼ �dlif
m
ðxÞ (12)

hold.
For the piecewise smooth power spline (PS), also known

as conical spline, f ¼ r2n�1, and thin plate spline (TPS),
also called Duchon spline, f ¼ r2n ln r, the corresponding
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Fig. 1. Demonstration of material properties of FGMs.

Table 1

Classic power-law and exponential distributions of material property in

FGM

Power-law distribution Exponential

distribution

Volume fraction V(x) ¼ (x/L)Z V(x) ¼ eZ(x/L)

Material property P(x) ¼ (1�V(x))P1+V(x)P2 P(x) ¼ V(x)P1

H. Wang, Q.-H. Qin / Engineering Analysis with Boundary Elements 32 (2008) 704–712706
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set of particular solutions and its first and second order
differentials, respectively, are given in the Appendix for
plane strain states [18].

3.3. Method of fundamental solutions (MFS)

To obtain approximated solutions of homogeneous
Eq. (9), N fictitious source points yn (n ¼ 1,2,y,N)
located on the virtual boundary outside the domain are
selected (Fig. 2). Moreover, assume that at each source
point there is a pair of fictitious point loads ji

1;j
i
2 along x

and y direction, respectively. According to the main
construct of MFS, the approximated displacement fields
at arbitrary points x in the domain or on the boundary can
be expressed as a linear combination of fundamental
solutions in terms of fictitious sources outside the domain
of interest, that is,

uh
i ðxÞ ¼

XN

n¼1

u�liðx; ynÞj
n
l (13)

in which the displacement fundamental solution u�liðx; yÞ
denoting the induced displacement distribution along the i

direction at the field point x due to the unit concentrated
load acting in the l direction at source point y satisfies the
Navier equation

ðl
_
þ m

_
Þu�lk;kiðx; yÞ þ m

_
u�li;kkðx; yÞ ¼ �dxyeli (14)

such that d is the Dirac delta function concentrated at the
source point y and eli are the components of the 2� 2
identity matrix.

It is apparent that Eq. (13) completely satisfies Eq. (9) in
the domain based on the definition of the fundamental
solutions, that is Eq. (14), and the fact that source point yn

and field point x are different.
The related expressions of fundamental solutions and the

derivatives for the plane strain state can be found in Appendix.

3.4. Final complete solutions

According to Eq. (7), the complete solutions of
displacement components are written as the sum of the
particular and homogeneous solutions, thus

uiðxÞ ¼
XN

n¼1

u�liðx; ynÞj
n
l þ

XM
m¼1

Fm
li ðxÞa

m
l . (15)

Differentiating Eq. (15) yields

ui;jðxÞ ¼
XN

n¼1

u�li;jðx; ynÞj
n
l þ

XM
m¼1

am
l F

m
li;jðxÞ, (16)

ui;jkðxÞ ¼
XN

n¼1

u�li;jkðx; ynÞj
n
l þ

XM
m¼1

am
l F

m
li;jkðxÞ. (17)

Consequently, the stress components can be expressed
by substituting Eqs. (16) and (17) in Eqs. (2) and (3) as

sijðxÞ ¼
XN

n¼1

s�lijðx; ynÞj
n
l þ

XM
m¼1

Sm
lijðxÞa

m
l � ~mdijT , (18)

where

s�lij ¼ ~ldiju
�
lk;k þ ~mðu�li;j þ u�lj;iÞ,

Sm
lij ¼

~ldijFm
lk;k þ ~mðFm

li;j þ Fm
lj;iÞ. ð19Þ

Furthermore, the traction components can be derived as

ti ¼ sijnj ¼
XN

n¼1

t�lij
n
l þ

XM
m¼1

Pm
li a

m
l � ~mniT , (20)

where t�li ¼ s�lijnj and Pm
li ¼ Sm

lijnj.
Finally, making Eqs. (16) and (17) satisfy the governing

Eq. (5) at M interpolation points and substituting Eqs. (15)
and (20) into boundary conditions (Eq. (4)) at N boundary
nodes produce a set of linear algebraic equations in matrix
form for the determination of unknown coefficients

H½ � Af g ¼ Bf g, (21)

where vector Af g ¼ fj1
1 j1

2 � � � � � � jN
1 jN

2 a11
a12 . . . . . . aM

1 aM
2 g

T:
The first and second order derivatives of kernel functions

u�li and Fm
li used in above process are given in Appendix.

For simplicity, the temperature distribution used in the
following computation is taken in an analytical form,
rather than numerical solution obtained from a boundary
value problem of heat conduction. It should be, however,
mentioned that the idea of MFS with RBF also can be used
to obtain the numerical distribution of temperature in
FGM and the detailed procedure has been documented in
Refs. [20,21].

4. Numerical assessment

In this section, three examples of FGM subjected to
mechanical or thermal loads are considered to assess the
proposed algorithm. In all three examples, except for
Poisson’s ratio, the material properties vary exponentially
or according to a power law. This is a reasonable
assumption, since variation on the Poisson’s ratio is
usually small compared with that of other properties.
Finally, to assess the accuracy and convergence of
the approximation, the average relative error Arerr(z)

ARTICLE IN PRESS

Fig. 2. Virtual and physical boundary of arbitrary domain.
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defined by

ArerrðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL
j¼1

ðzj �
~zjÞ

2

PL
j¼1

ðzjÞ
2

vuuuuuut (22)

is introduced, where zj and ~zj are, respectively, the
analytical and numerical results of variable z at the points
of interest, and L is the total number of these points.

Additionally, in the practical computation, the source
points ys outside the domain are generated by [12,24]

ys ¼ xb þ gðxb � xcÞ (23)

in which xb is a boundary node, xc is the geometric center
of the domain and g is a dimensionless parameter, which is
chosen as 1.0 for outer boundary and �0.5 for inner
boundary in our work.

4.1. Hollow circular plate under radial internal pressure

Consider a hollow circular plate as shown in Fig. 3 with
inner radius a ¼ 5mm and outer radius b ¼ 10mm under
internal radial pressure. Suppose the plate is graded along
the radial direction so that elastic modulus E(r) ¼ E0(r/a)

Z.
For Z40, the Young’s modulus increases as the radius r

increases. As Z ¼ 0, the problem is reduced to the analysis
of homogeneous media. Analytical solutions of stress
components [25] for the case of plane stress state are given
in closed form

sr ¼ �
a�ðZ=2Þr�1�ðk=2ÞþðZ=2Þ

bk
� ak

a1þðk=2Þðbk
� rkÞpa,

sy ¼
a�ðZ=2Þr�1�ðk=2ÞþðZ=2Þ

bk
� ak

�
ð2þ kn� ZnÞrk

k � Zþ 2n
�
ð�2þ knþ ZnÞbk

k þ Z� 2n

" #
a1þðk=2Þpa,

ð24Þ

with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ 4� 4Zn

p
.

In the practical computation, Poisson’s ratio, and elastic
modulus at the internal surface as well as internal pressure,
respectively, are assumed to be n ¼ 0.3, E(a) ¼ 200GPa,
pa ¼ 50MPa. Figs. 4 and 5 display the convergent

performance of the proposed meshless method when the
PS basis function r3 is used. It is found from Figs. 4 and 5
that the accuracy increases with an increase in M or N.
In order to investigate the variation of radial and

hoop stresses along the radial direction for various
graded parameters Z, 32 boundary nodes and 140 interior
interpolation points are used. Comparisons between
analytical solutions and numerical results are shown in
Fig. 6. It is found that regardless of the value of Z, radial
stress increases monotonously from the inner to the outer
surface, whereas hoop stress does not. As Z increases, the
value of radial stress decreases at any point in the cylinder,
except for the points on the boundary, whereas the
maximum hoop stress occurs on the inner surface when
Z ¼ 0 and on the outer surface when Z ¼ 3. The variation
in the hoop stress looks like rotation around a center when
Z increases. It is also found that the variation in hoop stress

ARTICLE IN PRESS

Fig. 3. Configuration of hollow circular plate under internal pressure.

Fig. 4. Convergent performance vs M (Z ¼ 2, N ¼ 32).

Fig. 5. Convergent performance vs N (Z ¼ 2, M ¼ 140).

H. Wang, Q.-H. Qin / Engineering Analysis with Boundary Elements 32 (2008) 704–712708
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in FGMs becomes worse when Z increases. Therefore, to
avoid material instability, the graded parameter should be
smaller than specific values.

In this example, the effects of the types and orders of
RBF are also tested for the case of the high graded
parameter Z ¼ 4. Fig. 7 shows the average relative error
distributions. It is evident that a higher order of RBF does
not always result in better accuracy. The calculation
indicates that r3 and r5 in PS, and r2 ln r and r4 ln r in
TPS seem to be able to produce relatively high accuracy in
this example. Moreover, TPS has better accuracy than PS.
Therefore, r4 ln r is used in the remaining computation.

4.2. Functionally graded elastic beam under sinusoidal

transverse load

An elastic beam as shown in Fig. 8 is considered in this
example, which is made of two-phase Al/SiC composite.
The elastic modulus varying exponentially in the z

direction is given by E(z) ¼ E0 e
Zz. The left and right end

faces of the FG beam are assumed to be simply supported
such that

wð0; zÞ ¼ wðL; zÞ ¼ 0,

txð0; zÞ ¼ txðL; zÞ ¼ 0. ð25Þ

The top surface of the beam is assumed to be free of
mechanical force and the bottom surface is subjected to a
distributed load p as shown in Fig. 8:

txðx; 0Þ ¼ txðx; hÞ ¼ 0,

tzðx; 0Þ ¼ p; tzðx; hÞ ¼ 0. ð26Þ

The problem is solved under a plane strain assumption
with the length L ¼ 100mm and thickness h ¼ 40mm. The
material properties of aluminum and SiC are, respectively,
EAl ¼ 70GPa and ESiC ¼ 427Gpa (Z ¼ (ln(ESiC/EAl)/h)).
The maximum transverse load p0 is equal to 10MPa. Total
34 boundary nodes and 169 interior interpolation points
are selected in the analysis.

ARTICLE IN PRESS

Fig. 6. Distribution of radial and hoop stresses with various graded parameter when 32 boundary nodes and 140 interior interpolation points are used.

Fig. 7. Effect of orders of radial basis functions when 32 boundary nodes and 220 interior interpolation points are used for the case of.

Fig. 8. Functionally graded beam subjected to symmetric sinusoidal

transverse loading.

H. Wang, Q.-H. Qin / Engineering Analysis with Boundary Elements 32 (2008) 704–712 709
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Figs. 9 and 10 respectively show the variation of
transverse displacement and stress components along the
line z=h/2 and x=L/5. Good agreement can be observed
between the numerical results and exact solutions [26].
Furthermore, the shapes of cross-sections after deforma-
tion are provided in Fig. 11, from which it can be seen that
for smaller ratios of thickness and length, for example,
h/L ¼ 1/10, the cross section approximately maintains
plane after deformation. This phenomenon demonstrates
the validity of the cross-section assumption in classic thin
beam bending theory.

4.3. Symmetrical thermo-elastic problem in a long cylinder

Consider a thick hollow cylinder with same geo-
metries and mechanical boundary conditions as in
Fig. 3. The same power-law assumptions are used to
define the elastic modulus and coefficient of thermal
expansion, that is, E(r) ¼ E0(r/a)

Z and a(r) ¼ a0(r/a)
Z.

The temperature change in the entire domain is given

in a closed form

T ¼

Taðb
�Z
� r�ZÞ þ Tbðr

�Z � a�ZÞ

b�Z � a�Z
for Za0;

Ta lnðb=rÞ þ Tb lnðr=aÞ

lnðb=aÞ
for Z ¼ 0;

8>>><
>>>:

(27)

with Ta ¼ T(a) and Tb ¼ T(b).
The two-phase aluminum/ceramic FGM is examined

here. The metal aluminum constituent is arranged on
the inner surface, while the ceramic constituent is on the
outer surface. The related material properties are
EAl ¼ 70GPa, aAl ¼ 1.2� 10�6 1C�1, Eceramic ¼ 151GPa,
aceramic ¼ 2.59� 10�6 1C�1. Poisson’s ratio is taken to be
n ¼ 0.3. The inner and outer boundary temperature
changes, respectively, are Ta ¼ 10 1C and Tb ¼ 0 1C.
Analytical solutions of displacements and stresses for the

case of plane strain state are provided by Jabbari et al. [27].
However, it is necessary to point out that there are some
important written errors in the work of Jabbari et al. The
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Fig. 9. Transverse displacement and stress components along the line z ¼ h/2.

Fig. 10. Variation of stress components along the cross section x ¼ L/5.

Fig. 11. Shape of transverse cross section after deformation with various

ratios of thickness and length.

H. Wang, Q.-H. Qin / Engineering Analysis with Boundary Elements 32 (2008) 704–712710
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results in Fig. 12 show good agreement between the
analytical solutions and the numerical results in FGM and
homogeneous material, which corresponds to Z ¼ 0.
Furthermore, we again find that after graded treatment,
the maximum value of hoop stress decreases from 82.6 to
53MPa. Additionally, the radial displacement in FGM
also decreases, compared to the response in homogeneous
media. Since the value of radial displacement is very small,
radial deformation can be neglected in practical analysis.

5. Conclusions

The paper presents an efficient meshless method for
thermo-elastic analysis of FGMs, in which the combination
of AEM, MFS and RBF provides a powerful numerical
procedure. Numerical experiments show that a good agree-
ment is achieved between the results obtained from the
proposed meshless method and available analytical solutions.
It is clear that the responses in FGMs differ substantially
from those in their homogeneous counterparts. The appro-
priate graded parameter can lead to low stress concentration
and little change in the distribution of stress fields.

Additionally, from the solution procedure in Section 3,
we can see that the construction of the full displacement
variables is independent of the type of problem considered.
This characteristic means that the proposed method can be
easily extended to other engineering problems such as
multi-phase composites and heterogeneous piezoelectric
materials, in addition to FGMs.

Appendix A. First and second order differentials of

fundamental solutions and approximated particular solutions

A1. Fundamental solutions and their derivatives

u�li ¼
1

8p m
_
ð1� n

_
Þ
ð3� 4 n

_
Þdli ln

1

r
þ r;l r;i

� �
,

u�li;j ¼
1

8p m
_
ð1� n

_
Þ

1

r
½�ð3� 4 n

_
Þdlir;j þ r;idlj þ r;ldij � 2r;ir;jr;l �,

u�lk;k ¼
1

4p m
_
ð1� n

_
Þ

1

r
½�ð1� 2 n

_
Þ�r;l ,

u�lk;ki ¼
1

4p m
_
ð1� n

_
Þ

1

r2
ð1� 2 n

_
Þf2r;lr;i � dlig,

u�li;kk ¼
1

4p m
_
ð1� n

_
Þ

1

r2
fdli � 2r;ir;lg.

A2. Approximated particular solutions and their derivatives

A2.1. Power spline (PS) function

Fli ¼ �
1

2 m
_
ð1� n

_
Þ

1

ð2nþ 1Þ2ð2nþ 3Þ
r2nþ1ðA1dli þ A2r;l r;iÞ,

Fli;j ¼ �
1

2 m
_
ð1� n

_
Þ

1

ð2nþ 1Þ2ð2nþ 3Þ
r2n B1dlir;j
�

þB2ðdljr;i þ dijr;lÞ þ B3r;ir;jr;l
�
,

Flk;ki ¼ �
1

2 m
_
ð1� n

_
Þ

1

ð2nþ 1Þ2ð2nþ 3Þ
r2n�1B4½dli þ ð2n� 1Þr;l r;i�,

Fli;kk ¼ �
1

2 m
_
ð1� n

_
Þ

1

ð2nþ 1Þ2ð2nþ 3Þ
r2n�1ðC1dli þ C2r;l r;iÞ,

where

A1 ¼ ð4nþ 5Þ � 2 n
_
ð2nþ 3Þ,

A2 ¼ �ð2nþ 1Þ,

B1 ¼ A1ð2nþ 1Þ,

B2 ¼ A2,

B3 ¼ A2ð2n� 1Þ,

B4 ¼ B1 þ 3B2 þ B3,

C1 ¼ 2B2 þ B1ð2nþ 1Þ,

C2 ¼ 2B2ð2n� 1Þ þ B3ð2nþ 1Þ.
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Fig. 12. Stresses and radial displacement distributions in FGM and homogeneous material with N ¼ 32, M ¼ 220.
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A2.2. Thin plate spline (TPS) function

Fli ¼ �
1

32 m
_
ð1� n

_
Þ

r2nþ2

ðnþ 1Þ3ðnþ 2Þ2
ðA1dil þ A2r;ir;lÞ,

Fli;j ¼ �
1

32 m
_
ð1� n

_
Þ

r2nþ1

ðnþ 1Þ3ðnþ 2Þ2
B1r;ir;jr;l
�

þB2dil r;j þ B3ðdijr;l þ dljr;iÞ
�
,

Flk;ki ¼ �
1

32 m
_
ð1� n

_
Þ

r2n

ðnþ 1Þ3ðnþ 2Þ2
ðC1r;ir;l þ B4dliÞ,

Fli;kk ¼ �
1

32 m
_
ð1� n

_
Þ

r2n

ðnþ 1Þ3ðnþ 2Þ2
ðC2r;lr;i þ C3dilÞ,

where

A1 ¼ � ð8n2 þ 29nþ 27Þ þ 8 n
_
ðnþ 2Þ2 þ 2ðnþ 1Þðnþ 2Þ½4n

þ 7� 4 n
_
ðnþ 2Þ� ln r�,

A2 ¼ 2ðnþ 1Þ½ð2nþ 3Þ � 2ðnþ 1Þðnþ 2Þ ln r�,

B1 ¼ 2nA2 � 4ðnþ 1Þ2ðnþ 2Þ,

B2 ¼ 2ðnþ 1Þ A1 þ ðnþ 2Þ 4nþ 7� 4 n
_
ðnþ 2Þ

h in o
,

B3 ¼ A2,

B4 ¼ B1 þ B2 þ 3B3,

C1 ¼ 2nB4 þ 8ðnþ 1Þ2ðnþ 2Þ2ð1� 2 n
_
Þ,

C2 ¼ 2ðnþ 1ÞB1 þ 4nB3 � 8ðnþ 1Þ3ðnþ 2Þ,

C3 ¼ 2ðnþ 1ÞB2 þ 2B3 � 4ðnþ 1Þ2ðnþ 2Þ

� �4n� 7þ 4 n
_
ðnþ 2Þ

h i
.
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