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Abstract. The cvolution process of an initially homogeneous bone structure under axial and transverse

ads is investigated in this paper. The extemnal loads include axial and external lateral pressure, electric,
-1agnetic and thermal loads. The theoretical predictions of evolution processes are made based on the
zdaptive clasticity formulation and coupled thermo-magneto-electro-elastic theory. The adaptive elastic
~xdv, which s a model for living bone diaphysis, is assumed to be homogeneous in ils anisotropic
~raperties and its density. The principal result of this paper is detenmination of the evolution process of
e initiglly homogengous body 1o a transverscly inhomogencous body under the influence of the
—homogeneous stress state.
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1. Introduction

Adaptive bone remodelling under multi-field loads is attracting widespread attention from
~iological scientists and mechanical engineers. The remodelling process is the mechanisms by
which bone adapts its histological structure to changes in long term loading. Since bone tissues
-smodel themselves without the control of the nervous system (Hert er o/, 1971), it is quite rational
> assume the presence of an unknown mechanism in bone tissues which can assess the surrounding
~echanical environment and comtrol bone formation and resorption. The bone remodelling
—echanism has been investigated by many authors (Cowin and van Buskirk 1978, 1979, Cowin and
Tiroozbakhsh 1981, Cowin and Hegedus 1976, Gjelsvik 1973a,b). Many hypotheses as to the nature
ot this mechanism have been proposed, inchiding the theory of adaptive elasticity (Cowin and van
Buskirk 1978, 1979, Cowin and Firoozbakhsh 1981, Cowin and Hegedus 1976), piczoelectric
heory (Gjelsvik 1973a,b), hydrostatic theory (Jendrucko et a/. 1976), fatigue damage theory (Martin
and Bur 1982, Bur et of. 1985, Carter 1984) and the transport of growth factors theory (Takakuda
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1993). Among thesc theories, the theory of adaptive clasticity is the most popular and widely
applied in biomedical engineering, The adaptive elastic theory does not, however, take into account
the piezoelectric or piezomagnetic properties of bone tissucs. Investigation of some tissues such as
living bone and collagen has shown thesc materials to be piezoelectric (Fukada and Yasuda 1957,
1964, Williams and Breger 1974, Guzelsu 1978, Johnson ef /. 1980, Demiray 1983, Qin and Ye
2004) and indicates that the piezoelectric properties of hone play an important role in the
development and growth of remodelling of skeletons. Evidences (Bessett er o/ 1982, Mcleod and
Rubin 1992, Giordano and Battisti 2001) showed that the pulsed extremely low frequency
clectromagnetic field can stimulate the bone tissue to remodel itself. This feature was widely
applied to cure the skeletal disease such as osteoporosis, fracture and nonunion. However the
behaviour of bone remodelling under multi-field loads is still less investigated. To the authors’
knowledge, the theoretical study of bone remodelling during the past decades has been limited to
elasticity. Recently, Qin and Ye (2004) and Qin ef al. (2005) extended previous study to include
piezoelectric effects.

The purpose of this paper is to extend previous results to include piezomagnetic effects and to
investigate how the magnetic field and further the coupled multi-field can simultaneously affect
bone remodelling and the evolution process of an initially homogeneous bone material subjected to
axisymmetric external loads which generate an inhomogeneous stress, electric and magnetic fields.
These external loads include axial and external lateral pressure, ¢lectric, magnetic, and thermal
loads. Tt should be mentioned here that one of the thermal loads a person may experience is the
fluctuation of body temperature. However, how this may affect bone remodelling process is still an
open question. As an initial investigation, the purpose of this study is to show how a bone may
response to thermal and multi-field loads and to provide information for possible use of imposed
extemal temperature and/or electrical fields in medical treatment and controlling healing process of
injured bones. The bone structure is simulated by a hollow eircular cylinder composed of linearly
thermomagnetoelectro-clastic materials. The theoretical predictions of evolution behaviour are based
on the extended theory of adaptive elasticity and thermomagnetoelectroelastic constitutive
formulation. According to the theory, an inhomogeneous thermomagnetoelectroelastic field will
result in an inhomogeneous bone structure. The evolution of an initially homogencous body to an
inhomogencous one under the influence of an inhomogeneous stress field is illustrated graphically.
The values of some constants needed for the adaplive elastic model are available in the literature,
for example, the elastic moduli of cortical bone and the variation of moduli with bulk density. The
values of other constants, such as the remodelling rate coefficients, are not known and they are
estimated in the present work by physical arguments and by imposing the restriction that the
remodelling time constant be of the ordet of 100 days.

2. Equation for internal bone remodeling

The equations of the theory of adaptive elasticity of Cowin and Hegedus (1976) are used and
extended to include piezoelectric and piezomagnelic effects in this study. The remodelling rate
equation in cylindrical coordinates is

6= A () +ANE, + A (e)E. + GF(e)H, + GX(e)H,

+ A::,.(e](.'i'“_ +8pp) + A.(e)s.. + A,-(€)s,. (1)
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where e is a chapge in the volume fraction of bone matrix material from its reference vaiue, say &;
47te), A5 (e), G (e) are A;(e) material coefficients dependent upon the volume fraction e. s;, E;,
H. are components of strain, electric field and magnetic field, respectively.

3. Analytical solution to the remodeling equation of a homogeneous hollow circular
cylindrical bone

3.1 The linear theory of thermomagnetoelectroelastic sofids

Consider a thermomagnetoelectroelastic bone cylinder subjected to axial-symmetric axial and
=xternal lateral pressure, electric, magnetic, and thermal loads. For simplicity, the cylindrical
coordimate system is used the analysis. The axial, circumferential and normal to the middle-surface
~oordinate length coordinates are denoted by z, € and r, respectively. With the cylindrical coordinate
svstem, the constitutive equations of a thermomagnetoelectroelastic solid can be given by Gao and
Noda (2004),

a,

r

r = CLiSy + ClaSgp+ Ci38z— e E.— o H. - BT

Ogp = CiaSp+ Cp S+ €38, — e E.— o H. - BT

O.. = €3S, + C3Sop+ €3S — ek, — oy H, - BT
O = CyuS.— elﬁ‘Er - (IfiHr
D, = eyss,.+xE +dH, (2)

.L)_. = f‘.“j;(s,.., *+ 'SHF.?\} + €135, an A'_»,E: + (isi!._. —[)_;T

B, = ayss.,+dE, + 1,H,

]

B. = o3,(s,, + 85gp) + O35, + dyE, + s H, —m, T

h, = kg, h =kag.

where oy, D B; and #; are components of stress, electrical displacement, magnctic induction and
heat flow, respectively; ¢; are elastic stiffness; ¢ are piezoelectric constants; ¢; are piezomagnetic
constants, &, are dielectric permitivities; o; are magnetoelectric constants; z; are magnetic
~ermeabilities; T denotes temperature change; py is a pyroelectric constant; m1; is a pyromagnetic
constant; 3 are stress-temperature coefficients; g; are heal intensity; and % are heat conduction
coefficients. The associated strains, electric fields, and heat intensities are respectively related to
displacements w,, electric potential @, magnetic potential ¥ and temperature change 7T as

u,
Sep = Moy Spg= — S, = Uy S =8, YU, E, = —@,

(3)
EZ =@ H, = ¥ H.= ~Wa = —-T__,., 4= = "'T,:

For quasi-stationary behaviour, in the absence of heat source, free electric charge, electric current,
and body forces, the thermopiczoelectricmagnetic theory of bone is completed by adding the
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following equations of equilibrium for heat flow, stress, electric displacements and magnetic
induction:

Oy ‘-(’:‘ O, ©o;; o,

.
. OO0, C..-—
i/ Y n_r_’_ r 90 =, s + =0
or oz 2 bola oz ’
b, #D. D, JB. A#B. B, .
==L =0, —L+—=+-2L=0 (4)
r  fz r er Oz
Sh, Jh. ,
ch, Fh. h.
24 L=

-

or  dz i

Consider now a hollow circular cylinder of bone, subjected to an external temperature change 7,
a quasi-slatic axial load P, an external pressure p, an electric potential load ¢{or/and ¢;) and an
magnetic potential load y;(and/or ;). The boundary conditions are

r=0, 6,=0.,=0, ¢=9, v=y, at r =a

T=T, 6,=-p, 0.=0, p=@,, y=w, at r = b (3)
and

J. oS = P (6)
where ¢ and b denote the inner and outer radii respectively of the bone, and S is the cross-sectional
area. For a long bone, it is assumed that except for the axial displacement ., all displacements,
temperatures and electrical potential are independent of the = coordinate and that z, may have linear
dependence on z.

The solution of displacements #,, u., and electric potential ¢ to the problem above in the absence
of piezoelectric magnetic field has been discussed elsewhere (Qin and Ye 2004), This work extends
the results in Qin and Ye (2004) 1o include the plezomagnetic effect. The strains, electric field
intensity, magnetic field intensity and the temperature change 7 can be found by introducing the
boundary conditions (5) and {6) into (2) (For the reader’s convenience the derivation for the
corresponding u,, u., ¢ and i is briefly discussed in Appendix A at the end of this paper). They are,
respectively,

SNZ%PMM@%HMM+5WM+“%faU
' ¢y b —a’)
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5 (7)
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Since we do not know the exact expressions of the material functions 4'(e), 47(e), 4}(e),
. ay and f the following approximate forms of those functions, as proposed by Cowin and
| Busklrk (1978) for small value of e, are used here:

A'(e) = Co+ Cle+ Coe’, Aj(e) = A +ed!', Gi(e)=Gi +eG.', Ai{e)=4} +ed] (15)

(=9

0 e 1 0
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0

Cl 20
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]
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To simplify the writing and analysis, but without loss of generality, constant p and P are assumed
in this paper, which means that both of them don’t change with time. Using these approximations
the remodelling rate Eq. (14) can be simplified as

e = ale -2Pe+y) (17)

by neglecting terms of ¢ and its higher orders, where , S and y are independent of time ¢ (Qin and
Ye 2004). The solution to (17} is straightforward and has been discussed by Cowin and Hegedus
(1976). For the reader’s benefit, the solution process is briefly described here. Let ¢) and e, denote
solutions to &° — 2e+y=0,1e,

ea= Ar(F-n" (18)

When ,82< ¥, e; and e» are a pair of complex conjugates, the solution of (15) is

e(t) = f+ J(y~—ﬁz)tan(aw(y—ﬁz) +arctan—-e“—_f—) (19)
N(y=P)
wherte e = g is Initial condition.
When #° = ¥ the solution is
€)— €,

S ) S (20)
1+ ale, —ey)t

e(r) = e
Finally, when 4> 7 we have
ey(eq — £y) + exle;, —eg)exp(ale; — ex}t)
(eo— ;) + (e —eg)exp(ale, — e1)t)
Since it has been proved that both solutions (19) and (20) are physically unlikely (Cowin and van
Buskirk 1978), we use solution (21) in the following numerical analysis.

e(r) = (21)

4. Numerical example

As numerical illustration of the bone evolution process, we consider a femur with =25 mm and
£ =35 mm. The material properties assumed for the bone are Qin and Ye (2004}

ey = 15(1 +e)GPa, cn=c); =6.6(1 +¢)GPa, ¢y = 12(1 +e)GPa, ¢y =4.4(1+¢)GPa
B = 0.621(1 +e)x 10°NK'm™, B, =055I(1+e)x 10°NK'm™
eis = 1L14(1 +e)C/m°, a5 = 500(1 + )N/Am

The remodelling rate coefficients arc assumed to be Qm and Ye (2004)

Co = 0.002day”’, C, =-0.05day ', C,=10"day”’



Evolution of bone structure under axial and transverse loads

1 8 0
/‘gfj ‘o —o— 1day
0.008 A oY —a—2days
AT v sdays
i 4 —4—10days
=g —»— 20days

0,006 - &
('/-//{ e _»* —#—30days

; ‘/t/'il'/ e "__,,r' —e— 50days

il —e— 75days
0004 | A *— 100days

(h002 =

3028 0.026 0.030 0.032 0.034 0.098
{m)
Fig. 1 Variation of e with time 7 along the radii for electric load

and

A = AL = AL = AL = 4 = Alf = 44day”

2 I a4

A=A =107 mI(V day), G =GP = 1.5x 107 m/(A - day)

r

The initia! inner and outer radii are assumed to be
ap=25mm, bg=235mm

and &= 0 is assumed, Tn the calculation, u, (f)<<g, has been assumed for the sake of simplicity,
i.e., a(t) and b(f) may be approximated by g, and b,

To illustrate the evolution process, we investigate the change of the volume fraction of bone
matrix material from its reference value, which is denoted by ¢, in the transverse direction at several
specific times. We also distinguish the following three loading cases to investigate the influence of
¢lectric, magnetic and thermal loads on the bone structure. Finally effect on the bone of coupling
loads of electric and mechanical loads is studied.

(1) p(r) = 0,P = 1500N, Ty(r) = 0°C, @, — @, = 30V, g — 1/, = 0

Fig. 1 shows the variation of ¢ with time ¢ in the transverse direction of bone when the loading
case is p(1) = 0, P = 1500N, To() = 0°C, ¢~ @, = 30V, y,— v, = 0.

It can be seen from Fig. 1 that as the time passes, the initially homogeneous bone structure
gradually becomes inhomogeneous. The change in the volume fraction of bone matrix maierial on
its inner surface is less than that on its outer surface. This means the bone tissue near the outer
surface is less porous and thus denser than that near the inmer surface, which means it is stronger.

This can be illustrated by the theory of adaptive elasticity. After the transverse electric field is
loaded, an inhomogeneous stress field is generated. Then the stress of the inner surface is smaller
than that of the outer one. As the bone remodelling process is ongoing, the strain field is becoming
homogeneous. To achieve this, the bone tissue must change to a state with more porous endosteum
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Fig. 2 Variation of ¢ with timc f along the radii for magnetic load

and less porous periosteum, which results in an inhomogeneous bone structure. Although the value
of e is very small, transverse electric loads can indeed change the bone structure. If real remodelling
rate coefficients are attained by experimental means, then we can evaluate the effect of electric field
on the bone structure.

It is also found that as time approaches infinity, the value of ¢ becomes less and less. This
indicates that the bone structure stabilizes itself at a relatively steady state, which can be accepted as
the end of the remodelling process.

(2) P(r) = Oa P= ISOON, Tﬂ{t) = OUCJ Pr— @ = 0$ Wh— ¥, = 1A

Fig. 2 shows the variation of ¢ with time ¢ along the radii of bone when the loading case is
p®) = 0,P=1500N, To() =0°C, ¢, ~ ¢, = 0, w,— v, = 1A.

It can be seen from Fig. 2 that a magnetic load has a similar influence on bone struclure to an
electric load, A magnetic load can also inhomogenize an initially homogeneous bone structure
through the bone remodeling process. But essentially further experimental and theoretical
investigations need 1o be developed to obtain the exact remodeling rate coefficients and to discover
the importance of the role played by magnetic stimuli.

(3) p(2) =0,P = 15004, To(f) = 0.1°C,@,— @, =0, y, — y, = DA

Fig. 3 shows the variation of e with time 7 along the radii of bone when the loading case is
p(t) = 0, P =1500N, To(1) = 0.1°C, 9, — @, = 0, 7, — w, = DA.

A similar phenomenon to that of Fig. 2 is found in Fig. 3, which indicates that a warmer
environment may improve the remodclling process with a less porous bone structure, and change of
temperature can also result in an inhomogeneous bone structure. As mentioned in Qin and Ye
{2004), the process by which temperature change may affect bone remodelling is still an open
question. An initial purpose of this study is to show how a bone may response to thermal, magnetic,
and electric loads and to provide information for possible use of imposed external temperature and/
or magnetic-clectrical fields in medical treatment and in controlling the healing process of injured
bones. Further investigations are undoubtedly needed.
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Fig. 4 Variation of e with time ¢ along the radii for coupling loads

(4) p(t) = 1MPa, P = 1500N, T,(f) = 0.1°C, ¢, — @, = 30V, w, — v, = 1A

Fig. 4 shows the variation of ¢ with time # in the transverse direction when subjected to coupling
loads. The above loading case is considered to study the coupling effect of electric-magnetic and
mechanical loads on bene structure. Tt can be seen from Fig. 4 that the function of coupled loads is
the superposition of the single loads. But they are not simply linearly superposed. Further, the
properties of bone tissue change more sharply under coupled loads than when it is subjected to only
one load. The combination of the magnetic, electric, thermal and mechanical loads results in
significant change in bone structure and properties of bone tissues. This indicates that loading
coupled fields is more effective in modifying bone structure than loading only one kind of field.

5. Conclusions
The problem of thermopiezomagneticelectric bone remodelling was addressed within the

framework of adaptive elastic theory. The thermomagneticeleciroelastic solution for adaptive elastic
bone materials was derived through the use of adaptive elastic theory. By assuming a homogeneous
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bone material, the evolution process of bone structure was investigated both theoretically and
numerically.

Numerical studies were carried out to verify the analytical solution for the bone remodelling
process. In the numerical analysis, various load conditions were considered, including axial
pressure, transverse thermal, magnetic, electric and pressure loads. The evolution process of an
initially homogeneous bone structure to an inhomogeneous one was simulated.

The numerical results showed that apart from mechanical loads, clectric ficld, magnetic field and
thermal load can also affect the bone remodelling process. All of these can result in an
inhomogeneous bone structure. This feature may be considered and utilized in controlling the
healing process of injured bones. It must be mentioned that the model proposed above is a general
one for bone remodelling. The detailed process of how the bone tissues evaluate the environment
and response to it need further investigation.
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APPENDIX A: The solution of displacements u,, v, and electric ¢, magnetic field

Using (2) and (3), diflerential Tq. (4) can be written as
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The solution to the above equations satisfying beundary conditions (5)-(6) is given by
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