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Abstract

Much work on special elements that simplify geometrical modelling of structures containing holes, cracks and/ or inclusions has been
reported extensively in the literature. This paper presents a hybrid-Trefftz element containing elliptic hole formulated using Hellinger–Reissner
principle by employing trial functions based on the mapping technique and the Cauchy integral method. The element presented in this paper
could be regarded as an improved formulation over Piltner [Special finite elements with holes and internal cracks, Int. J. Numer. Methods Eng.
21 (1985) 1471–1485] element because the chosen trail functions in this paper have provided relatively more stable solutions. The use of the
element with other ordinary displacement-based finite elements has also yielded very accurate solutions even when very coarse meshes relative
to the size of the elliptic hole have been used.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Structural components containing cracks, voids, inclusions,
or other defects, are usually analysed using very complex, fine
mesh especially around the defects in the conventional finite
element analysis. To effectively describe singularity of stress
fields at the crack-tip, commercial finite element programs pro-
vide singular elements formulated by collapsing rectangular el-
ements into triangular shape for 2D analysis and rectangular
prism elements into triangular pyramid shape for 3D analysis.
Depending on the anticipated state of stress singularity around
the crack-tip, mid-side nodes in the collapsed elements could
either be moved to the quarter point position closer to the crack-
tip or left unchanged in their original location.

With the objective of making the meshing simpler especially
around the crack or other defects, several special elements that
contain at least a single defect have been formulated and pre-
sented widely in the literature [1–12]. A comprehensive review
of all these contributions is beyond the scope of this paper; only
a few selected papers are reviewed here.
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Using the variational principle, complex variable technique,
and mapping function Tong [1] formulated several superele-
ments based on hybrid element technique. As the stress sin-
gularity at the crack-tip has been included in the formulation
of these elements, the stress intensity factors were reported di-
rectly from the nodal displacements, thus eliminating the use
of any weak forms such as the J-integrals for this purpose.

Karihaloo and Xiao [2] have improved the superelements for-
mulated in [1] by using the modified Hellinger–Reissner prin-
ciple and hybrid element technique. The element was proved to
efficiently determine the coefficients of higher order terms of
the elastic crack-tip asymptotic fields that are important for the
evaluation of the crack behaviour of elasto-plastic structures
in addition to the SIF. It was shown that the results converge
rapidly with p-refinement of the improved hybrid crack element
and the h-refinement of the remaining regular elements.

Zeng et al. [3] also extended the work of Tong [1] to the case
in which the crack faces were subjected to pressure loading
using a simpler formulation without mapping function. They
also presented a hybrid element containing an internal crack by
statically condensing two of the crack-tip elements. Interaction
between macrocrack tip and microcracks has been examined
using this extended formulation.

http://www.elsevier.com/locate/finel
mailto:m.dhanasekar@cqu.edu.au


M. Dhanasekar et al. / Finite Elements in Analysis and Design 42 (2006) 1314–1323 1315

Piltner [4] presented a classical paper on special elements
containing holes (circular and elliptical) and internal cracks.
The importance of this contribution could also be inferred by re-
viewing the discussion of Piltner [5] on another paper that pro-
vided an element with central circular hole. Variational princi-
ples were used for the formulation of ordinary displacement and
hybrid finite elements. Similar to T-complete functions (those
functions that satisfy the problem domain differential equations
exactly and the element boundary conditions approximately)
used in the Trefftz finite element formulation, trial functions
were used by Piltner [6] in the formulation of the special ele-
ments containing holes and cracks. These trial functions were
chosen in such a way that the internal problem domain and lo-
cal boundary conditions (for example, traction free conditions
at the surface of holes) were satisfied as a priori. Formulation
of eight and 16 nodded special elements containing elliptic
holes and their stiffness matrices and load vectors were pro-
vided explicitly. Methods of construction of special trial func-
tions for circular and elliptic holes were provided. The trial
functions were typically chosen as a complex Laurent power
series, which become sensitive when the exponent was set as a
large number. Examples are provided in the paper (Section 3)
that illustrates the sensitivity of Piltner elements to higher order
terms. The hybrid-Trefftz element provided in this paper was
also formulated similar to that of the Piltner [4] approach, but
with a different trial function that exhibits good convergence
characteristics with the increase in the number of series terms
of trial function.

Method of constructing trial functions for the indirect types
of Trefftz finite element formulation has been provided in detail
by Kolodziej and Uscilowska [13]. A list of trial functions that
describe the problem domain and local boundary conditions
exactly has been provided in the paper and the efficiency of
those functions was illustrated through three Trefftz procedures,
namely the collocation, least square and Galerkin approaches.
Similar contribution has been provided by Piltner [6]. More
detailed description of Trefftz finite element is widely available
in recent literature and some introduction to this method could
be found in [9,14].

Freitas and Ji [15] presented an element model for crack
problems based on fundamental conditions of equilibrium,
compatibility and elasticity without associating energy equa-
tions. Their model did not include a distinct node set and as
a consequence was not regarded as a superelement similar to
that of Tong et al. [1]. Their model, however, was regarded as
a hybrid-Trefftz finite element formulation because the local
singular stress field was enforced accurately whilst the inter el-
ement compatibility was only approximately satisfied through
selected functions. It was shown that reasonable results were
obtained using coarse meshing using this element.

Special elements with other defects were then constructed.
Zhang and Katsube presented an n-sided polygonal hybrid ele-
ment with a rigid circle inclusion in [10] and the same element
with an elastic circle inclusion in [11]. Using the elements they
studied stress concentration in heterogeneous materials with
randomly dispersed inclusions. Special 3D hybrid stress ele-
ments with traction free conditions on one face was developed

by Tian et al. [12]; this element might not, however, reduce the
complexity of meshing like the other special elements reviewed
in this section.

The aim of this paper is to provide a method for the for-
mulation of hybrid-Trefftz element containing an elliptic hole
by employing the mapping technique and the Cauchy integral
method. New trial functions that provide accurate solutions,
and stable results for high-order series terms, are derived. Sev-
eral numerical examples of problems subjected to direct tensile
stress field as well as complex bending stress field are provided
to illustrate the robustness of the element presented in this pa-
per. The formulation is implemented into the ABAQUS finite
element package as a user-defined element.

2. Formulation

Consider a plane element containing an elliptic hole as shown
in Fig. 1. The element domain � is bounded by boundaries Cs

and Cu, and the boundary displacement ũi is prescribed along
Cu, and external force t̃i is prescribed along Cs . Following the
Hellinger–Reissner variational principle in the absence of body
force, one can define the hybrid variational functional function
� as [1]

� =
∫

Cu

(ũi − ui)ti ds −
∫

Cs

ui t̃i ds

+ 1

2

∫
�
[�ij (ui,j + uj,i) − Sijkl�ij�kl] d�, (1)

where ui , ti , �ij and Sijkl denote the displacement, traction,
stress and the compliance coefficients. ũi is the same for two
adjacent elements over the common boundaries. Eq. (1) can
be alternatively expressed in the constitutive and equilibrium
equations as shown in the following equations within the ele-
ment.

1
2 (ui,j + uj,i) = Sijkl�kl , (2)

�ij ,j = 0. (3)

Fig. 1. A finite element with an elliptic hole subjected to displacement and
stress boundary conditions.
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The external force boundary condition along boundary Cs

and the displacement boundary condition along boundary Cu

are

ti = t̃i , (4)

ui = ũi . (5)

Constructing the elliptic-hole element is to calculate the ele-
ment matrix from the functional (1) by assuming ui , �ij and ũi

in terms of proper generalised co-ordinates and interpolation
functions. These four quantities can be assumed as independent
of each other. However, if they are chosen in such a way that
some of the Euler equations are satisfied exactly, the calcula-
tion process of the element matrix will become much easier.

For the elliptic-hole element, if the approximating functions
for stress and displacement satisfy (2), (3) and the traction-free
condition along Cs , the hybrid variational functional in (1) can
be expressed in terms of boundary displacement, stresses and
displacement in domain as

� =
∫

Cu

ũi�ij vj ds − 1

2

∫
Cu

ui�ij vj ds (6)

or in matrix form,

� =
∫

Cu

tTũ ds − 1

2

∫
Cu

tTu ds (7)

in which

t =
[
t1
t2

]
=

[
�xxvx + �xyvy

�xyvx + �yyvy

]
, u =

[
u1
u2

]
,

ũ =
[
ũ1
ũ2

]
. (8)

It can be seen from Eq. (7) that only line integration along the
displacement boundary Cu is required to be evaluated, which
makes the calculation of the element matrix much simpler.

2.1. Element stiffness matrix

We assume that the stress and displacement approximating
functions in term of generalised co-ordinates � (will be derived
in the next section) are known. One can express displacement
in a matrix form

u = U� (9)

and by substituting the stress approximating function into
Eq. (8), the boundary traction is expressed as

t = R�. (10)

The boundary displacement ũ along Cu is separately assumed
as follows:

ũ = Lq, (11)

where L denotes the interpolation matrix relating the boundary
displacement to the node displacement vector q.

Substitution of Eqs. (9)–(11) into Eq. (7), the functional is
re-expressed in terms of generalised co-ordinates and node dis-
placements

� = �TGq − 1
2�TH�, (12)

where

G =
∫

Cu

RTL ds, (13)

H = 1

2

∫
Cu

(RTU + UTR) ds. (14)

The stationary value of � in Eq. (12) with respect to � yields
the following relation:

� = H−1Gq. (15)

Substituting Eq. (15) into Eq. (12), one obtains

� = 1
2 qTkq, (16)

where

k = GTH−1G (17)

is the element stiffness matrix for the elliptic-hole element.

2.2. Trial function construction

In this section, we will show the process of constructing
trial functions for stress and displacement, which satisfy the
constitutive, equilibrium equations and external force boundary
conditions.

Employing the complex potentials �(z) and �(z) [16], the
stress and displacement are given as

�xx + �yy = 2[�(z) + �(z)],
�yy − �xx + 2i�xy = 2[z�′(z) + 	(z)], (18)

2G(ux + iuy) = 
�(z) − z�(z) − �(z), (19)

where the over bar represents the conjugate of the complex
function; and �(z)=�′(z), 	(z)=�′(z), and 
=(3−�)/(1+�)
for plane stress, 
 = 3 − 4� for plane strain, in which � and G
are Poisson’s ratio and the shear modulus of the material, re-
spectively. For any set of complex potentials �(z) and �(z), the
stress and displacement satisfy the constitutive and the equiva-
lent equations within the elliptic-hole element. We have to seek
for a set of potential functions to meet the traction-free condi-
tion along the boundary of the elliptic hole.

To construct the complex potential functions, we can decom-
pose each of the two functions �(z) and �(z) into two parts: a
primary part and a complementary part as

�(z) = �p(z) + �c(z),

�(z) = �p(z) + �c(z). (20)
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Fig. 2. Primary and complementary parts of the elliptic-hole element.

Fig. 3. Element geometries in the z and the  planes ( = � + i�).

The primary part corresponds to the element without the elliptic
hole as shown in Fig. 2. Its approximating function can be given
in the following form:

�p(z) =
N∑

j=1

Ãj z
j ,

�p(z) =
N∑

j=1

B̃j z
j , (21)

where Ãj and B̃j are unknown complex constants. Ã1 is a real
constant because its image part has no contribution to stress. In
Eq. (21), no terms corresponding to negative order of z and no
constant terms are included because negative order terms give
singular value of displacement, while the constant terms have
no contribution to stress. The primary part induces stress at the
location of the elliptic-hole edge as �nn + i�nt .

The complementary potential functions, −(�nn + i�nt ), cor-
respond to the prescribed traction along the boundary of the
elliptic hole of the element under consideration. Thus, the com-
plementary part is related to Ãj and B̃j only, and superposition
of the two parts will satisfy the traction-free condition along
the hole boundary.

To formulate the complementary potential functions, the
mapping function shown in Eq. (22) is used, which maps

the element in the z-plane onto exterior of an unit circle in the
-plane shown in Fig. 3

z = �() ≡ E0 + E1/, E0 = (a + b)/2, E1 = (a − b)/2,

(22)

where a and b denote semi-axes of the ellipse.
On the -plane, stresses are expressed as

�xx + �yy = 4Re

[
�′()
�′()

]
,

�yy − �xx + 2i�xy = 2

�′()

[
�()

{
�′()
�′()

}′
+ �′()

]
. (23)

The traction-free boundary condition along the unit circle is
expressed as

�(�) + �(�)

�′(�)
�′(�) + �(�) = 0. (24)

On the -plane, the potential functions are still given in two
parts

�() = �p() + �c(),

�() = �p() + �c() (25)

in which the primary functions are rewritten in term of another
set of unknown complex constants, Aj and Bj , which is linearly
related with Ãj and B̃j

�p() =
N∑

j=1

Aj [(E0)
j + (E1/)

j ],

�p() =
N∑

j=1

Bj [(E0)
j + (E1/)

j ], (26)

where N is the number of series terms; Aj and Bj make up
the generalized co-ordinates as

� = [Ar
1, A

r
2, . . . , A

r
N, Ai

2, A
i
3, . . . A

i
N, Br

1, B
r
2, . . . , B

r
N ,

× B i
1, B

i
2, . . . B

i
N ]T (27)

where Ar
j , Ai

j , Br
j and B i

j are the real and imaginary part of
Aj and Bj , respectively.
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Fig. 4. Family of hybrid elements; (a) eight-node element, (b) 16-node element, (c) 24-node element.

In general, trial functions provide more accurate solutions
when the series terms N (in (26)) is increased. However, as
found in [4], the solutions have become unstable when more
terms were selected. Decomposing the trial functions into two
parts as in (25) is shown to make the solution stable with the
increase in series terms in this paper (see Section 3).

For the complementary functions corresponding to each gen-
eralized co-ordinate, we try to find out a solution satisfying the
traction boundary condition −(�nn+ i�nt ) along the unit circle.
The complementary functions corresponding to each general-
ized co-ordinate are not required to satisfy the displacement
boundary condition along the external boundary because the
displacement boundary condition can be satisfied by superpo-
sition of solutions of all the generalized co-ordinates. Thus, we
assume the two complementary potential functions are analytic
functions in the exterior of the unit circle. A substitution of
Eqs. (24) and (25) into Eq. (23) yields

�p(�) + �c(�) + �(�)

�′(�)
[�′

p(�)

+ �′
c(�)] + �p(�) + �c(�) = 0. (28)

Multiplying both sides of Eq. (28) by d�/[2�i(� − )] and
carrying out all the Cauchy integrals along the unit circle, �c()
is derived as

�c() = −
N∑

j=1

Aj

(
E1



)j

−
N∑

j=1

Bj

(
E0



)j

+
�()

∑N
j=3Ajj

(
E0


)j + E1
E0

[A1(E0/)2 + 2A2(E0/)3]
E1 − E0/

+
[1 + (E1/E0)

2]∑N
j=3AjjE

j
0

(
E1
E0

)(j−3)/2 + E1(A1 + 2A2
√

E0E1)

2(
√

E0/E1 − )

+
[1 + (E1/E0)

2]∑N
j=3Ajj (−1)jE

j
0

(
E1
E0

)(j−3)/2 − E1(A1 − 2A2
√

E0E1)

2(
√

E0/E1 + )
. (29)

All the terms in (29) are analytic functions, they give normal
values of stresses and displacements along the element bound-
aries, which makes the methods stable for more series terms.

The complementary potential function, �c(), can be derived
similarly as �c(). Alternatively, the whole potential function

�() can be directly derived by analytic continuation along the
traction-free boundary from Eq. (23) as the following simple
form:

�() = −�(1/) − �(1/)

�′()
�′(). (30)

Generally speaking, most of plane elements used in finite el-
ement software have displacement fields over the boundary
of the element expressed in terms of polynomials; e.g. lin-
ear for edges with two nodes, quadratic for edges with three
nodes, etc.

Therefore, the interpolation function matrix L in Eq. (11)
should be assumed in such way that the displacement on the
element boundaries varies linearly between any two adjacent
nodes, or quadratically between a set of three constructive
nodes, etc. to ensure the same displacements are obtained along
the common boundary of two adjacent elements.

Six types of element were constructed as follows: eight-
node, 16-node and 24-node elements with linearly varying
displacement between two neighbouring nodes, and eight-
node, 16-node, 24-node elements with quadratically varying
displacement as shown in Fig. 4. The first three elements were
constructed to match the standard three-noded triangular el-
ements or the four-noded quadrilateral elements that exhibit

linear displacements along their element boundaries. The last
three elements were constructed to match the standard six-node
triangular or eight-node quadrilateral elements. The elements
with more nodes were formulated to enhance meshing for the
simulation of bigger holes, while the elements with fewer nodes
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were constructed for simulating smaller holes compared to the
surrounding elements.

For the elements with linearly varying displacement, one can
assume the displacement between the ith and (i + 1)th nodes
varies as

ũ =
[

1 − �, 0, �, 0
0, 1 − �, 0, �

] ⎧⎪⎨
⎪⎩

ui

vi

ui+1
vi+1

⎫⎪⎬
⎪⎭ ≡ Lq, (31)

where � = s/ l in which l and s are the distance between the
two nodes and the distance from the ith node, respectively.

For the elements with quadratically varying displacement,
one can assume the displacement between the ith and (i + 2)th
nodes varies as

ũ =
[

(1−�)(1−2�), 0,4�(1−�), 0, �(2� − 1), 0
0, (1−�)(1−2�), 0, 4�(1−�), 0, �(2� − 1)

]
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ui

vi

ui+1
vi+1
ui+2
vi+2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

≡ Lq, (32)

where � = s/ l in which l and s are the distance between
the ith and the (i + 2)th nodes and the distance from the
ith node, respectively. i = 1, 3, 5, 7 for the eight-node ele-
ment, i = 1, 3, 5, 7, 9, 11, 13, 15 for the 16-node element, and
i = 1, 3, 5, . . . , 23 for the 24-node elements.

3. Validation of the hybrid-Trefftz element

With a view to validating the element formulated in Section 2,
a single element subjected to uniform elongation of a prescribed
value was considered. Fig. 5 shows a square element of size
2we (we = 0.7 mm) containing an elliptic hole of major axis
diameter 2a (a = 0.07 mm) and minor axis diameter 2b (b =
0.5a) subjected to a vertical elongation v = 0.5 × 10−4 mm.
The maximum size of the elliptic hole was only 10% of the size
of the element in this problem. The material properties were
assigned as E = 200 GPa, and � = 0.3.

The hoop stress at point P on the major axis (Fig. 5) was
calculated. Several trial solutions were obtained by assum-
ing various values for N (shown in filled circle in Fig. 6) in
Eq. (29). The result exhibited some oscillation for N values
below 12 (see the line with dots shown in Fig. 6); with further
increase in values of N , stable solutions were obtained. The
problem was also solved using the formulation provided by
Piltner [4]. The results are shown as line with starts in Fig. 6.
It can be seen that this method has provided unstable solution
for N values greater than or equal to 14.

To examine the effect of ratio a/we (see Fig. 5) on the per-
formance of the special element, the above problem was solved
by setting a = 0.35 mm (which is 50% of the size of the el-
ement); all other parameters were kept the same as the above
problem. The problem was also solved using Piltner method
[4]. The variation of the hoop stress at point P with the increase
in the value of N is shown in Fig. 7.

Fig. 5. An eight-noded hybrid element containing elliptic hole subjected to
uniform elongation.

Fig. 6. Convergence of vertical stress at A with the increase in value of N

(relative size of hole to element size = 10%).

Fig. 7. Convergence of vertical stress at A with the increase in value of N

(relative size of hole to element size = 50%).
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Once again it can be seen that Piltner’s [4] formulation be-
came unstable for values of N more than 27 whilst the result
was generally exhibiting stable convergence pattern with the
increase in value of N for the element presented in this paper.

The stable convergence of the results presented in this section
could be regarded validating the formulation to a limited extent.
Convergence tests similar to that provided by Karihaloo and
Xiao [2] were carried out to further validate the formulation
but not presented here to conserve space and to illustrate the
application of the element to more complex problems.

4. Application of the hybrid Trefftz to classical problems
of elasticity

In this section, four numerical examples are presented to
show the accuracy, efficiency, and mesh dependency of the el-
ement formulated in Section 2. The first example deals with an
infinite plate containing a crack solved by Piltner [4]. The sec-
ond example presents the accuracy of the proposed elements
using the analytic solution for a problem of an infinite plate
containing an elliptic hole subjected to a far-field uniform ten-
sion. In the third example a rectangular plate containing elliptic
hole was analysed, and the results are compared with that pro-
vided by the conventional finite elements in ABAQUS. In the
fourth example, mesh dependency of the elliptic-hole element
is discussed. The materials for all the four examples were as-
sumed to remain elastic with the Young’s modulus of 200 GPa
and Poisson’s ratio of 0.3.

4.1. Example #1

The first numerical example considers the problem presented
by Piltner [4]. An internal crack of 4 mm long at the centre
of a square plate of size 100 mm subjected to uniform vertical
uniaxial tensile loading P (P =1). The exact value of the Mode
I SIF of the crack for this problem is 1.4142. The result reported
by Piltner [4] is 1.4164.

A finite element mesh same as that generated by Piltner
[4] was employed to calculate SIF of the crack as shown in
Fig. 8. The 16-node element with quadratic displacements (with
the number of series terms N = 15) was used in the modelling.
The problem was also solved by the method provided by Pilt-
ner [4]; in this case the number of series terms were chosen as
15 and 4 (to illustrate the effect of these choices).

The SIF for the right crack-tip was calculated from

KI − iKII = 2�′
c()=1√

a
. (33)

The SIF calculated from all these analyses is shown in Table 1.
The calculations were repeated by modifying the crack length
as 0.4 mm (by keeping all other parameters the same) and the
results are also presented in Table 1.

It can be seen from the results shown in Table 1 that the
current element provides accurate results that conform to the
analytical solutions well. Piltner [4] method also predicted the
SIF fairly well when the number of series terms was chosen

Fig. 8. Mesh for the internal crack element.

Table 1
SIF at the tip of a crack in a square plate

Crack Current element Piltner [4] element Piltner [4] element
length (mm) (N = 15) (N = 4) (N = 15)

KI KII KI KII KI KII

4.0 1.4141 0.0000 1.4163 0.0000 2.4855 0.0288
0.4 0.4465 0.0000 0.4471 0.0000 1.2099 0.0014

appropriately. However, if the rule given in Piltner [4] was used
for the selection of the number of terms based on the number
of nodes of the element (in this case for an eight-node element,
the terms required was 15), unacceptable results were predicted
(both for KI and KII).

4.2. Example #2

In the second example as shown in Fig. 9, a large square plate
with an elliptic hole is subjected to remote uniform tensile stress
�0. The ratio between the semi-axis of the elliptic hole and the
width of the plate was set as a/w = 0.05. The ratio between
the two semi-axes was set as a/b = 2. The mesh for the hybrid
element calculation is shown in Fig. 9 in which one quadratic
eight-node hybrid element has been used. Together with the
analytic solution, the normalised stress along the edge of the
hole from point A to point B is plotted against the normalised
hole boundary length in Fig. 10 (l0 is the full circumferential
length of the elliptic hole). From the figure it can be seen that
the element formulated in this paper produces accurate results.

The hoop stress concentrations at point A are also considered
for different ratios of b/a as listed in Table 2. It can be seen
from Table 2 that the current element produces accurate results
for all the ratios of b/a as the errors remained below 5%.
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4.3. Example #3

The third example considered a rectangular plate (width w

and length 2w) with an elliptic hole at its centre subjected to
uniform tension along the vertical direction. The ratio of a/w

was set as 1
8 . The inclination angle of the elliptic hole to the

horizontal axis was defined as �. Fig. 11 shows the meshes for
the current element and that used in ABAQUS simulation. The
linear 16-node hybrid-Trefftz element was used. The stress con-
centration coefficients at points A and B were calculated from

Fig. 9. A large square plate subjected to tension; (a) mesh for current element,
(b) the current element.

Fig. 10. Normalised hoop stress varies against normalised length.

Table 2
Hoop stress concentration for different ratios of b/a

b/a 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.01

Analytic 3 3.22 3.50 3.86 4.33 5.00 6.00 7.67 11 21 41 201
Current 2.87 3.07 3.33 3.67 4.13 4.78 5.75 7.38 10.62 20.37 39.82 195.6
Error (%) 4 5 5 5 5 4 4 4 3 3 3 3

Fig. 11. Meshes for hybrid element and the elliptic hole; (a) mesh for current
element, (b) mesh for conventional finite element.

both analyses and presented in Fig. 12 as a function of the incli-
nation angle �. From Fig. 12 it can be seen that the two results
agree very well with each other. The good coincidence demon-
strates the accuracy of the current element. However, as shown
in Fig. 11, the mesh is much simpler when the current element
has been used. Furthermore, when the inclination angle of the
elliptic hole was changed, the mesh for the current element was
not changed at all—thus saving much time and effort in mod-
elling compared to conventional finite element modelling.

4.4. Example #4

Although the special hybrid element presented in this paper
offers much convenience in meshing, one still has to take care
in not violating certain norms of modelling—in particular, the
ratio a/we in which a is the major semi-axis of the elliptic hole
and we is the width of the element (assuming a and we are
located along the same axis). To examine the norm, the problem
presented in example #1 was re-analysed; the elliptic hole size
a was kept constant whilst the element size we was varied. The
elliptic hole was located at the centre of the element and its axis
was kept parallel to the square edge of the element. A square
eight-node element was used in the analysis.
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Fig. 12. Variation of hoop stress concentrations due to the inclination angle �.

Fig. 13. Variation of relative error in hoop stress concentration against the
ratio a/we.

Fig. 14. Meshing schemes for four-holed rectangular plate subjected to bending: (a) mesh using square 16-node hybrid-Trefftz element; (b) mesh using quadratic
conventional finite elements.

This classical problem has an analytical solution of the high-
est stress concentration at point A, whose value is 5. Inciden-
tally point A suffers from maximum possible error in the cal-
culated hoop stress, as this point is the closest to the sides of
the hybrid-Trefftz element. Thus, we use the hoop stress con-
centration at point A to check the element size sensitivity. Ten
different size ratios of a/we were considered for the hybrid-
Trefftz element. The stress concentration coefficients at point
A are shown in Fig. 13. It can clearly be seen that the size of
the current element (relative to the size of the elliptic hole) in-
fluences the result. For the problem considered, it can be con-
cluded that as long as the ratio a/we is kept lower than 0.5, the
error in stress concentration factor will remain below 5%. Ob-
viously, when modelling a hole of a defined size, it is prudent
to choose the size of the hybrid-Trefftz element at least twice
as that of the size of the hole.

It is worthy to note that for accurate results, when the cur-
rent element is used to simulate bigger size holes, the hybrid
element size should be of at least twice of their size, to keep
the size ratio a/we as small as possible. If all elements (or-
dinary finite elements) are kept the same size of the current
element, accuracy of the solution would be adversely affected;
this requires small size ordinary elements surrounding a big
size hybrid-Trefftz element. Adding more nodes to the sides
of the hybrid-Trefftz element meets both of these conflicting
requirements.

5. Application of the hybrid-Trefftz element to bending
problems

A simply supported rectangular steel plate (E=200 GPa and
�=0.3) of depth =200 mm, span=400 mm, thickness=15 mm,
containing four circular holes of diameter 30 mm each sub-
jected to four point bending (Fig. 14) was analysed using the
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Fig. 15. Stress state around the hole.

hybrid-Trefftz element presented in this paper and the conven-
tional finite element method. The mesh shown in Fig. 14a was
used for the analysis using current element and the mesh shown
in Fig. 14b was used for the analysis using conventional finite
element method.

The hoop stress and inplane shear stress around one of the
holes adjacent to the vertical axis of symmetry is plotted as
a function of the normalised circumferential length of that
hole in Fig. 15. The results obtained from the conventional fi-
nite element (ABAQUS) FE solution are also shown in this
figure.

It can be seen from Fig. 15 that the results predicted by the
current method in spite of using coarser mesh has provided
good result which agree well with the ABAQUS prediction.

6. Conclusions

A family of hybrid-Trefftz elements containing elliptic hole
has been formulated using the complex variable technique and
the Hellinger–Reissner variational principle in this paper. The
elements have different number of nodes which lead to linearly
and quadratically varying displacement functions along their
boundary to match with different surrounding standard finite
elements.

Through considering a series of numerical examples it has
been shown that the current element can be considered as an
improvement over the element presented by Piltner [4]; and
can predict SIF and stress concentration factors effectively by
using relatively coarse meshes. It has also been shown that the
hybrid-Trefftz element should be at least twice as large as the
size of the embedded hole for accurate determination of stress
concentration factor.
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