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Interlayer stress in laminate beam of piezoelectric and elastic materials
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Abstract

This paper studies interfacial mechanical behavior of laminate beams, consisting of two piezoelectric facial sheets and an elastic core.
The study is based on coupled multi-filed finite element formulation. The emphasis is placed on mechanical and electric behavior of inter-
faces between piezoelectric material and elastic material, including effect of geometrical parameters, stress distribution and stress concen-
tration near free edge of the beam subjected to coupling electric and mechanical loads. In particular, various parametric effect of laminate
beam is explored and some conclusions are presented which may be useful for designing laminate beam and minimizing stress concen-
tration at the free edges of the beam.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric composites have wide application in smart
devices and adaptive structures [1]. Since piezoelectric
materials usually behaviour brittle failure, fracture analysis
of such smart structures is important for their reliability
and effective serves [2,3]. For a laminated structure with
two piezoelectric cover sheets and an elastic core, the
delamination between piezoelectric sheet and the elastic
core is a major failure mechanism. Principally, the delami-
nation of the laminated structures is induced by the inter-
layer stresses of which there are often relatively high
concentrations. It is well-known that the concentration of
the interlayer stresses usually happens near the free edges
of a structure. It should also be mentioned that the inter-
layer stress level and concentration depend strongly on
the geometrical parameters of the structures and properties
of the component materials.

Interlayer stresses and the effect of their concentration
on mechanical performance have been investigated by
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many researchers and scientists. Early studies were focused
mainly on laminated composite structures. Comprehensive
reviews on developments in this field can be found in [4,5].
During the past two decades, the interlayer stresses and
failure mechanism of adaptive structures have caused
increasingly attention of practical engineers and profes-
sional researchers. Due to the difficulty in obtaining theo-
retical solution for such a complex problem, the finite
element method (FEM) is usually employed to model and
simulate stress transfer and failure process of interface
between layers of the adaptive structures [6–10]. The
numerical studies in [6–10] include applications of FEM
to piezoelectric laminate beams, plates and shells consisting
of piezoelectric sheets and elastic material core. Reports in
[11–14] on electro-elastic coupling analyses of piezoelectric
structures should also be mentioned.

It is recognized that an excellent design on adaptive
structures depends on good understanding of the depen-
dence of structural performance on the loading and struc-
tural parameters. Based on this understanding, present
work develops an application of 3D FE algorithm to the
analysis of interlayer stresses in laminate beams which con-
sists of two piezoelectric cover sheets and an elastic mate-
rial core. The major emphasis is placed on the interlayer
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stress concentration near free edges and the effect of geo-
metrical parameters and material properties on the inter-
layer stresses in piezoelectric laminate beams.

2. Basic equations and variational formulation

2.1. Basic equations

Consider a laminate cantilever beam with an elastic core
and two piezoelectric sheets (see Fig. 1). It is assumed that
the two piezoelectric sheets have the same thickness and
therefore only half of the structure is required to be ana-
lyzed due to its symmetry. It is noted that, when the piezo-
electric sheets extend or contract under external electric
loading, the laminated beam will be bended and thus
behaviors as an actuator.

For the structure as shown in Fig. 1, the governing
equations of mechanical and electric fields are as follows:

Stress equilibrium equations:

rij;j þ fi ¼ 0 ð1Þ
Maxwell’s equations

Di;i ¼ qb ð2Þ
Strain–displacement relations

eij ¼
1

2
ðui;j þ uj;iÞ ð3Þ

Electric field-potential relations

Ei ¼ �/i ð4Þ
In these equations, rij and eij are respectively the stress and
infinitesimal strain tensors, ui is the mechanical displace-
ment vector, fi is the mechanical body force, Ei and Di

are the electric intensity and electric displacement vectors,
/ is the electric potential, and qb is the body charge density.

Eqs. (1) and (3) are coupled to Eqs. (2) and (4) through
the constitutive equations. For the linear piezoelectric
materials, the constitutive relations read

rij ¼ Cijkleij � eijnEn ð5Þ
Dm ¼ eklmekl þ jmnEn ð6Þ
where Cijkl are the elastic stiffness coefficients at constant
electric field, eijk are the piezoelectric stress constants, and
jmn are dielectric permittivities at constant strain.

For elastic core materials, by letting the electric fields
vanish, i.e., / = Di = Ei = 0, and setting eijk = 0, the con-
stitutive Eqs. (5) and (6) reduce to the Hook’s law:

rij ¼ Cijklekl ð7Þ
Piezoelectric sheet

Elastic material 

h1

h1

h2

b

Fig. 1. Laminate beam of piezoelectric and elastic materials.
For the boundary value problem as shown in Fig. 1, Eqs.
(1)–(7) are completed by adding the following boundary
conditions

ui ¼ �ui on Su ð8Þ
ti ¼ rijnj on St ð9Þ
Dn ¼ Dini ¼ �qs on SD ð10Þ
/ ¼ �/ on S/ ð11Þ

where �ui, �ti, �qn and �/ are, respectively, prescribed boundary
displacement, traction vector, surface charge and electric
potential, an overhead bar denotes prescribed value,
S = Su + St = SD + S/ is the boundary of the solution
domain X.

2.2. Variational formulation for FE analysis

Based on weighted residual method and the boundary
value statement (1)–(11) for the model as shown in
Fig. 1, we now present a variational formulation for the
purpose of deriving FE stiffness equation. If denote the vir-
tual displacement by dui and the virtual electric potential
by d/, the equivalent variational statement of the differen-
tial equations and boundary conditions (1)–(11) can be
written as below:

dP ¼
Z

V
½ðrij;j þ fiÞdui þ ðDi;i þ qbÞd/�dV

�
Z

S
½ðrijnj � tiÞdui þ ðDini þ qsÞd/�dS ¼ 0 ð12Þ

Integrating by parts, we have

dP ¼
Z

V
ðrijdui;j � Did/;iÞdV þ

Z
V
ðfidui þ qbd/ÞdV

þ
Z

S
ðtidui � qsd/ÞdS ¼ 0 ð13Þ

Substituting Eqs. (3) and (4) into Eq. (13), one obtains

dP ¼
Z

V
ðrijdeij � DidEiÞdV �

Z
V
ðfidui þ qbd/ÞdV

�
Z

S
ðtidui � qsd/ÞdS ¼ 0 ð14Þ

Using constitutive Eqs. (5) and (6), Eq. (14) becomes

dP ¼
Z

V
½ðCijklekl � eijnEnÞdeij � ðeklmekl þ jmnEnÞdEi�dV

�
Z

V
ðfidui þ qbd/ÞdV �

Z
S
ðtidui � qsd/ÞdS ¼ 0

ð15Þ
The variational Eq. (15) can be used to establish the FE
equation. For this purpose, the displacement and electric
potential are interpolated in the forms

u ¼
Xn

i¼1

Niui ¼ Nue; e ¼ LNue ¼ Bue ð16Þ

/ ¼
Xn

i¼1

N i/i ¼ Nue; Ei ¼ �
Xn

i¼1

Ni;i/i ¼ �Bue ð17Þ
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Then Eq. (15) can be rewritten as

dP¼
X

e

dPe

¼
X

e

Z
V e

dueT

BTðCBueþ eTBueÞþdueT

BTðeBue�jBueÞ
h i

dV
�

�
Z

V e
ðdueT

NTfþdueT

NTqbÞdV �
Z

Se
ðdueT

NTt�dueT

NTqsÞdS
�

¼ 0 ð18Þ

where ue, ue are independent variables. The arbitrariness of
dueT

; dueT
leads to

X
e

Z
V e
½BTCBueþBTeTBue�dV �

Z
V e

NTfdV �
Z

Se
NTtdS

� �
¼ 0

ð19Þ
X

e

Z
V e
½BTeBue�BTjBue�dV �

Z
V e

NTqbdV þ
Z

Se
NTqsdS

� �
¼ 0

ð20Þ
The matrix form of these equations reads

Kmm Kme

Kme Kee

� �
u

u

� �
¼

F1

F2

� �
ð21Þ

This is a fully coupled finite element equation with the stiff-
ness coefficient matrices

Kmm ¼
X

e

Z
V e

BTCBdV ; Kee ¼
X

e

Z
V e

BTjBdV ð22Þ

Kme ¼ KT
em ¼

X
e

Z
V e

BTeTBdV ð23Þ

F1 ¼
X

e

Z
V e

NTfdV þ
X

e

Z
Se

NTtdS;

F2 ¼
X

e

Z
V e

NTqbdV �
X

e

Z
Se

NTqsdS ð24Þ
Fig. 2. 3D FE mesh.
3. Interlayer stresses

A three dimensional FE model is constructed for analyz-
ing interlayer stresses of laminated beam with two piezo-
electric cover sheets and one elastic core. In all
calculations, a hexahedral solid element with eight nodes
is used to predict interlayer stresses. For the elastic mate-
rial, there are 3 degrees of freedom (three displacements)
Fig. 3. Polarization of
at each node, while for piezoelectric sheets, four degrees
of freedom (three displacements and one electric potential)
are arranged at each node. It is assumed that the length of
beam is l = 20 mm, the wideness is b = 4 mm, the height of
the beam cross section is 2h1 + h2 = 4.2 mm. Here the ratio
h1:h2 is variable. The used FE mesh is shown in Fig. 2.

The material properties used in the present study are
Young’s modulus E = 70 GPa, Poisson’s ratio l = 0.3 for
the elastic material. The properties of piezoelectric materi-
als are E = 66 GPa and l = 0.3. The dielectric constant is
j = 6.145 · 10�5 C/Vm and the matrix of piezoelectric
stress constants is

½e� ¼

0 �512 0

0 �512 0

0 1511 0

1217 0 0

0 0 1217

0 0 0

2
666666664

3
777777775

C=m2

The piezoelectric sheets are so arranged in a way that
they have opposite polarization directions (see Fig. 3). That
is the polarization of upper sheet is in the positive y-direc-
tion and polarization of lower one is along negative y-
direction (Fig. 3).

To study the effect of thickness ratio h1:h2 on structural
performance, let us consider following three models, e.g.
model 1 with h1:h2 = 1:1, model 2 with h1:h2 = 1:5 and
model 3 with h1:h2 = 1:8. The three models can cover the
piezoelectric sheets.
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Fig. 5. Variation of interlayer shear stress.
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most possible thickness ratios for the adaptive structures in
practical engineering.

It is well-known that one of the advantages of such
adaptive structures is its large actuating force. Therefore,
our focus here is on investigating interlayer stresses when
the beam acts as an actuator. In this case, the only external
load is an electric load applied on the piezoelectric sheets.
In our analysis, a voltage with magnitude of 200 V is
applied on the external surface of the upper and lower
sheets, and the internal surfaces of piezoelectric sheets
bonding to elastic material keep zero electric voltage on
the interface. Thus the electric fields with opposite direc-
tions are formed (Fig. 3).

4. Numerical results and discussions

Due to the symmetry of the problem, only lower half of
the laminate beam is analyzed. Fig. 4 provides interlayer
normal stresses for different models. It can be seen that
an extensile stress perpendicular to the interface is induced
when the piezoelectric sheets are subjected to the electric
load. This normal stress tends to contribute to the delami-
nation of laminate beam and rapidly increases near the free
edge. The tress levels and concentrations depend on the
thickness ratio of piezoelectric and elastic sheets. For larger
thickness ratio, e.g. model 1, the level and concentration of
interlayer stress have relative small value. When the thick-
ness of elastic material increases the interlayer stress level
and concentration increase dramatically.

Fig. 5 shows distribution of interlayer shear stress
along the length of the beam. When it is far from free
edge, the shear stress is very small and could be ignored.
The obvious oscillation of shear stress appears near free
edge. However, the zero shear stress at the free edge is
reproduced according to the reciprocate principle of shear
stress on two sections with right angle. The shear stress
increases as the thickness of piezoelectric sheet decreases.
Therefore, it is evident from Figs. 4 and 5 that the inter-
layer stress is smaller for small value of thickness of the
piezoelectric sheets, and the stress level and concentration
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Fig. 4. Variation of interlayer normal stress.
increase as the thickness of piezoelectric sheet deceases.
For this reason, the beam with small thickness of piezo-
electric sheet and large thickness of elastic material will
be delaminated easily.

To explore distribution of bending stress along the
height of the beam, a cross-section is taken at the half
length of the beam and the corresponding numerical results
are presented in Fig. 6 which exhibits distribution of the
bending stress along the height of the cross-section for dif-
ferent models. It is found from Fig. 6 that there is a linear
distribution of bending stress along the height of the cross-
section. It is also noted that for relatively thick elastic lay-
ers, e.g. model 2 and model 3, the bending stresses in the
elastic layers are symmetric about neutral axis, while the
bending stresses in the two piezoelectric sheets are in oppo-
site sign, one is in extensile and another is in compressive.
A bigger jump of bending stresses at the interface is
observed. However, for the case of thin elastic layer, the
stress in each piezoelectric sheet varies from a compress
stress to an extensile stress. The bending stresses in piezo-
electric sheets are the actuating forces of the adaptive
beam. The comparison of different cases in Fig. 6 illustrates
the relative large actuating force can be obtained for the
thinner piezoelectric sheets.
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Fig. 6. Bending stress distributions along height of section.
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The effect of material properties on the interlayer stress
is investigated below. Since the choice of piezoelectric
material is very limited, The change in the properties of
elastic material is considered in the present study. Here
three sets of properties of elastic materials are selected,
i.e., material 1: E = 70 GPa, l = 0.3, material 2: E =
14 GPa, l = 0.3, material 3: E = 25 GPa, l = 0.3. For sim-
plicity and conciseness, following discussions are limited to
model 1 only, i.e., the model with thickness ratio
h1:h2 = 1:1.

Fig. 7 shows the influence of properties of elastic mate-
rials on interlayer normal stress. It is shown that the prop-
erties of the elastic material slightly affect the interlayer
normal stress, but dramatically affect the degree of stress
concentration near the free edge. The larger stiffness of
the elastic material leads to more serious concentration of
the interlayer normal stress. This should be taken into
account in the design of laminate beam.

Fig. 8 exhibits the influence of properties of the elastic
material on the interlayer shear stress where a slight differ-
ence can be found for three sorts of elastic materials. The
numerical results of interlayer normal and shear stresses
for different elastic materials show that the properties of
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Fig. 7. Influence of properties of elastic materials on interlayer normal
stress.
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Fig. 8. Influence of properties of elastic materials on interlayer shear
stress.
the elastic material affect the normal stress concentration
only, although it can slightly affect both the normal stress
and shear stress levels.

5. Conclusions

Present work studies the interlayer stresses and their
concentrations near free edge in laminate beam of piezo-
electric and elastic materials by 3D finite element method.
The influence of geometrical and material parameters is
addressed. Numerical results are obtained and the research
conclusions can be summarized as follows:

(1) The interlayer stresses, including normal and shear
stress, exist in laminate beam of piezoelectric and
elastic materials. There are serious stress concentra-
tions near the free edge of the beam.

(2) The interlayer stress level and concentration depend
on the thickness ratio of piezoelectric and elastic lay-
ers. The relatively large thickness of the piezoelectric
sheet can reduce the interlayer stress level and con-
centration. But thin piezoelectric sheets often lead
to relatively large interlayer stress level and concen-
tration near the free edge of the beam.

(3) The properties of the elastic material slightly affect
the interlayer stresses except the normal stress con-
centration near free edge of the beam.

(4) The bending stress linearly distributes along the sec-
tion height of the beam. There are bigger jumps in
the interfaces between the piezoelectric and elastic
materials.
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