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Abstract

Closed-form expressions are presented for effective material properties of human dentine in this paper. The derivation is based a Gen-
eralized Self Consistent Method and the strain energy principle. The Generalized Self Consistent Model for cell model of fiber-reinforced
composites is extended to the case of hollow cylinder model and the corresponding cell model is chosen to consist of a circular hollow
cylinder filled with liquid or gas phase, which surrounded by a circular cylindrical shell of matrix phase. Each layer of cylindrical shell is
here considered as a kind of composite consisting of collagen fibrils, with mineralized hydroxyapatite, loosely connected to their neigh-
bours, and water (or gas in the case of dry dentine composite). Using the cell model, the effect of Poisson’s ratio and volume fraction of
intertubular dentine on effective mechanical constants is analyzed. Results obtained from the proposed model are compared with those

from other models such as nano-indentation method.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Human dentine, the mineralized tissue forming the bulk
of the tooth, lies between the enamel and the pulp chamber.
It has a characteristic micro-structure consisting of a
hydrated matrix of type I collagen that is reinforced with
a nano-crystalline carbonated apatite. This matrix phase
lies between nearly cylindrical tubules that run from the
dentine-enamel junction to the pulp chamber [1]. Along
with the development of dentistry medicine, people begin
to realize that the effective elastic properties of dentine
are of considerable importance for nearly all surgical pro-
cedures in preventive and restorative dentistry [2].

Recently, there has been considerable theoretical work
directly toward fiber-reinforced composites and dentine
like composites [3,4]. Christensen [3] developed a micro-
mechanics model of solid cylindrical inclusions in a homo-
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geneous matrix phase, which is very useful for that it per-
mits the limiting case of full packing of the inclusion
phase, with ¢ — 1, where ¢ is the volume fraction of the
inclusion phase. In contrast, most conventional composites
in which only the matrix phase is spatially continuous and
no porosity or liquid phase is involved, dentine is a porous
interpenetrating phase composite that has several phases
such as collagen fibrils, mineralized hydroxyapatite and
water that are each interconnected in three dimensions
and construct a topologically continuous network through-
out the composite [4]. As mentioned above, dentine micro-
structure and properties are principal determinants of
nearly all surgical procedures in preventive and restorative
dentistry, the determination of the effective mechanical
properties of dentine, a multi-phase composite, is of great
interest for both its biomedical engineering applications
and theoretical analysis. However there has been little pre-
vious theoretical work on this specific subject. Kinney et al.
[1] studied the effect of tubule orientation on the elastic
properties of dentine using a micro-mechanics model of
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cylindrical inclusions in a homogeneous matrix phase [3].
Currey [4] examined experimentally the effect of porosity
and mineral content on the Young’s modulus of elasticity
of compact bone. He indicated that there was a strong
positive relationship between Young’s modulus and both
calcium content and volume fraction and a power law
model fits the data better than a linear model. Jones and
Boyde [5] presented a detailed description on the principle
character of dentine micro-structure. Katz [6] and Hashin
[7] analysed elastic properties of hard tissues, which
focused on the constituent materials properties at the
microscopic level, using bounding method including Vogit
and Reuss as well as Hashin—Shtrikman. Kenney et al. [8]
presented a critical review on mechanical properties of
human dentine composites and indicated that the micro-
structure of human dentine are hexagonal with the stiff
direction perpendicular to the tubules, which is opposite
to the predictions of the micro-mechanics. Most recently,
Qin and Swain [2] extended the micro-mechanics models
presented in [9-11] to the case of fully or partially saturated
dentine composites by considering the actual detailed
micro-structure of dentine composites [12-14]. However,
the model (see Fig. 1) developed in [2] can provide analyt-
ical expressions for five effective material properties only
(i.e., G} shear modulus governing shear in any plane nor-
mal to the x,x3-plane; E7 longitudinal Young’s modulus;
E3 (or E}) transverse Young’s modulus in the plane perpen-
dicular to the axial direction; K, bulk modulus in the x,x3-
plane; and v, is the transverse Poisson’s ratio in the same
plane). As for the sixth effective constants, G5, shear mod-
ulus in the x,x3-plane, the model in [2] can only predict its
upper and lower bounds. The limitation is attributable to
the use of dilute model introduced by Hashin and Rosen
[9]. To obtain analytical expression of G, the Generalized
Self Consistent Model in [15] which is referred to as the
Three Phase Model (see Fig. 2) is extended to the case of
dentine composites in this paper.

Peritubule inclusion

Bonding matrix

Fig. 1. Geometry of dentine composites and cell model [2]: (a) Cross-
section of composite cylinder assemblage; (b) Unit cell model in axial
direction; (c) Composite cylinders model.
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Fig. 2. Generalized self consistent model.

The proposed Generalized Self Consistent cell model is
capable of modeling the dentine composites and the inter-
action among inclusions. In particular, it can provide
closed-form expressions for all six effective material proper-
ties including G3;.

The derivation is based on the model presented in [2]
and strain energy principle. Numerical results are presented
to show the applicability of the proposed model and to
study effect of Poisson’s ratio and the volume fraction of
inter-tubular dentine or peri-tubular dentine on material
properties. Results obtained from the proposed theoretical
model are compared with those from experimental obser-
vations presented in [1].

2. The unit cell model and basic equations

In this section, the micro-mechanics theory presented in
[2] used to predict effective material properties of dentine
composites is reviewed to establish notation and to provide
a common source for reference in later sections. Con-
cretely, at the micro-structural level, dentine is considered
as a two-phase, fiber-reinforced composite material, one
phase is the peri-tubular inclusion and the other is inter-
tubular matrix (Fig. 1). Both of them are assumed to be
isotropic and elastic. The peri-tubular dentine (inclusion
phase in Fig. 1) is built up of collagen fibrils and mineral-
ized hydroxyapatite, in which a porous phase (liquid or
gas) is embedded in a connected solid phase forming the
skeleton. The solid phase is linear elastic and isotropic.
The porous phase is saturated with a fluid at the pressure
p', or a gas at the pressure p®. For a partially saturated por-
ous media, Bishop suggested the following variation of
Terzaghi’s expression for the microscopic stress ¢ [10]

o= Ce+ o, (1)
with
{ C, in °
C= .
0  otherwise
0 in Q°
o { £ 2)
P oin Q U Q8

where p° = —p® + {(p® — p'), ¢ is microscopic strain, { is a
parameter related to the degree of saturation and equals
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unity for fully saturate materials, C; is the tensor of elastic
moduli in the solid, Q°, Q" and Q¢ are domains occupied by
the solid, fluid and gas phases, respectively. Their bound-
aries are denoted by 0Q°, Q" and 0Q¢.

It is known that the inclusion and matrix phases of den-
tine are themselves also three phases composites containing
collagen fibrils, mineralized hydroxyapatite and liquid
phase such as water or gas. The procedure for evaluating
effective properties of peri-tubular inclusion and bonding
matrix (i.e., Young’s modules E,,, E; and Poisson’s ratios
Vm, Vi Where subscripts i and m refer to the isotropic inclu-
sion and matrix, respectively) has been discussed in [2] (for
more details see Sections 2 and 3 of [2]) and is omitted here.

The geometric model used in the analysis is shown in
Fig. 2, a circular hollow cylindrical inclusion filled with
liquid or gas phase is embedded in a concentric cylindrical
annulus of the matrix material, which in turn is embedded
in an infinite medium possessing the unknown effective
properties. The effective material properties can be deter-
mined from the condition that the effective homogeneous
medium possesses the same average values of stress and
strain as does in the cylindrical model of Fig. 1. While,
the effective homogeneous medium is transversely isotropic
[3] and the stress—strain relation for a transversely isotropic
porous material may be written in terms of six material
constants in the form [2]:

o1 ¢, ¢, C, O 0 0 T
0 c, ¢, C; 0 0 0
o | c, ¢, C, 0 0 0
o1s 0 0 0 2cCy, 0 0
023 0 0 0 0 C,-C; 0
031 L 0 0 0 0 0 2Cy, |

e 1

& 1

x :z -4 (1) (3)
€3 0
&1 0

where direction 1 is in the fiber direction and direction 2
and 3 are in the transverse plane. A convenient grouping
of the six properties is given by [9]:

(Cy + &)

c,, — G,
G; — ( 22 5 23)’ (5)
G, =Gy = G = C, (6)
2C1,CY
Ej=Cj -5 7)
1 ! C22 + C23

vi, and ¢*. Here G}, is a shear modulus governing shear in
any plane normal to the transverse x,xs-plane; vi is the
Poisson’s ratio for uniaxial stress in the x;-direction, and

q" is the effective pore concentration coefficient. As was
treated in Section 2 of [2], the superposition principle is
used to decompose the load (E, Ej; in the form of compo-
nents, p°) into two elementary loadings (E, p°=0) and
(E =0, p°) [11]. For the loading case (E = 0, p°), the deter-
mination of ¢* is similar to that in Section 2 of [2] and the
final result which is consistent with that in [2]:

1 %49
q*:_ fl%+ I_J{l)qm_‘_#)v 8)
7 (¢ Fam+ (=701, (
where f; is the volume fraction of inclusion phase. Then for
the loading case (E, p®=0), the discussion is given as
below.

3. Shear modulus G,

To obtain analytical expression of G,;, a two-dimen-
sional cell model is considered as shown in Fig. 2. It should
be mentioned that the model shown in Fig. 2 is a hollow
multi-layer cylinder, which is different from the solid cylin-
der used in [3,15]. Therefore, we need to re-derive all effec-
tive material constants for the hollow cylinder model. Since
this is an axisymmetric problem a polar coordinate system
is used with the origin at the center of the composite cylin-
der. As we can see from Fig. 2, there are three distinctive
regions in which the solutions including the stresses and
displacements must be obtained, respectively.

Following the way treated in [16], the stress functions
oV(z), ¢V(z2), pP(z) and $P(z) for the present problem
can be obtained and are listed in Appendix A for the read-
er’s convenience.

Using the solutions of equilibrium equation in [16] and
the conditions of continuity for o,, 7,9, u. and u, across
the three interfaces between regions (Fig. 2), we have fol-
lowing 22 equations:

.
o —itl}) = 0 stresses at r = R;:
Mr a4 p 0 _
_a—lR_%J'_F 1 ST
m m
4 p2 Dgr b
—3 Ry - 71R_%+IT )
o o)
2 R _
SR - bE =0,
m
4 MR _
29— bhp=0
e e
oM —itl) = 6@ — iz stresses at r = Ry:
( @)
MR | % p2 DR _ (DR | %5 p2 @ r
gt R b= el b R — b
m m ) @)
4 p2 DR b 4 p2 QR b
Byl -dipty= 3R -aip oy,
m @
a NE _a 2 2
TR b= R — b,
m @)
o _pWR _np4 _ pAR
2R b—le_zR b—le
(10)
.2 .
a? — 17:,(,0) = g, — i1,¢ stresses at r = R; = R:
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—a(,zl) + a§2> — b<3§ =—o_—f_3,

2 2 2
—’j‘cz§>—cz(_f—4—b§):—05_1—5—27 (1)

ul) — i) = u® —iu displacements at r = R,:
Gm(Xia_ll)Rz 3a(31)2§+b(1|)%):G(,(m _,R 3613 R3+b(2 )
G (1) Bt A+b<j>§_§):g(ymaz B+ dO £+ b8,
Gm(—zagwR2 ) ( 2a2 5 4 b )

o 0456 a5 5)

G

)R, 1 1 @2
! 5= a5 60 ) = G (1~ 54 b,

1R,

(12)
u? —iuy) —iuy displacements atr=R;=R:
G (101 +2) = G (tma®} — 30; +b),
Gum(a1+f5) = G;3(Xma3 +a° + %),
0=—2ay +b{, (13)
Gnf_, = Gy (Xma(zz) + bg)a
Gu(y =1+ B_y) = Gy (mal?) — at? +5%),

where y; =3 — 4v;, ym =3 — 4v,. However, there are 23
unknown constants including G, to be determined. One
more equation is required to fully determine the all 23 un-
knowns uniquely.

To determine the effective shear modulus G3;, we make
use of the basic result obtained by Eshelby (Eq. (5.1) in
[17]), namely, for a homogeneous medium containing an
inclusion, the strain energy U, under applied displacement
conditions, is determined by [15]:

1
U=U—5 /(T?uie — Tid))ds, (14)
N

where S is the surface of the inclusion, U is the strain en-
ergy in the same medium when it contains no inclusion, 7?9
and u) are the tractions and displacements in the medium
when it contains no inclusion and T}, and u;. are the corre-
sponding quantities at the same point in the medium when
it contains the inclusion. Our criterion for determining the
effective properties requires the equality of strain energy in
the heterogeneous media and in the equivalent homoge-
neous media. This condition can be written as

Uequiv = U. (15)

As mentioned above, the energy of the equivalent homoge-
neous medium, Ugquiv, is clearly the same as the energy of
the model shown in Fig. 2 if there is no inclusion. But from
Eshelby’s derivation and the corresponding definition of
terms stated with (14), this energy is just given by U, the
energy of the medium with no inclusion, and thus

Uequiv - U(). (16)

Combing relations (15) and (16) with (14) gives the follow-
ing energy statement to be satisfied:

2n
/ (0Vure + Thtte — Opett) — Typetty) A0 = 0. (17)
0

When the present problem having conditions of simple
shear at infinity, it follows that

= ’ 18
2G> sin 20, } (18)

and ure|r =R u0e|r =R Gre|r =R and Grﬁe|r =R have already
been obtained from the equation of equilibrium [16] and
used in and (13). Thence carrying out the integration (17)
gives the simple result:

o0 =0. (19)

¢? = cos 20, u’
0
I

0%y = —sin20,u) =

By now, there have been 23 independent equations and 23
unknown constants. These unknown constants can be thus
determined uniquely from the 23 equations. After a lengthy
process of algebraic reduction, the governing equation for
G5, is found to be a quadratic equation:

A(Z2) +B(2)+D=0 20
(¢2) +2() o= &
where 4, Band D are listed in Appendix B.

It can be seen that Eq. (20) is identical to that in [3,15]
when o =0 (i.e., for a solid cylinder model).

4. Effective constants K, E7, G, and v;

As mentioned in Section 3 above, the effective homoge-
neous medium possesses the same average values of stress
and strain as those in the cylindrical model defined in
Fig. 1 (Section 2 above). For example, if the cylindrical
model in Fig. 1 is subjected to the remote boundary condi-
tion [9]:

u(S) = s?xj, (21)

over its entlre boundary surface S, we have &; = § [, £;dQ
=g = 9 where »? and s are displacement and strain com-
ponents respectlvely, X; are surface coordinates, and n; the
components of the outward normal to S, Q is the area (or
volume in 3D model) of the cylindrical model in Fig. 1, and
g;; is the average effective strain. This principle is used to
derive theoretical expressions of the four effective constants
mentioned above.

4.1. Plane strain bulk modulus K3,

Following the way in [9], the strain system associated
with (21) is chosen to be:

&) = €33 = &, (22)

and all the other strain components vanish. We have from
(21) that
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r=R. (23)

up =0;  wp =exy; uz =ex3

Thus, the boundary value problem (23) for the cylindrical
model in Fig. 1 reduces to an elementary axially symmetric
plane strain problem. The corresponding solution for ra-
dial displacement u, and radial stress o,, can then be writ-
ten in the form [18]:

u, :A}’Jrg7 (24)
r

_ B
0, = 2KA ~2G . (25)

where K is the plane strain bulk modulus defined by
K = A+ G, Jis a Lamé modulus and G the shear modulus.
A and B are arbitrary constants. The solutions (24) and
(25) hold true for both inclusion region R; < r < R, and
matrix region R, < r < R, if the related elastic moduli are
used. While strains in the equivalent homogeneous media
are &,=7¢,=¢ and &, =%, =¢;=2%,=0. Conse-
quently, we can obtain the stresses and displacements using
the stress—strain relation (3) and the well-known linear
strain—displacement relation. They are:

0 = 2eK5,, } (26)
Upe = €T,

Uze = Upe = O>
where the subscript e refers to the equivalent homogeneous
medium. There are five unknown constants in this problem
which can be determined from following five boundary
conditions:

0, = 07 r= Rla
Ui = Upm, Ori = Orm, r= RZa (27)
Um = Upe, O = Ore, F=R.

Solving Eq. (27) we have
¢ =)L+ 2 f) + 2 (14 2)

Ky =Kn - (28)
¢(1*O€2)fm+(ﬁ+2vm)(1+z‘”"—“)

where ¢p=%, a=R fi=0 fo=1-f, K,=i+

G/(V_17m)

4.2. Longitudinal Young’s modulus E; and Poisson’s ratio v;

The effective longitudinal Young’s modulus E} can be

determined by setting [19]:
g1 =¢, Op=03=0)=0y3=03 =0 (29)

The loading case (29) induces following displacement
solution:

ui =Air +%, Ry <r< Ry,

um:Amr—i-B—:“ Ry <r <R,

e = Aerr,  Ae = —Vig, (30)
uge = 0,

u, =¢ez, r =R

The five unknown constants in (30) are determined using
the following five boundary conditions:

O,i = 07 r= R17
Uy = Umm, Opf = Om, V= R27 (31)
Umm = Upe, Opm = Ope, ¥ =R.

In the context of the present problem, the effective modulus
E7 is defined by [19]:

Ei= nb’e // (32)

where Q is the cross-section area of the cylindrical model in
Fig. 1. In the end, the substitution of the solutions (31) into
(32) and carrying out the integration (32) gives:

E; En(D) — D3Fy) 4 Ei(Dy; — DyF
EE(f +fm> (l 31) (2 42)’

E. En(Dy — D3) + E;(D, — Ds)

(33)
where
Dl = %t;i — Vi D2 :%_va)
Dy =i, Dy=23L (34)
_ ImfiEi+VifmEm i

F T VifiEi+fmEm F2 ‘ml:'l

The effective Poisson’s ratio v is determined by using the
definition [19]:

* u, r=
vy = —g (35)

Substituting Egs. (30) and (31) into (35) we have
* _ﬁEiLl +memL2Vm

T EL + foEnly (36)
where

Ly = 2v(1 = V2)fi + foo(1 4 Vi) Vi,

L, :ft[(l + vm)o? + 1 —vi—ZViZ], (37)

Ly =2(1 = vp)fe + (1 + vi) fin.

4.3. Shear modulus G,

To obtain the solution of Shear modulus Gj,, consider
the following strain system [9]:

=181 ==, & =¢&n==¢;3=2=¢;3==é3=0. (38)

2 )
The displacement components induced by loading condi-
tion (38) are:

u,; = Cizcos, .y, = Cpzcosb,

up, = —Cizsin0, upy = —Cpzsin 0,
Uy = (Ai’” + %) COS 0, Um = (Amr + %) COS 07 (39)
Upe = yzc08 0, ug = —yzsin0,

U, = 0.

The eight unknowns in (39) are determined by the follow-
ing boundary and continuity conditions:
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0. =0, r=Ry,

Opi = Opem, Ui = Upm,  Ug = Upm, I =Ry,

Orm = Orzey  Upm = Upey,  Upm = Uge, Uom = Uze, ¥ = R.
(40)

Finally, we derive the shear modulus:

G = Gy I =)L HS) + /(L + ) (1)

(1= o) fm + (1 +02)(1+ 1)
: RZ
where = & o =L fi =2, fo = 1 = fi.
It is interesting to note that the resulting expressions of
effective material constants, except G5;, is exactly the same
as those obtained in [2], where different cell model has been

used.

5. Numerical results and discussion

Since the five properties K3,, Ej, G|, v; and ¢* obtained
above are the same as those presented in [2], we need only
to present the numerical results for G5; and the others can
refer to [2] for detailed numerical results. In order to allow
for comparisons with Kinney’s results [1], the elastic prop-
erties of the peri-tubule inclusion and bonding matrix
which have been analysed by nano-indentation method
[1,20] are assumed:

E; =225GPa, v =025 E,=15GPa, v,=0.1.
(42)
By checking the data given in [21,22], it is noted that o = %

is independent of position although both R; and R, vary
from the pulp to the dentine—enamel junction. The results
of G3; from the proposed model are listed in Table 1 and
compared with those presented in [1].

From the table above we can see that the present results
are in good agreement with those presented in [1]. Further,
making use of (20), the magnitudes of the transverse shear
modulus G, (GPa) are charted in Figs. 3 and 4, respec-
tively, as a function of the volume fraction of inter-tubular
fm and peri-tubular dentine f; with different values of v,
(=0.1, 0.25, 0.4). As was expected, the modulus G,
decreases linearly with the volume fraction of inter-tubular
dentine and increases linearly with the volume fraction of
peri-tubular dentine. This conclusion is consistent with that
reported from [1]. It is also observed that G5, decreases
with the Poisson’s ratio of inter-tubular matrix at the same
volume fraction of the matrix or inclusion phase.

Table 1
The elastic modulus of G5, (GPa) at some typical points and comparison is
made with those predicted by [1]

Tubular concentration Present results Results in [1]

0.05 6.88 6.90
0.10 6.94 6.99
0.15 7.00 7.09
0.20 7.07 7.11
0.25 7.13 7.20

85-(GPa) —u—v_=0.1
8.0 —.xliz\.\ —A—V,=025
\0\&.\1\
N LN —eo—v =04
754 e " m
®. A .\.\l
\. &A\ TR .—,
7.0 Se. A, g
N . 1 ]
. A
* 0\ kk
G,, 65 (N A
23 777 . A
o s
LN A
6.0 -| o
.\
.\.
~,
55 s
50 T T T T 1
0.0 0.2 04 06 08 10
t,

Fig. 3. Transverse shear modulus as a function of the volume fraction of
inter-tubular dentine for three values of the Poisson’s ratio of the matrix.

85 (Gpa)
8.0 ././/.;*
" - /A/.
7.5 ./.,-/'/ //A;:/°
e A .
7.0 — at e
" /A/A ./.
G* 654 P e —a—v_=0.1
237 at o« m
/A/‘ e —a—v =0.25
I o’ m
./
././ —e—v =04
55 -'/./
5.0 T T T T T T T T 1
0.0 02 0.4 06 08 1.0
J;

Fig. 4. Transverse shear modulus as a function of the volume fraction of
peri-tubular dentine for three values of the Poisson’s ratio of the matrix.

6. Conclusions

In this paper, taking the actual structure of dentine into
consideration and considering the interaction among inclu-
sions, we have developed a Generalized Self Consistent
Model for predicting the effective material properties of
dentine composites. The model consists of a circular hollow
cylindrical inclusion filled with liquid or gas phase is
embedded in a concentric cylindrical annulus of the matrix
material, which in turn is embedded in an infinite medium
possessing the unknown effective properties we need to
obtain. Further, each layer of the cylindrical shells called
the inclusion and matrix phase is here considered as a com-
posite consisting of collagen fibrils, with mineralized
hydroxyapatite, and water (or gas in the case of dry dentine
composites). Importantly, an analytical solution for the
transverse shear modulus Gj; is obtained and can be
reduced to the solid cylinder model in [3,15] when o = 0.
A numerical comparison is made between the proposed
results and the prediction obtained in [1]and a good agree-
ment between them is observed. Obviously, the theoretical
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expression for Gj, is more economical and acceptable to
predict the effective properties of dentine compared with
conventional biomechanical testing methods in engineering
activities.
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Appendix A. Stress functions of the present problem

3
1
o2 =43 a5,
k:_ll Ri<r<Rk;
1 1
AORES VLS &
) R ()
¢<)(Z):§ Z i 7>
":‘1 R, <r<R
2) A
¢(2)(Z>—_§ Z bz(c)ﬁ,

While the stress vector g, — it,9 and the displacement vec-
tor u, — iuy can be expressed by means of the stress func-
tions ¢(z) and ¢(z) as

0, — it = ¢'(z) + 9"(2) — €’ [F¢"(2) + ¢'(2)],

Uy — iug = 56 [19(2) — 2¢'(z) — $(2)]e”,

where G is shear modulus and y = 3 — 4v, v is the Poisson’s
ratio.

Appendix B. The parameters 4, B, and D in (20)

A={[Ln* +[(«* — o)z + (&8 = 1)(4o* = 207 + 1)]n]zz,
+ (O + M+ L)y + Tf] + 65f7
+ (O + M — 180" — 6)% + 30 + 3M]f,
+ (L = Oy + {[(—0 + o)1 + L — o + o]
+ zio? + 40 — 60" + 307} 1,
B = {[[(o® — 202 + 1)y; + 80° — 120* + 60° — 1] — My,
+ O+ M+ Lp> + (=L — N2 fF = 20f7 — 12877
+2(=0 = M)(3 = g fi + (O — L) g3, + (=0 — M) 1,
+ [(—ocg + ocz)xi —40° + 60* — 307 + Iln+M + L
D={(-N = L)y — O = M — L’} + Tf;
+6{[(—a* +o?)p — o + Py + [(8F — ot =¥ + 1y
— o 480 — 130 + 707 — 1|p — M}fF +4(Q+M)f,
+ (0 — L)y + N — M — Li?,

where
G R R
n_Gm’OC_Rz,ﬁ_RZ

(o = D+ L+ = 1]y

(o8 — o)y + 4o’ — 60 + 30 — 1]

=o' —4u® + 60t —do? +1= (1)

M =yl + (o + 1)y + (40 — 60* + 302 — Lnp?)

0=[(—® 424 — 1)y + o — 80 + 120" — 60> + 1]

T = [(o® + 60 — 80 + 1)y, — o + 80° — 60* — 1]nym
+4M + Lip? +3[—(o* — 1)°y; + o — 80 + 144*
— 8% + 1]y — Lif* i,

S =[(o® —a* — 1)y — o 4+ 80° — 130* + 7o — 1]y
(o + (g + Vg — M
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