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Abstract This paper presents a hybrid Trefftz (HT)
boundary element method (BEM) by using two indi-
rect techniques for mode III fracture problems. Two
Trefftz complete functions of Laplace equation for nor-
mal elements and a special purpose Trefftz function for
crack elements are proposed in deriving the Galerkin
and the collocation techniques of HT BEM. Then two
auxiliary functions are introduced to improve the accu-
racy of the displacement field near the crack tips, and
stress intensity factor (SIF) is evaluated by local crack
elements as well. Furthermore, numerical examples are
given, including comparisons of the present results with
the analytical solution and the other numerical meth-
ods, to demonstrate the efficiency for different boundary
conditions and to illustrate the convergence influenced
by several parameters. It shows that HT BEM by using
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1 Introduction

Since Trefftz [1] in 1926 proposed his approach to deal
with boundary conditions by using regular Trefftz func-
tions satisfying the governing equations, many papers
have been published [2–8], concerning its fundamen-
tals and applications to some elastic and non-elastic
fields. Especially, the concept of HT functions has been
found to be useful in dealing with various geometries or
load-dependent singularities and local effects [9–12].

With respect to fracture problems, Portela et al. [13]
in 1992 first applied this strategy to the potential the-
ory of fracture mechanics using HT method, then pla-
nar crack problems were studied by Freitas and Ji [14]
in 1996 using the equilibrium element model and by
Sabino et al. [15] in 1999 using HT BEM. Their appli-
cations show that the Trefftz method is simple and eco-
nomical, sometimes even better than Somigliana BEM
[16]. Furthermore, the input data generation is much
easier in HT BEM than the procedures of the finite ele-
ment method (FEM) [17,18] and the finite difference
method. HT BEM is shown to be useful and powerful in
comparison with other boundary methods, [13], [19–21].
However, while mode III fracture problems were stud-
ied by using HT FEM by the authors recently, HT BEM
has not been mentioned.
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This paper focuses on two indirect HT BEMs, the
Galerkin technique and the collocation technique, for
mode III fracture problems. Above all, the original
formulations and Trefftz functions satisfying anti-plane
crack conditions for normal elements and crack
elements are deduced. Then the stiffness matrix and the
equivalent nodal flow vector are formed by using
the Galerkin method and the collocation method from
the approximate solutions in fitting the boundary con-
ditions. In order to improve the accuracy, two auxiliary
functions for regions near crack tips are introduced, and
a general expression for stress intensity factors (SIF) is
obtained based on the special Trefftz function as well.
Furthermore, numerical examples are presented to illus-
trate the application of the proposed approach for finite
and infinite boundaries, and to highlight the effect of
some important parameters on the numerical accuracy.
The results from HT BEM are compared with the ana-
lytical solution, and those obtained from other types of
BEM and FEM.

2 Basic formulations for mode III fracture problems

2.1 Trefftz complete function for Laplace equation

In the case of anti-plane shear deformation of isotropic
solids defined in Cartesian (x1, x2 and x3) coordinates,
the displacements in the x1x2 plane are zero, i.e., u1 = 0
and u2 = 0, and in the x3 direction u3 = u �= 0, where u
is the function of x1 and x2 only. Hence, the differential
governing equation can be written as

G
(∂2u

∂x2
1

+ ∂2u

∂x2
2

)
= 0, in �, (1)

and the boundary conditions are

u = ū on �u, and G
∂u
∂n

= q̄, on �q, (2)

where G is the shear modulus, u out-of-plane displace-
ment, ∂u/∂n the unit normal derivative of u, � = �u+�q

the boundary of the solution domain � and an overhead
bar denotes the prescribed value. The non-zero stress
components are given in terms of the displacement u as

σ31 = G
∂u
∂x1

, σ32 = G
∂u
∂x2

. (3)

It is well-known that the solution of Eq. 1 may be
found by separating variables, then two Trefftz (T) func-
tions can be obtained as [22]

u(r, θ) =
∞∑

m=0

rm(am cos mθ + bm sin mθ),

(for a bounded region), (4a)

u(r, θ) = a∗
0 + a0 ln r +

∞∑
m=1

r−m(am cos mθ + bm sin mθ),

(for an unbounded region), (4b)

where r and θ are a pair of polar coordinates. Thus,
the associated T-complete functions of Eq. (4) can be
expressed, respectively, as

T = {1, rm cos mθ , rm sin mθ} = {Ti}, (5a)

T = {1, ln r, r−m cos mθ , r−m sin mθ} = {Ti}. (5b)

2.2 Special Trefftz function for crack elements

A special purpose function can be constructed to satisfy
both Laplace equation and the free-traction boundary
conditions on crack faces here. The derivation of such
functions is based on the general solution of the two
dimensional Laplace equation:

u(r, θ) = α0 +
∞∑

n=1

(
αnrλn + βnr−λn

)
cos(λnθ)

+
∞∑

n=1

(
κnrβn + ζnr−γn

)
sin(γnθ), (6)

where λn and γn are two sets of constants which are
assumed to be greater than zero. An appropriate trial
function for a singular corner element is obtained by
considering an infinite wedge (Fig. 1) with particular
boundary conditions prescribed along the sides θ = θ0
forming an angular corner. The boundary condition for
the wedge is

∂u
∂θ

= 0, (for θ = ±θ0). (7)

Fig. 1 A singular corner element for an infinite wedge
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Differentiating (6) and substituting it into Eq. 7, we
obtain

∂u
∂θ

∣∣∣
θ=±θ0

= −
∞∑

n=1

λn
(
αnrλn + βnr−λn

)
sin(±λnθ0)

+
∞∑

n=1

γn
(
κnrγn + ζnr−γn

)
cos(±γnθ0) = 0.

(8)

Since it assumes a limited value at r = 0, we have βn =
ζn = 0 and then

sin(±λnθ0) = 0, cos(±γnθ0) = 0, (9)

which means that

λnθ0 = nπ , (n = 1, 2, 3, . . .),

2γnθ0 = nπ , (n = 1, 3, 5, . . .),
(10)

Thus, the final form of the solution when θ0 = π is

u(r, θ) = α0 +
∞∑

n=1

αnrn cos(nθ) +
∞∑

n=1,3,5

κnrn/2 sin
(n

2
θ
)

.

(11)

It is obvious that the displacement function (11)
includes the term proportional to r1/2, whose derivative
is singular at the crack tip.

2.3 Assumed element displacement field of HT BEM

The element matrix can be derived based on assumed
elemental displacement fields, and the solution domain
� is divided into the interior domain and the problem
(or boundary) domain that scales into a circle of unit
radius. For Trefftz BEM, the eigen functions of Eq. 1
in an interior element displacement domain “e” can be
expressed by

uuue = uuu∗
eccc, (12)

where ccc is a vector of undetermined coefficients, uuu∗
e is

homogeneous solutions to the governing equation of
boundary element field. Noting that T-function in Eq. 5a
satisfies Eq. 1, uuu∗

e can be defined as

u∗
ei = Ti, (i = 1, 2, . . . , n). (13)

Hereafter, to further simplify the writing, we shall omit
the subscript “e” in related expressions when the
distinction is unnecessary. That is

uuu = uuu∗ccc. (14)

With solution (11), the internal function defined in Eq. 14
takes the form:

u∗
2n−1 = rn cos(nθ),

u∗
2n = r

(2n−1)
2 sin

( (2n − 1)

2
θ
)

, (15)

(n = 1, 2, 3, . . .).

3 Weighted residual formulations of HT BEM

According to the general formulation of weighted tech-
niques, Eqs. 1 and 2 lead to the integral equation:

∫

�

(∇2uuu)WWW�d� +
∫

�u

(uuu − ūuu)WWWud�

+
∫

�q

(qqq − q̄qq)WWWqd� = 0, (16)

where WWW�,WWWu,WWWq are certain weighting functions
defined in �, �u and �q, respectively. For Trefftz BEM,
u is an approximated function satisfying Eq. 1, but not
necessarily Eqs. 2, hence, Eq. 16 is reduced to

∫

�u

(uuu − ūuu)WWWud� +
∫

�q

(qqq − q̄qq)WWWqd� = 0. (17)

The function uuu can be expressed by Trefftz functions as
the retained several terms, thus at a point P, uuu and qqq can
be expressed, respectively, as

uuu(P) ≈ ciu∗
i = uuu∗Tccc,

qqq(P) = ∂

∂n
uuu(P)∗ ≈ ci

∂

∂n
u∗

i = qqq∗Tccc,
(18)

in which ccc is a vector of unknown parameters that cor-
respond to the terms considered in the expansions of
Trefftz functions. Particularly, the weighting functions
WWWu and WWWq can be chosen in special ways that Eq. 17
can lead to the Galerkin approach and the collocation
approach, respectively.

3.1 The point-collocation formulations of HT BEM

The point-collocation formulations can be obtained
when the weighting functions are chosen to be the Dirac
delta function as:

Wu = Wq = δ(P − Pi), (19)
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where Pi is the collocation point. Then Eq. 18 leads to
equations:

uuu(Pi) = uuu∗Tccc = ūuu(Pi), for Pi on �u, (20a)

qqq(Pi) = qqq∗Tccc = q̄qq(Pi), for Pi on �q., (20b)

Equations (20) can be further written as:

Kijcj = fi, (21)

where the unknown parameter cj represents the con-
stant coefficient of the jth term of the Trefftz functions,
the coefficient Kij and the term fi are given, respec-
tively, as

Kij = u∗
j (Pi) or Kij = q∗

i (Pi), (22a)

fi = ū(Pi) or fi = q̄(Pi). (22b)

For a set of collocation points, Eq. 21 can be written
in matrix form as:

KcKcKc = fff . (23)

3.2 The Galerkin formulations of HT BEM

Similar to the point-collocation method above, the
Galerkin formulations can be obtained when the weight-
ing functions are defined as:

Wu = δq = qqq∗Tδccc, Wq = −δu = −uuu∗Tδccc. (24)

In this case, Eq. 17 leads to:

δcccT
{ ∫

�u

qqq∗uuu∗Td� −
∫

�q

uuu∗qqq∗Td�
}

ccc

=
∫

�u

qqq∗ūuud� −
∫

�q

uuu∗q̄qqd� = 0

⇒
{ ∫

�u

qqq∗uuu∗Td� −
∫

�q

uuu∗qqq∗Td�
}

ccc

=
∫

�u

qqq∗ūuud� −
∫

�q

uuu∗q̄d�. (25)

The final equations can also be written in matrix form
as Eq. 23, in which the coefficients and the independent
terms are given by:

Kij =
∫

�u

q∗
i u∗

j d� −
∫

�q

u∗
i q∗

j d�, (26a)

fi =
∫

�u

q∗
i ūjd� −

∫

�q

u∗
i q̄jd�. (26b)

Noting that the resulting equation for both Galerkin
and the collocation methods is in the same form of
Eq. 23, where Kij and fi are, respectively, coefficients of

the stiffness matrix and a known force vector, obtained
by integrating along the boundaries of elements. Since
the matrix of the coefficients is symmetric, an important
character in Galerkin method is that,

q∗
i = ∂

∂n
u∗

i . (27)

4 Two auxiliary functions for the singular property
near crack tips

The special function (Eq. 11) is constructed by use of
both Eq. 1 and the free-traction boundary condition (7)
on crack faces. However, the function cannot accurately
represent the singular property near crack tips due to

∂u
∂θ

�= 0 (for θ = ±θ0) when x1 = 0 and x2 = 0. (28)

Furthermore, their boundary functions should sharply
vary from x1 > 0 and x2 = 0 to x1 < 0 and x2 = 0
near crack tips. That is to say, those two conditions are
not both satisfied completely in fact. Therefore, the term
∂u/∂θ makes no contribution to the stiffness matrix and
equivalent nodal flow vector in Eq. 21 if the elements
contain crack tips due to Eq. 7. Hence, Eq. 7 makes no
contribution to the computation of SIF. We will provide
a solution, to this problem.

As is known, SIF is obtained by considering the spe-
cial stress distribution around the crack tip x1 = 0 and
x2 = 0. An exact function to satisfy the feature near the
crack-tip becomes an important factor for computing
accuracy. Therefore, according to the particular bound-
ary condition of Eq. 28, the displacements and stresses
prescribed along both sides of x1 = 0 and x2 = 0 should
be completely equivalent within a very small region
around crack tip, called the micro size region, and the
displacements and stresses at one side along x1 < 0 and
x2 = 0 can be deduced from the results of the other side
x1 > 0 and x2 = 0 using some approximate approaches
reported in the literature [8,13,15].

From this point of view, the paper presents a calculat-
ing approach, namely, an auxiliary function approach,
in which the displacements satisfy the singular property
near crack tips. In this approach, the displacements and
stresses along the left micro size region of x1 = 0 and
x2 = 0 are expressed in terms of some analytical func-
tions, which can simulate the characters along the right
micro size region. Meanwhile, the auxiliary function also
approximately agrees with Eq. 1 and the boundary con-
dition Eq. 28 around the micro region. In fact, these
auxiliary functions can be found easily, such as the two
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following expressions

qtip = ζ

Lα
(rα − Lα) cos θ , α < 1.0, (29)

qtip = ζ

Lα
(L − r)α cos θ , α ≥ 1.0, (30)

which are used in the calculation, and the equation of
force equilibrium

L∫

0

ζdx =
∫

�q

qtipd�

is used to determine the unknown value ζ , while L is the
crack length and α the power parameter of the functions.

Two advantages using the auxiliary functions can be
seen clearly, one is that the accuracy can be improved
near crack tips when the computation involves a region
far from crack tips; another is that slight different results
can be achieved using different auxiliary functions, in
spite of different convergence situations for different
functions. That is to say, this feature can be applied to
check the correctness of the outcomes as well.

5 Singular intensity factor of Trefftz BEM

On the basis of the special function for crack elements,
SIF KIII can be evaluated from ci straightforwardly.
Since the general expression of SIF can be given as

KIII = lim
r→0

[ (2π)1/2

r1−λ
σ32(r, 0)

]
, (31)

where λ = 1 − π
2θ0

when θ0 �= π , the singularity is the

type of rλ−1. When the cracks tip is defined at the origin
of the polar coordinate system (see Fig. 1), substituting

Eq. 3 and Eq. 14 into Eq. 31, one obtains

KIII = lim
r→0

(2π)1/2

r1−λ
G

∂u∗

∂x2
c = lim

r→0

(2π)1/2

r1−λ
G

(∂u∗
1

∂θ
c1

+ ∂u∗
2

∂θ
c2 + ∂u∗

3

∂θ
c3 + ∂u∗

4

∂θ
c4 + ∂u∗

5

∂θ
c5 + . . .

)
,

that is,

KIII = √
2πGc3

π

2θ0
. (32)

When θ = 180◦, the T-complete system solution is
footnotesize

∂u∗

∂θ
∈

{
0, −r sin θ ,

1
2

r1/2 cos
θ

2
,

− 2r2 sin 2θ ,
3
2

r3/2 cos
3
2
θ , . . .

}
,

hence SIF can be written as

KIII =
√

π

2
Gc3. (33)

Generally speaking, SIF can be evaluated by local field
distributions of ci at crack tips.

6 Numerical assessments

6.1 A rectangular plate with finite boundaries
for mode III edge crack

Figure 2 shows a rectangular plate with finite edges
for mode III edge crack to numerically illustrate the
HT BEM. Due to symmetric conditions, only half of
the plate is meshed as shown in Fig. 2. The boundary

Fig. 2 A rectangular plate
with finite edges for mode III
edge crack and its meshing
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conditions of the problem are

x2 = 0, x1 < 0, σ32 = 0;

x2 = 0, x1 ≥ 0, u = 0;

−h ≤ x2 ≤ h, x1 = −a

and x1 = (b − a), σ31 = 0;

x2 = ±h, −a ≤ x1 ≤ (b − a), σ32 = ±q0.

(34)

Boundary quadratic elements are used along the
uncracked (regular) edges while higher order elements
are used in the cracked edge, and a higher mesh density
is assumed in the region containing the crack. It should
be indicated that a local coordinate system is adopted to
avoid developing ill-conditioned matrices and a singular
value decomposition solver is incorporated in the solu-
tion algorithm. The ratio a/b is taken to be 0.1, 0.5, 0.9
and θ0 = 180◦ in the analysis. Moreover, the auxiliary
functions used are defined by Eq. 29 and Eq. 30 in both
Galerkin approach and collocation approach.

Table 1 shows the results of SIF versus the number
of special T-functions for the mode III crack problem
when a/b = 0.5. It is found that the ratio K/Kc (K is
the SIF by the present computation and Kc is as defined
in Refs. [28,23] gradually decreases when the number
of special T-functions increases, then converges to 0.971
when the number of special T-functions ≥ 6 for Eq. 29
and it converges to 0.910 when the number of special

T-functions = 4 for Eq. 30 as in the Galerkin approach,
whereas it converges to 0.988 for Eq. 29 and 0.910 for
Eq. 30 when the number of special T-functions ≥ 6 as
in the collocation approach. Furthermore, the choice
of two auxiliary functions appears to have an effect on
the value K determined, and Eq. 29 consistently yields
higher converged value with respect to Eq. 30 in HT
BEM. However, there is very little difference between
the collocation approach and the Galerkin approach for
the rate of convergence irrespective of the type of the
auxiliary functions used.

The results of SIF K/Kc versus the number of crack
elements are listed in Table 2. It indicates that the ratio
K/Kc converges to a stable value with the increase of
the number of crack elements, the convergence in this
case is in a similar manner as with respect to the num-
ber of T-function terms. Once again both the collocation
approach and the Galerkin approach perform similarly,
and the converged values in Table 2 are identical to the
values in Table 1.

The effect of the collocation point number to the
K/Kc ratio is shown in Table 3. It can be seen that
the ratio converges to 0.988 when the collocation point
number = 10 for Eq. 29, whilst the ratio remains at the
converged level (0.945) even when the collocation point
number = 4 for Eq. 30. From the table, it can also be seen
that the auxiliary functions of Eq. 29 can provide a more

Table 1 SIF K/Kc versus the
number of special T-functions
(a/b = 0.5)

Two indirect approaches Number of special T-functions

of HT BEM 2 4 6 8 10

Galerkin approach Eq. 29 1.672 0.972 0.971 0.971 0.971
Eq. 30 1.567 0.910 0.910 0.910 0.910

Point-collocation approach Eq. 29 1.701 0.989 0.988 0.988 0.988
Eq. 30 1.627 0.946 0.945 0.945 0.945

Table 2 SIF K/Kc versus the
number of crack elements
(a/b = 0.5)

Two indirect approaches Number of special T-function

of HT BEM 2 4 6 8 10

Galerkin approach Eq. 29 1.047 0.990 0.971 0.971 0.971
Eq. 30 0.910 0.910 0.910 0.910 0.910

Point-collocation approach Eq. 29 1.116 1.031 0.988 0.988 0.988
Eq. 30 0.948 0.946 0.945 0.945 0.945

Table 3 SIF K/Kc versus the
number of collocation points
and Gauss points (a/b = 0.5)

Indirect approach of HT BEM Galerkin or Point-collocation approach

2 4 6 8 10

Number of collocation points 0.954 0.954 0.976 0.982 0.986 0.988
0.945 0.946 0.945 0.945 0.945 0.945

Number of Gauss points 0.984 0.984 0.971 0.970 0.970 0.970
0.892 0.892 0.910 0.910 0.910 0.910
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stable solution than those of Eq. 30. Furthermore, the
number of Gauss points for the Galerkin approach has
an influence on the results, as shown in Table 3, and the
K/Kc ratio converges to a stable value when the num-
ber of Gauss points grows and converges to 0.971 for
Eq. 29 and 0.910 for Eq. 30 when the number of special
T-functions ≥ 4.

The results for the same mode III problem were
obtained from HT FEM [17], which are compared with
HT BEM, as shown in Figs. 3 and 4. Generally, the con-
verged values of the ratio K/Kc obtained from HT FEM
are slightly larger (not very significantly) than those
obtained from HT BEM. Although both approaches
can provide similar convergent results, the present HT

Fig. 3 SIF versus the number of special T-functions (FEM and
BEM)

Fig. 4 SIF versus the number of crack elements (FEM and BEM)

BEM offers a significant computational advantage in
terms of reduced DOF. On the other hand, as it can be
seen from the figures, the difference between HT FEM
and HT BEM on the convergence performance versus
either the number of special T-functions or the number
of crack elements is not significant.

Furthermore, some particular solutions for a crack in
a rectangular plane were obtained by Isida [24] using a
perturbation technique, by Rooke [23] using a versatile
method and by Sih [25] using the Cagniard’s technique.
In particular, Silling [26] developed an APE program to
calculate stress concentration factors, then Honrgan and
Silling [27] using a finite-difference program assessed
the accuracy of direct numerical computations for the
finite anti-plane shear problem by comparing the cor-
responding analytical results. They found that each of
the circular meshes used for the elliptical cavity with a
traction-free boundary contained roughly 1,000 nodes
to obtain results with no more than 2% error for linear
cases and 1% for nonlinear cases, as compared with the
exact analytical value. However, we use less than 10 ele-
ments and 30 nodes for HT BEM and 15 elements and 40
nodes for HT FEM calculating for an edge crack of the
rectangular plate for the mode III problem, to achieve
the same goal. This further illustrates the efficiency of
the proposed HT BEM/HT FEM over the other tradi-
tional methods.

6.2 A rectangular plate with infinite boundaries
for mode III three edge cracks

The second example is a rectangular plate with infinite
boundaries with three edge cracks (Fig. 5). The ratio of
a/2c is fixed at 3, and the length of b and h are taken
as 6 times of a to eliminate influence on the results by
the boundary conditions. Owing to the symmetric condi-
tions, only half of the plate is meshed as shown in Fig. 5.
The boundary conditions of the problem are

y = 0, x < 0 and y = c, x < 0, σ32 = 0;

y = 0 and x ≥ 0, u = 0;

−h/2 ≤ y ≤ h/2 and x = −a;

x = (b − a), σ31 = 0;

y = ±h/2 and − a ≤ x ≤ (b − a), σ32 = ±q0.

(35)

Equation (29) is also used as the auxiliary equation
only, and the normalized stress intensity factors
K/q0

√
πa at points O and O′ are calculated. As to the

rank condition, the number of T-functions should be ≥3
for regular elements and ≥6 for special purpose ele-
ments in the calculation.

Table 4 shows the results of normalized stress inten-
sity factors K/q0

√
πa versus the number of special
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Fig. 5 A rectangular plate
with infinite boundaries for
mode III three edge cracks
and its meshing

Table 4 Normalized SIF K/q0
√

πa versus the numbers of
crack elements and special T-functions for a multi-crack plate
(a/2b = 3)

Number of Number of O point O′ point
crack elements special T-functions

4 2 0.463 0.451
6 3 0.337 0.343
10 4 0.329 0.338
12 5 0.329 0.338

T-functions and the number of crack elements for three
edge-crack infinite plate. The ratio K/q0

√
πa gradually

decreases when the number of special T-functions and
the number of crack elements increase, then converges
to 0.329 for point O′ and 0.338 for point O, respectively,
while the number of special T-functions ≥ 4 and the
number of crack elements ≥ 10. The convergence due
to the increase of the number of special Trefftz-functions
is also considered good for the multi-crack problem.

The normalized stress intensity factors K/q0
√

πa at
points O and O′ for different values of a/2b are pre-
sented in Table 5. It can be seen that the ratio K/q0

√
πa

for points O and O′ decreases with a/2b increasing.
However, they are a little larger than the theoretical
value [25] and the results obtained by ABQUAS
software are less than those of FEM [18]. As a mat-
ter of fact, the errors of the results by HT BEM are

no more than 1.9 and 3.7% for point O and point O′,
respectively. The main reason may be that the boundary
conditions of the theoretical analysis based on b and h
are both for infinite lengthes, in the meanwhile, by AB-
QUAS software used almost 26,000 nodes and HT FEM
38 nodes whereas HT BEM only 32 nodes.

It should be mentioned that, with the basic theorem
of the Fourier transform and Fourier series, the gen-
eral analytical solutions of SIF subjected to anti-plane
shear load were obtained by many researchers, such as
Refs. [28,29], but they are almost predetermined by the
conditions of infinite edges or special boundaries. The
numerical calculations in this paper are for certain finite
edges or finite boundaries.

7 Conclusions

HT BEM based on the Galerkin and collocation tech-
niques for mode III fracture problems is presented in
the paper. The formulations of HT indirect methods
are derived using T-complete functions for normal ele-
ments and special T-functions for crack elements, and
two auxiliary functions are also adopted to improve the
accuracy in crack-tip elements. Meanwhile, its SIF can
be evaluated directly by c3 in crack tips. The perfor-
mance of the special purpose element model is assessed

Table 5 Normalized SIF
K/q0

√
πa varying with a/2b

for a multi-crack plate

Approach Position a/2b

1 2 3 4 5

HT BEM point O 0.570 0.403 0.329 0.286 0.257
point O′ 0.581 0.410 0.338 0.292 0.258

HT FEM [21] point O 0.576 0.410 0.335 0.290 0.255
point O′ 0.582 0.413 0.340 0.295 0.265

ABQUAS Software point O 0.568 0.401 0.327 0.284 0.256
point O′ 0.579 0.407 0.336 0.291 0.267

Theory value[31] (a � b) point O or O′ 0.563 0.399 0.326 0.282 0.252
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by two examples using two indirect approaches. It is
found that SIF is affected by the number of special T-
functions, the number of crack elements, the number
of collocation points, the number of Gauss points and
their positions in the edge cracks. Moreover, the ratios
K/Kc and K/q0

√
πa converge to a stable value when

the numbers of crack elements, special T-functions and
collocation points increase, and SIF converges approxi-
mately to the same value irrespective of the type of the
auxiliary functions chosen.

The numerical results are compared with those
obtained by the conventional FEM/BEM, ABQUAS
software and HT FEM. The comparisons show that the
proposed Trefftz BEM is ideally suited for the analy-
sis of mode III fracture problems with high efficiency
whereas the procedure is usually complicated and time-
consuming using the conventional FEM and BEM.

To further assess the performance of the proposed
element model, the displacement and stress fields in
some selected elements and nodes are analyzed, par-
ticularly at the nodes between the crack elements and
regular elements. When using the auxiliary functions,
the accuracy of displacements and stresses in the left
and right sides of micro size region around x1 = 0 and
x2 = 0 is about 10−3, while the corresponding accuracy
for those points far from x1 = 0 and x2 = 0 is about
10−2. When the regular elements are used, the precision
of 10−8 to 10−10 can be obtained in this example, which
is much higher than that of the crack elements. It is also
evident that the accuracy is much higher than that of the
conventional finite element model or other approaches
when the numbers of elements and nodes employed are
the same.
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