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SUMMARY

This investigation provides a hybrid Trefftz finite element approach for analysing minimal surface problems.
The approach is based on combining Trefftz finite element formulation with radial basis functions (RBF)
and the analogue equation method (AEM). In this method, use of the analogue equation approach avoids
the difficulty of treating the non-linear terms appearing in the soap bubble equation, making it possible to
solve non-linear problems with the Trefftz method. Global RBF is used to approximate the inhomogeneous
term induced from non-linear functions and other loading terms. Finally, some numerical experiments are
implemented to verify the efficiency of this method. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Soap bubble problems, also known as minimal surfaces problems or Plateau’s problems, are defined
when the mean curvature is identically zero at any point on a smooth surface [1]. In simple
configurations, an analytical solution may be obtained by means of the separate variables method
and soap bubble film simulation. However, for some complicated configurations, exact solutions
are difficult to obtain due to the high non-linearity of the governing equation. Fortunately, some
numerical methods have been developed to analyse such non-linear problems.
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The first attempt was perhaps that of Douglas [2], who used a finite difference approach to
produce a numerical approximation. Tsuchiya [3] gave an existence and convergence proof for
discrete minimal surfaces to a continuous solution in the H1-norm. Lee and Milner [4] proposed a
mixed finite element method based on the combination of the h and p version to analyse strongly
non-linear second-order elliptic problems and gave numerical implementations for minimal surface
problems. Dziuk [5] used the mean curvature flow of surface to compute stable minimal surfaces
by finite element method (FEM), and later Dziuk and Hutchinson [6] also presented a general
finite element procedure for approximating minimal surfaces, including unstable ones, by means of
finding stationary points for the Dirichlet energy within the class of discrete harmonic maps from
the discrete unit disc.

As well as domain-type division methods, the boundary element method based on boundary
discretization has also been used to obtain approximate solutions of non-linear minimal problems.
Wilson [7] proposed a boundary element method using the Douglas integral for the computation
of Plateau’s problem. Recently, a boundary element solution coupled with the analogue equation
method was proposed to solve soap bubble problems [8].

In this paper, a review of the statement of soap bubble problems is given in Section 2. Then
in Section 3 a detailed hybrid Trefftz finite element treatment is derived for solving soap bub-
ble problems. Based on the analogue equation method (AEM) [9], the effective combination of
Trefftz finite element formulations of Laplacian problems [10] with radial basis functions (RBF)
approximation significantly simplifies the complicated variation procedure of standard FEM and,
more importantly, all integrals are computed along the boundary of elements only, instead of being
domain integral, thereby avoiding direct estimation of fictitious body force terms. Finally, three
numerical examples are considered to demonstrate the convergence and stability of the proposed
method.

2. STATEMENT OF SOAP BUBBLE PROBLEM/MINIMAL SURFACES [1]

The soap bubble problem is to find a twice continuous differentiable function u(x, y) in a region
constrained by bounding contours which minimize the surface area functional

A=
∫

�

√
1 + u2,x + u2,y d� (1)

where a comma followed by a subscript represents differentiation.
The differential equation of this surface area problem is obtained using the Euler–Lagrange

condition for minimization of the above functional. This yields the following non-linear boundary
value problem (BVP) for the determination of minimal surface

(1 + u2,y)u,xx − 2u,xu,yu,xy + (1 + u2,x )u,yy = 0 in � (2)

subjected to the Dirichlet boundary condition

u = u(x, y) on � (3)

where � is a strictly two-dimensional convex domain in R2 and � is its boundary. It is sufficient to
assume that the solution to Equation (2) is unique if u(x, y), satisfying the bounded slope condition,
is the restriction to � of a function in the Sobolev space for certain conditions [11].
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Equation (2) is of the elliptic type because its discriminant, namely (1+ u2,x )(1+ u2,y) − u2,xu
2
,y ,

is greater than zero.
Note that Equation (2) describes the shape of a uniformly stretched membrane in the absence

of transverse loads when it is bounded by one or more non-intersecting skew space contours
in structural analysis. When the slopes are sufficiently small, their squares and products can be
neglected and Equation (2) can reduce to the classical Laplace equation [8]

∇2u = u,xx + u,yy = 0 (4)

which is the linearized equation of the unloaded membrane.

3. SOLUTION PROCEDURE

To make the solution procedure below more popular and general, we consider a two-dimensional
generalized non-linear second-order BVP (see Figure 1)

�(u, u,x , u,y, u,xx , u,yy, u,xy) = g(x, y) in � (5)

with the following boundary conditions:

u = u on �u (6a)

q = �u
�n

= q̄ on �q (6b)

where �() denotes the general differential operator defined in a plane domain � bounded by the
boundary �, g(x, y) is a known function in terms of co-ordinates x and y, n is the normal to the
boundary and u and q̄ are specified single-value functions on the boundary.

The solution to the BVP defined by Equations (5) and (6) is, in general, very complicated due
to its non-linearity. In this paper, a general Hybrid Trefftz finite element approach with radial basis

Figure 1. Geometrical definitions and boundary conditions for general non-linear problems.
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function interpolation is developed to solve this category of non-linear problems. The detailed
process is presented below.

3.1. The concept of the analogue equation [9]

Suppose that u = u(x, y) is the sought solution to the BVP described by Equations (5) and (6),
which is twice continuously differentiable in the domain �. If the linear Laplacian operator is
applied to this function, that is,

∇2u(x, y) = b(x, y) in � (7)

we can see that Equation (7) implies that a linear equivalent to the non-linear equation (5) is pro-
duced. The solutions of Equations (5) and (6) can be established by solving this linear equation (7)
under the same boundary conditions (6). Obviously, the fictitious source distribution b(x, y) is
related to the unknown function u and an indirect process is described as follows to deal with this
obstacle.

3.2. The method of particular solution and radial basis function approximation

Since Equation (7) is linear (if the fictitious source term b(x, y) is viewed as a known function),
its corresponding solution can be divided into two parts, a homogeneous solution uh(x, y) and a
particular solution u p(x, y), that is

u = uh + u p (8)

Accordingly, they should, respectively, satisfy

∇2u p = b(x, y) in � (9)

and

∇2uh = 0 in � (10)

with modified boundary conditions

uh = uh = u − u p on �u (11a)

qh = q̄h = q̄ − qp on �q (11b)

where qh = �uh/�n and qp = �u p/�n.
From above equations we can see that, once the particular solution u p(x, y) fulfilling

Equation (9) is chosen, the homogeneous solution uh(x, y) is unique.
For the fictitious source distribution b(x, y), we assume [12] that

b(x, y)=
L∑
j=1

� j f j (x, y)= fa (12)
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where L is the number of interpolation points, f j denotes the basis function used for interpolation,
and � j represents the set of interpolating coefficients. Theoretically, any basis function can be
used for interpolation. However, radial basis functions have been found to be most suitable for
interpolating the fictitious source b(x, y) [13–15]. Radial basis functions usually are expressed in
terms of the Euclidian distance, so they can work well in any dimensional space and does not
increase the computational difficulty. In most numerical analyses, the commonly used RBFs are:

• linear polynomial: f j = 1 + r j ,
• thin plate spline (TPS): f j = r2j ln r j ,

• multiquadric (MQ): f j =
√
r2j + c2,

where r j represents the Euclidean distance of the given point (x, y) from a fixed point (x j , y j ) in
the domain of interest.

It is worth pointing out that the linear polynomial and TPS are piecewise smooth in the space,
while MQ is infinitely smooth. Due to the sensitivity to shape parameter c, MQ does not be
suggested to be used in the paper, although it can reach good accuracy in some cases.

At the same time, it is reasonable to assume

u p(x, y) =
L∑
j=1

� j û j = ûa (13a)

qp(x, y) = �u p

�n
=

L∑
j=1

� j q̂ j = q̂a
(
q̂ j = �û j

�n

)
(13b)

if a relationship between f j and û j such as

∇2û j = f j (14)

exists.
Since the fictitious source distribution b(x, y) is determined by the unknown function u, the

particular solution and its normal derivative cannot be directly determined using the formulation in
this section. However, this formulation still contributes to constructing the approximated expression
of the unknown function u.

3.3. Trefftz finite element method

In this section, we apply the theory of Trefftz finite element method [10] to the homogeneous linear
BVP consisting of Equations (10) and (11).

For a particular element, say element e, we assume fields:
(a) The non-conforming intra-element field:

ueh(x, y) =
m∑
j=1

Nej cej =Nece (15)

where ce is a vector of undetermined coefficients and m is its number of components. Nej are
homogeneous solutions to Equation (10) obtained by a suitably truncated T-complete solution.
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Figure 2. Typical two-dimensional four-node element with linear frame function.

For example,

Ne(2n−1) = rne cos n�e, Ne(2n) = rne sin n�e (n = 1, 2, . . .) (16)

for a two-dimensional problem with a bounded domain.
With regard to the proper number m of trial functions Nej for the element, the basic rule used

to prevent spurious energy modes is analogous to that in the hybrid-stress model. The necessary
(but not sufficient) condition is stated as

m�k − r (17)

where k is the number of nodal degree of freedom (DOF) of the element under consideration and r
represents the discarded rigid body motion terms. For instance, r = 1 in the Poisson equation and
r = 3 in the 2D linear elastic case.

Additionally, the corresponding outward normal derivative of ueh on �e is

qeh = �ueh
�n

=Tece (18)

where Te = �Ne/�n.
(b) An auxiliary conforming frame field: In order to enforce on uh the conformity, for instance,

ueh = u f h on �e ∩ � f of any two neighboring elements, we use an auxiliary inter-element frame
field ũh approximated in terms of the same DOF, d, as used with the conventional elements. In this
case, as standard HT element, ũh is confined to the whole element boundary, that is,

ũeh(x, y) = Ñede (19)

which is independently assumed along the element boundary in terms of nodal DOF de, where
Ñe represents the conventional finite element interpolating functions. For example, a simple inter-
polation of the frame field on the side 2–3 of a particular element (Figure 2) can be given in the
form

ũ23 = Ñ1u2 + Ñ2u3 (20)

where

Ñ1 = 1 − �

2
, Ñ2 = 1 + �

2
(21)
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(c) Jirousek’s variational principle [10, 16]: The variational functional � corresponding to the
whole system can be written as the sum of E element quantities �e as

�=
E∑

e=1
�e (22)

where E is the total number of elements, and �e is the variational functional related to a particular
element e, which is expressed as [10]

�e = − 1

2

∫
�e

(q21 + q22 ) d� −
∫

�eu

qhuh d� +
∫

�eq

(q̄h − qh)ũh d� −
∫

�eI

qhũh d� (23)

where �e stands for the eth element sub-domain, �e = �eu + �eq + �eI , while �eu = �e ∩ �u ,
�eq =�e ∩ �q , and �eI is the inter-element boundary of element e.

Integrating the domain integral term in Equation (23) by parts, we obtain

�e = 1

2

∫
�e

qhuh d� −
∫

�eu

qhuh d� +
∫

�eq

(q̄h − qh)ũh d� −
∫

�eI

qhũh d� (24)

Substituting Equations (15), (18) and (19) into the functional (24) produces

�e = − 1
2ce

THece + ce TSede + ce Tr1e + de Tr2e (25)

where

He = −
∫

�e

Te
TNe d�

Se = −
∫

�eq∪�eI

Te
TÑed�

r1e = −
∫

�eu

Te
Tuh d�= −

∫
�eu

TT
e (u − ûa)d�

= −
∫

�eu

TTu d� +
(∫

�eu

Te
Tû d�

)
a= r1e(a)

r2e =
∫

�eq

Ñe
Tq̄h d� =

∫
�eq

Ñe
T(q̄ − q̂a)d�

=
∫

�eq

Ñe
Tq̄ d� −

(∫
�eq

Ñe
Tq̂ d�

)
a= r2e(a)
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For the minimization of the functional �, using the necessary conditions:

��

�cT
=

E∑
e=1

��e

�cT
=

E∑
e=1

��e

�cTe
= 0 (26)

��

�dT
=

E∑
e=1

��e

�dT
=

E∑
e=1

��e

�dTe
= 0 (27)

we can obtain

−Hc + Sd + r1 = 0 (28)

STc + r2 = 0 (29)

where c and d are the total coefficients vector of T-complete functions interpolation and nodal
unknowns related to the full system, respectively. H=∑E

e=1He, S=∑E
e=1Se, r1 =∑E

e=1r1e and
r2 =∑E

e=1r2e.
Equations (27) and (28) lead to

c=Gd + g (30a)

Kd= p(a) (30b)

where G=H−1S, g=H−1r1, K=GTHG and p= − GTHg − r2.
Consequently, vectors c and d are expressed in terms of the unknown interpolation coefficient a

by means of Equations (30a) and (30b).
(d) Finding the discarded rigid body motion terms: It suffices to reintroduce the discarded modes

in the internal field ueh of a particular element and then to calculate their undetermined coefficients
by requiring, for example, the least squares adjustment of ueh and ũeh . In this case, these missing
terms can easily be recovered by setting for the augmented internal field

ueh(x, y)=Nece + c0 (31)

and using a least-square procedure to match ueh and ũeh at nodes of the element boundary �e:

Ne∑
i=1

(ueh − ũeh)
2|node i = min (32)

where Ne is the number of nodes for the element under consideration. The above equation finally
yields

Ne∑
i=1

(Nece + c0 − ũeh)|node i = 0 (33)

Then, we have

c0 = 1

Ne

Ne∑
i=1

(ũeh − Nece)|node i (34)
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3.4. Final non-linear equations

At an arbitrary point (x, y) in element e, the full solution can be expressed as

u(x, y)= uh |(x,y) + u p|(x,y) = û|(x,y)a+ N|(x,y)c + c0 =u(a) (35)

Furthermore, the related derivatives can also be obtained

u,x (x, y) = û,x |(x,y)a+ N,x |(x,y)c=u,x (a) (36a)

u,y(x, y) = û,y |(x,y)a+ N,y |(x,y)c=u,y(a) (36b)

u,xx (x, y) = û,xx |(x,y)a+ N,xx |(x,y)c=u,xx (a) (36c)

u,xy(x, y) = û,xy |(x,y)a+ N,xy |(x,y)c=u,xy(a) (36d)

u,yy(x, y) = û,yy |(x,y)a+ N,yy |(x,y)c=u,yy(a) (36e)

In order to determine the unknown coefficient a, it should be forced to satisfy the governing
Eqaution (2) at L interpolating points, that is

�(a)|(xi ,yi ) = g(xi , yi ) (xi , yi )∈�, i = 1, 2, . . . , L (37)

from which the unknown coefficients vector a can be determined by means of iterative algorithms.
In this paper, the Newton–Raphson iteration method appearing in Reference [17] is employed to
solve the non-linear equation (37).

It is clear that once all unknowns are determined, the distribution of field u at any point in the
domain can be calculated using Equation (35).

4. NUMERICAL IMPLEMENTATION

To demonstrate the proposed numerical model, two numerical examples are considered in this sec-
tion. In the process of computation, the classic RBF f = 1+r [14] is employed and it is convenient
to choose nodal points and the central points of elements as the interpolation points to simplify
preparation of input data. At the same time, the standard four-node quadrangular element is used to
perform the calculation. Consequently, the minimal number of termsm of T-complete trial functions
satisfying the necessary condition (17) is easily determined (m�4−1= 3). It should be mentioned
that, in the calculation, a zero initial guess as to the unknown interpolating coefficients is assumed
unless otherwise stated. In addition, the nodes and the central points of elements are chosen as the
interpolation points in the process of computation.

Due to the complication of minimal surface problems, the analytical solution is difficult to be
obtained. In the paper, in order to demonstrate the accuracy of proposed method, results obtained by
Matlab PDE toolbox are employed to provide rough comparison. Matlab PDE toolbox is designed to
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solve the linear and non-linear filed equations, for instance, Poisson equation, Helmholtz equation,
and so on, by means of finite element method with triangle element.

4.1. Example 1. A square domain with unit side length

As a first example, we consider the minimal surface problems in a unit square. The boundary
conditions are

u(x, y)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln
cos(y − 0.5)

cos(−0.5)
, 0�y�1, x = 0

ln
cos(y − 0.5)

cos(0.5)
, 0�y�1, x = 1

ln
cos(0.5)

cos(x − 0.5)
, 0�x�1, y = 1

ln
cos(−0.5)

cos(x − 0.5)
, 0�x�1, y = 0

(38)

so that the exact solution has an expression such as

u(x, y)= ln
cos(y − 0.5)

cos(x − 0.5)
(39)

which can be used to scale our numerical results.
In our analysis, the average relative error defined by

Arerr(u)=
√√√√∑M

j = 1(u j − ũ j )2∑M
j = 1 (u j )2

(40)

is used to study convenient performance, where u j and ũ j are respectively the analytical and
numerical results at the points considered and M is the total number of these points.

In the numerical analysis, four different meshes (2× 2, 5× 5, 8× 8 and 10× 10) are used to
model the square domain in order to assess the convergent performance of the proposed method.
441 points in total are selected to evaluate the Arerr(u). Figure 3 shows the variation of the average
relative error with the mesh density. It is evident from Figure 3 that the results show a good
convergent performance along with refinement of the element mesh. The numbers of iterations
corresponding to the four meshes are 1, 11, 8 and 7, respectively. Because the Newton–Raphson
iteration employed includes the line search process [17], which is used to obtain a descent direction,
there are many potential search substeps at each iteration.

The results of the effect of the number of T-complete trial functions are shown in Figure 4. It is
evident that the increase in m does not present obvious improvement in numerical results, but does
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Figure 3. Variation of the average relative error as the meshes refine with m = 5 (x, y, x2, y2, xy).

Figure 4. Effect of the number of terms m of T-complete trail functions when 10× 10 meshes are employed.

require increased computational quantity. Therefore the conclusion can be drawn that the proposed
method is not sensitive to number m when m�3.

Finally, the distribution of absolute error in u and the comparison of the minimal surface and its
isoline between the exact solution and numerical results are plotted in Figures 5 and 6 , respectively.
As expected, the results obtained from the proposed formulation show a good agreement with
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Figure 5. Absolute error distribution in u at the 441 test points uniformly distributed in the domain
when 10× 10 meshes are employed and m = 5.

analytical results. It is also found from the two figures that the results show fully symmetry about
the lines x = 0.5 and y = 0.5 and anti-symmetry about the line x = y and −y.

4.2. Example 2. Square membrane with side length 1

In this case, we again take into account a square membrane with boundary conditions as shown in
Figure 7, from which we can see that the boundary conditions are anti-symmetric with respect to
the diagonal x = y.

In computation, the square domain is discretized using 10× 10 meshes and the number of
terms of T-complete functions is taken to be 5. Converged results were achieved after 4 iterations.
In Table I, the comparison between the Matlab PDE toolbox and the present method is shown
and the similar results are observed. The corresponding minimal surface and isoline map are
shown in Figure 8. It is evident from Figure 8 that the antisymmetric feature about the diagonal
x = y is fully revealed and the values on the boundary exhibit good accuracy in comparison with
analytical values. For example, numerical results at the boundary points (0.55, 0) and (1, 0.55),
which are not at nodes, are 0.3049, 0.6950, respectively, and the related analytical values are 0.3025
and 0.6975.

4.3. Example 3. Two parallel rings with aligned centres

As the third example, we consider the ring domain shown in Figure 9. The inner and outer radii
are 0.5 and 1, respectively, and the related boundary conditions are 0.5 and 1, respectively.

In our computation, 72 four-node quadrilateral elements are used to discretize the entire ring and
five terms of T-complete functions are employed. In this example, we compare the results obtained
by means of Matlab PDE toolbox and the Hybrid Trefftz method, respectively, in Table II, from
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Figure 6. The analytical and approximated minimal surfaces and isolines in the square domain when
10× 10 meshes are employed and m = 5.

Figure 7. Geometry of the square domain and boundary conditions.
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Table I. Comparison between the Matlab PDE toolbox and the presented method.

x y Matlab PDE toolbox Trefftz FEM

0.9564 0.0480 0.9071 0.9123
0.5579 0.2370 0.2248 0.2552
0.7456 0.8416 −0.1391 −0.1522
0.0439 0.9519 −0.9002 −0.9042
0.9114 0.8441 0.1125 0.1166
0.6299 0.6545 −0.0280 −0.0320
0.5148 0.8310 −0.3834 −0.4264
0.8242 0.5850 0.3044 0.3377

Figure 8. The approximated minimal surface and isoline distribution in the square domain when
10× 10 meshes are employed and m = 5.

Figure 9. Hollow ring domain and the related boundary conditions.
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Table II. Comparison between the Matlab PDE toolbox and the presented method.

x y Matlab PDE toolbox Trefftz FEM

1.0000 0.0000 1.0000 1.0027
0.8708 0.1269 0.9276 0.9079
0.8139 0.2595 0.9111 0.8866
0.5562 0.6212 0.8968 0.8702
0.5992 0.4457 0.8270 0.7882
0.6374 0.2704 0.7818 0.7350
0.5994 0.1151 0.6804 0.6418
0.5000 0.0000 0.5000 0.5000

Figure 10. The approximated minimal surface and isoline distribution in the ring when
72 elements are employed and m = 5.

which we can see that the former has the similar results as the latter. Consequently, the distribution
of the minimal surface and the related isoline map are displayed in Figure 10 by means of the
proposed method.

5. CONCLUDING REMARKS

In this paper a hybrid Trefftz finite element method combining radial basis function interpolation
and the analogue equation method is developed to solve non-linear soap bubble problems. It is noted
that progress in the development of the non-linear Trefftz FEM is quite slow. This is due to the
lower computing efficiency in evaluating non-linear terms and body force terms. The introduction
of the analogue equation method and radial basis function can avoid the domain integral on these
terms and thus make computation more simple and efficient. The proposed method also displays
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the following main features:

• The complex variations of non-linear soap bubble problems are avoided, being replaced by
the simple Laplacian variation equation.

• The derivation of Equation (35) is fully independent of the specified soap bubble problems.
Thus the proposed method is versatile and can easily extend to other linear and non-linear
problems.

• All integrals are performed on the element boundary only.

Finally, it should be noted that the main aim of this paper is to present a new approach for solving
non-linear minimal surface problems, instead of developing a successful iteration algorithm. So,
for the strong non-linear cases, that is, the larger slope, the standard iterative algorithm maybe
is difficult to reach convergence results. In this case, the proper damping strategy, for example,
Armijo–Goldstein line search, and so on, usually are used to obtain a descent direction.
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