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Abstract-The fundamental solutions and the boundary element method for obtaining numerical 
solutions of nonlinear Reissner plates on an elastic foundation are presented in the paper. The 
derivation of the fundamental solutions is mainly based on two of Hu’s functions and the resolution 
method of differential operator. An incremental form of the boundary integral equations is suggested 
to achieve linearization of the original nonlinear equations. The plate may be moderately thick or 
sandwich plates with (or without) elastic foundation. Finally, three examples are considered to 
illustrate the correctness and accuracy of the proposed method. 

NOMENCLATURE 

5Er/12( 1 + v), for a homogeneous plate ; G,(h + t), for a sandwich plate 
a part of boundary aR of the solution domain a, on which deflection w is prescribed ; CM”, C,, etc. are 
defined similarly 
Et3/12( 1 -v’) for a homogeneous plate ; E(h + t)‘t/2( 1 -v’) for a sandwich plate 
modulus of elasticity 
E/2(l+v) 
core shear modulus 
shear modulus of Pastemak-type foundation 
core thickness 
reaction coefficient of Winkler-type foundation 
reaction coefficient of Pastemak-type foundation 
bending moment 
twisting moment (i # j) 
membrane force tensor 
components of the outward normal to the boundary XI 
lateral distributed load 
transverse shear force 
(X2 +y2) “2 
Q,n,+Nmw,n+N,w, 

components of the tangent to the boundary aa 
plate thickness (or face-sheet thickness) 
in-plane displacements 
lateral deflection 
variational symbol 
the Kronecker delta 
arctg (Y/X) 
fi/t for a homogeneous plate; 4( 1 + v)G,/E(h+ t)t for a sandwich plate 
Poisson’s ratio 
az/axz + azjayz 
the average rotations normal to the plate mid-surface 
over a symbol denotes prescribed value. 

1. INTRODUCTION 

The boundary element method (BEM) is very popular as a numerical method in com- 
putational mechanics. The method has been widely used in linear bending problems (small 
deflection) of thin plates [see reference lists in Tottenham (1979) and Stem and Lin (1986)] 
and moderately thick plates [see e.g. Weeen (1982), Karam and Telles (1988) and Wang ef 
al. (1992)]. As a further progressive step, various boundary integral formulations have been 
developed too treat large deflection of plates in the decade. Among the early proposals for 
analysing finite deflection of thin plates as the so-called direct formulation of Kamiya and 
Sawaki (1982a,b). Consequently, they extended their procedure to the case of sandwich 
plates and shells [see e.g. Kamiya et al. (1983) and Kamiya and Sawaki (1984, 1986)]. 
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Another approach was proposed by Tanaka (1984). He obtained a couple boundary and 
inner domain integral equations in terms of stress and displacement functions. Later on, 
many researchers investigated the BEM for large deflection of plates with the so-called 
generalized Green identities [see e.g. Ye and Liu (1985), Ye (199la) and Wang et al. (1991)], 
the dual reciprocity process (Sawaki et al., 1989), the weighted residual method (Lei et al., 
1990) and the spline function (Ye, 199lb). Postbuckling problems of thin plates have been 
examined by Qin and Huang (1990) and Huang and Qin (1990) by using a newly derived 
fundamental solution. Geometrically nonlinear plates on elastic foundation have been 
considered by Katsikadelis (1991). Most of the developments in the field can also be found 
in Beskos’work (1991). 

More recently, Jin and Qin (1993) have developed a set of boundary integral equations 
for analysing large deflection of Reissner plates based on the variational approach as well 
as a modified variational functional. So far, however, there are very few results by BEM 
for nonlinear Reissner plates on elastic foundations. 

In this paper, a set of boundary integral formulations for nonlinear plates on an elastic 
foundation is established by the variational approach (Jin and Qin, 1993). The plate may 
have arbitrary shape and its boundary may be subjected to any type of boundary conditions. 
Specifically, we derive, as the most important step of the BEM application, a group of 
fundamental solutions for a Reissner plate on an elastic foundation by means of the 
resolution method of differential operator and two of Hu’s functions (Hu, 1963). An 
iterative scheme is suggested to calculate domain unknown variables. Three examples of a 
square plate, a circular plate and a 60” skew sandwich plate are numerically studied to 
illustrate the efficiency and accuracy of the present approach. 

2. BASIC EQUATIONS AND THEIR FUNDAMENTAL SOLUTIONS 

2.1. Basic equations 
Consider a Reissner plate of uniform thickness t, occupying a two-dimensional arbi- 

trary shaped region R bounded by its boundary r3R and resting on an elastic foundation. 
We use a Cartesian coordinate system in which the x- and y-axes lie in the plate middle 
plane. Throughout this paper, repeated indices imply the summation convention of Einstein. 
The indices i, j and k take values in the range { 1,2), and m takes a value in the range 
{ 3,4,5}. The nonlinear behaviour of the plate for moderately large deflections is, in this 
case, governed by the following equations (Lei et al., 1990) : 

(i) Equilibrium equations in s1 

Nli,, = 0, (i = 1,2) (la, b) 

M,,,,-Qi = 0, (i = 1>2) (lc,d) 

Qi,i+NijW,ij-q+k;J = 0. (le) 

(ii) Constitutive relationships in fi 

Nij = N”,+ Nfj 

Nfj = Gt Ui,, + Uj,j + & Uk,kd;j 
i  

9 

NY, = Gt i W.iW,j+ &W3kW,*6t, I > 

> 
7 

(24 

(2b) 

(2c) 

(24 
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Qi = Ctw,i-tii)* 

(iii) Natural boundary conditions 

N, = Nijninj = fin (on C,), N,,, = Nijnisj = iV,,, (on C,,), 

M, = Mijninj = E;I, (on CM”), A4,, = Mijnisj = tin, (on CM_), 

R, = Qinl +N,w,, +N,,w,, = R, (on CR>. 

(iv) Essential boundary conditions 

U, = Zf!i?Zi = ii” (on C,,), US = UiSi = U, (on CUS), 

$n = lClini = 4Jn (on C& $S = eisi = $$ (on C,,>, 

w = *(on C,), 

(XI = CU” u CN” = CU, u C& = C,” u CM” = c** u CM, = c, u C,), 
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@a, b) 

(3c, d) 

(3e) 

(4a, b) 

(4c, d) 

(4e) 

where a comma followed by a subscript indicates partial differentiation with respect to that 
subscript, and the other untold symbols are listed in the Nomenclature. 

2.2. Fundamental solutions 
The fundamental solutions play an important role in the derivation of the boundary 

integral equation. In this subsection, the construction of the fundamental solutions for 
Reissner plates on an elastic foundation will be discussed in detail. The foundation may be 
Winkler-type or Pasternak-type (Kerr, 1964). The governing equations used for deriving 
the fundamental solutions are : 

(i) Equations corresponding to in-plane deformations (Lei et al., 1990) : 

Nij,j = 0 (i = 1,2). (5a, b) 

(ii) Equations corresponding to bending deformations in this case (Petrolito, 1989) : 

D [$x.x, + 0.W - Wx,yy +Wl + W,,,l + C(w,.x -$x> = 0, (64 

D[O.W +v)lc/,,+O.5(1 -Wy,xx+Ic/y,yyl +W,y-ICI,) = 0, (6b) 

c(v’w-II/,,-~,,~)+~w-q = 0, (64 

where E is the subgrade reaction operator, E = k for Winkler-type foundation, 
F = kr- GfV2 for Pastemak-type foundation (Kerr, 1964). 

The fundamental solution corresponding to eqns (5a, b) is obviously Kelvin’s solution 
and can be found in the paper of Qin and Huang (1990). 

In the following attention will be focused on finding the fundamental solution of eqns 
(6a-c). 

The coupling of eqns (6a-c) makes it difficult to generate the fundamental solutions. 
To by-pass this problem, two of Hu’s functions, g andf, are introduced such that 

*x = 9,x+&U $Y = g,y -& (7a, b) 

The expressions (7a, b) are always possible but the solution is not unique. Indeed 

90,X +fo,, = 0, QOJ -fo,x = 0 (8a, b) 

are Cauchy-Riemann equations the solution of which always exists. As a consequence, +X 
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and eY remain unchanged if f and g are replaced by f+fO and g+go. This important 
property will be used in the subsequent part of the paper. The solution of eqns (8a, b) may 
conveniently be expressed in a complex variable form : 

fO+igo = $(x+iy) (9) 

where i = ,/( - 1). 
The substitution of eqns (7a, b) into eqns (6a, b), leads to 

a[Dv2g+C(w-g)]/ax+a[D(l-v)V2f/2-cf]/a~ = 0, (lOa) 

a[Dv’g+c(w-g)]/JJ4[D(l -v)V*j-/2-cf]/ax = 0. (lob) 

If the contents of the two brackets are considered as two independent generalized 
functions, eqns (lOa, b) are of the same form as eqns (8a, b). Therefore eqns (lOa, b) also 
represent a set of Cauchy-Riemann equations and, in the same manner as eqn (9), we can 
set 

[D(l-v)V2f12-Cf]+i[DV*g+c(~--g)] = F(x+iy). (1Oc) 

Equation (10~) is a nonhomogeneous equation with independent variablesf, g and W. 
Its solution can be composed of a homogeneous solution part and a particular part. Since 
F(x+iy) is a harmonic function, the particular solutions of eqn (10~) can be taken in the 
form 

f~ +&II = -F(x+iy)/C and W, = 0. (1Od) 

It is obvious that the particular solution (10d) leads to vanishing deflection and 
rotations (i.e. w = $X = I+$, = 0). Therefore the particular solutions may be omitted and we 
only need to consider the homogeneous part of eqn (10~) : 

D(1 -v)VZf/2-Cf = 0, 

DV2g+ C(w-g) = 0. 

(lla) 

(1 lb) 

The substitution of eqns (7a, b) and (11 b) into eqn (6c), leads to 

DV4g+ EDV’q-Eg+q = 0. (12a) 

As a result, we obtain, for f and g, the following set of differential equations : 

DV4g+ EDV*g-Eg+y = 0, 

V’f-n’f = 0. 

(12b) 

(12c) 

The corresponding displacements and rotations are obtained from the following 
relations : 

w = g-DV’g/C, 

ll/X = 9,X +_L 

II/, = g,y -Lx. 

(12d) 

(7a) 

(7b) 

Equation (12~) is the well-known modified Helmholtz equation and its fundamental 
solution is 
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where K,( ) is a modified Bessel function of zero order of the second kind. 
The next step is to derive the fundamental solution of eqn (12a). To this end, consider 

the homogeneous equation 

Dv4g*++zg*-l;g’ = D(v2+c,)(v2-cc2)g* = W’,Q>, (14) 

in which 6(P, Q) is the Dirac delta function, P and Q denote the source point and the field 
point, respectively, and 

C, = k/2C,/m, C2 = ,/m-k/2C 

for Winkler-type foundation, or 

c, = (,/i-t kf/C+ G,/D)/2(1- G,/C), C2 = (&-WC- GIDWU -G/CL 

b = (k,/C+G,/D)2+4k,(1-G,/C)/D 

for a Pastemak-type foundation. 
To find the solution of eqn (14), we set 

(V2-C2)g* = A. 

It follows from eqn (14) that 

D(V2+C,)A = b(P,Q). (16) 

The solution of eqn (16) can be easily obtained as 

A = Yo(&r)/4D 

(15) 

(17) 

in which Y,( ) is the Bessel function of zero order of the second kind. 
In a similar way, let 

(V*+CJg* = B, (18) 

then we have 

D(V’-C2)B = d(P, Q). (19) 

The fundamental solution of eqn (19) is easily found to be 

B= &W&r). (20) 

Subtracting eqn (15) from eqn (18) and by using eqns (17) and (20), the fundamental 
solution g* can be given in the form 

B-A 

g*=Cl+Cz 
= & 

I 2 
&W&r) - YdfiWD 1 . (21) 
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In the absence of elastic foundation (C, = C2 = 0), the solution (21) reduces to 

g* =&r’lnr. 

Substituting eqns (13) and (21) [or (22)] into eqns (7a, b) and (12d), we have 

w* = g* - DV’g*IC, (234 

*: = ag*iax+ af *jay, Wb) 

*,* = ag*/ay-af */ax. (23~) 

3. BOUNDARY INTEGRAL FORMULATION 

The boundary integral equation for nonlinear Reissner plates on an elastic foundation 
can be established by the variational approach (Jin and Qin, 1993). The approach is mainly 
based on a modified variational principle. Following the line of argument of Jin and Qin 
(1993), the modified principle for the present problem can be stated as 

XI” = 0 = eqns (1) (3) and (4) (24) 

where 

2u = Nij(Ui,j+ u1.i + W,iW,j)/2+Mt,($,j + $‘j,i)P+ Qi<w,t - ll/i) +kW2 

The terminology “modified principle” refers, here, to the use of the conventional 
potential function II, and some modified terms for the construction of a special variational 
principle. 

The proof of the principle and how to transform the modified functional into a 
boundary integral equation has been discussed in the above-mentioned paper (Jin and Qin, 
1993). It will not, therefore, be repeated in detail here. In the case under consideration, the 
resulting formulation can be expressed in the form : 

a(P)u,(P) - 
s 

{;p’(P, Q)T?,, -u,&$‘(P, Q)} dc 
C% 

- 
s 

{;p(p, Q)Nns --z&$,~)(P, Q)} dc = - 
s 

~W,iW,jfi$)(P, Q> da (27) c 
“I n 
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- s {$“‘(P, Q)R"- - : ) wb m (P, Q)] dc = 
s 

{6’“‘(P, Q)q-Nijw,iG!y’(P, Q>} da, (28) c 
w R 

where a(P) is a conventional boundary shape coefficient, a(P) = 1 if PER, a(P) = l/2 if 
Pis on thesmooth boundary BR, {u, u2 u3 u4 Us} = (u} = {u, u2 $I ti2 W} is 
a displacement vector, and the asterisked symbol (*)(p) represents the related fundamental 
solution which has been obtained in subsection 2.2, the components ziy’(P, Q) of 
{z?}@‘(P,Q) mean the in-plane displacements (for q = 1 and 2) or the rotations (for q = 3 
and 4) or the deflection (for q = 5) at the field point Q of an infinite plate when a unit point 
force (for p = 1, 2 and 5) or a unit point couple (for p = 3 and 4) is applied at the source 

point P. {k}@)(P,Q) can be calculated from {ii>@)(P, Q) by using the constitutive relation- 

ships (2). All of the fundamental solutions, (6jcp)(P, Q), are given in the Appendix. 

4. NUMERICAL IMPLEMENTATION 

The analytical solutions of eqns (27) and (28) are not, in general, possible and therefore 
a numerical procedure must be used to solve the equations. 

To obtain a numerical solution of eqns (27) and (28), as in the usual BEM the boundary 
XI and the domain R of the plate are divided into a series of constant boundary elements 
and constant cells, respectively. The node of an element is taken to be the centre of the 
element. After performing the discretization and introducing boundary conditions, eqns 
(27) and (28) are reduced to a system of algebraic equations : 

[Ql{N)+Pl{u) = {&1+@3)9 (29) 

WIP) +[GlW) = P2) + P4L (30) 

where [Q], [S], [Hj and [G] denote the coefficient matrices which can be calculated in the 
usual way, (IV} = {N, N,,), {u} = (u, %>Y {MI = (P” M” &I, ($1 = {w *II $8). 
These four vectors only include boundary variables, while {I?,} and {R,} are inhomo- 
geneous terms which can be deduced from (27) and (28), and {R3) and {R4} contain 
nonlinear terms : 

M4Ll = -j* iVijW,iG!y’(Pq, Q) d&2. (31’4 

Note that eqns (29) and (30) are not, in general, suitable for numerical analysis, an 
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incremental form of the equations must therefore be adopted. Denoting the incremental 
variable by the superimposed dot and omitting the infinitesimal element resulting from the 
product of incremental variables, one obtains 

[Ql{fi>+[W) = {&>+(&I, (324 

W{~)+[Gl{$) = {&)+{&). Wb) 

It follows that eqns (32a, b) are linear with respect to the incremental variables. 
However, the right-hand side vectors {Ai,} and {&} contain domain unknown variables ; 
to avoid solving these variables directly, an iterative procedure is required. 

It is noted that {li3} depends only upon ti [see eqn (31a)]. So as long as the value of 
ti, in eqn (32b) has to be solved, we can compute the pseudo loading vector {Ai3}, and then, 
all of the unknown variables in eqn (32a) are at the boundary. We may solve it for ti, and 
ziZ. As a consequence, {&} can be evaluated from the current values of zi, , 12~ and 3. An 
iterative scheme may be established according to the above analysis. The scheme is quite 
similar to that in the paper of Qin and Huang (1990). 

It is important to note that once the matrices [Q], [S], [H] and [G] in eqns (32a, b) 
have been formed, they can be stored in the core and used in each cycle of iteration without 
any change. That is because these matrices depend only upon the geometric and material 
parameters of plates and foundations. Obviously it can save a large amount of computing 
time. 

5. NUMERICAL EXAMPLES 

As numerical illustrations of the proposed method, three benchmark problems are 
considered. In order to allow for comparisons with other solutions appearing in the ref- 
erences (Azizian and Dawe, 1985 ; Katsikadelis, 1991; Ng and Das, 1986), the obtained 
numerical results are limited to a moderately thick plate with k = 0 ; a circular plate and a 60” 
skew sandwich plate resting on Winkler-type elastic foundations. To study the convergence 
properties of the proposed method, three meshes of the internal cell (or boundary element) 
are used in the analysis. The convergence tolerance is 0.001. These examples are described 
as following : 

Example 1 
A square plate with two opposite edges clamped and the others simply supported under 

a uniformly lateral load q(Q = qa4/Eh4) and with thickness/span ratio t/a = 0.05. The 
boundary conditions are 

x = *a/2, 24, = u, = w = ** = ** = 0, 

y= &a/2, u,= u, = w = 44, = es = 0. 

Owing to the symmetry of the problem only one quadrant of the plate is modelled by 
8 constant boundary elements and three meshes of the internal cell (3 x 3,4 x 4 and 5 x 5). 
Table 1 shows the central deflection ( W,,,,,/t) of the plate and compares the result with the 
finite strip solution (Azizian and Dawe, 1985). 

Table 1. The centre deflection (w,.,/t) of the square plate 

Load Q 0.91575 4.5788 6.8681 9.1575 

Finite strip 0.019908 0.098873 0.14694 0.19361 

16 cells 0.019903 0.098511 0.14571 0.19035 
BEM 25 0.019904 0.098623 0.14592 0.19127 

36 0.019907 0.098625 0.14598 0.19135 
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Table 2. Deflection # along the radius in a circular plate on an elastic foun- 
dation (load step A4 = 1) 

rla 0.098 0.304 0.562 0.800 0.960 

Katsikadelis 1.108 0.961 0.592 0.179 0.009 

Present 12 b.e.t 1.096 0.950 0.584 0.171 0.0085 
20 1.102 0.957 0.588 0.174 0.0088 

BEM 30 1.109 0.960 0.590 0.175 0.0088 

t b.e. = boundary elements. 
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Table 3. Variation of (w/h) with load Q for the sandwich plate (K = 20) 

Q 25 50 75 100 125 

BEM 48 b.e.7 0.581 0.864 1.0395 1.1692 1.2723 
60 0.589 0.867 1.0412 1.1723 1.2802 
80 0.596 0.872 1.0521 1.1750 1.2837 

Exact? 0.60 0.87 1.05 1.18 1.30 

tValues obtained from Ng and Das (1986), Fig. 11, p. 375. 

Example 2 
A uniformly loaded circular plate with radius R and clamped moveable edge (i.e. 

w = $,, = ll/* = N, = N, = 0) resting on an elastic foundation. Some parameters of the 
problem are assumed as 

a/h = 50, v = 0.3, ka4/D = 100, Q = qa4/Eh4 = 15, 3 = w/h. 

A quadrant of the plate is modelled by 25 internal cells and three meshes of boundary 
element (16, 20, 24). Some results obtained by the proposed method are listed in Table 2, 
and comparison is made with the known ones (Katsikadelis, 1991). 

Example 3 
Consider a uniformly loaded 60” skew sandwich plate which is clamped immovable 

(CI) on all edges (i.e. a1 = u2 = $, = $a = w = 0 on the whole boundary) and shown in 
Fig. 1. 

The plate under consideration is modelled by 8 x 8 internal cells, three boundary 
meshes and (48,60,80) boundary elements, respectively. Some initial data are shown in 
Fig. 1. Table 3 compares the results obtained using the present BEM and the method given 
by Ng and Das (1986). 

It can be seen from the three tables that the results are in excellent agreement with 
other solutions. In the course of the computations, convergence was achieved with about 
25 iterations for example 1, 50 iterations for example 2 and 45 iterations for example 3 at 
each loading step. As expected for all three examples, it was found from the numerical 

v = 0.32, f = 0.635 mm, 
h = 25.4 mm, a = b = 508 mm, 
G, = 6.89 MPa, z = r +h, 
Q = 12a’(l-v2)q/(rz’E), 
K = 12u’k(l -v’)/(ztE). 

0 Y 

Fig. 1. A CI 60” skew sandwich plate resting on an elastic foundation. 
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Y 

Fig. 2. The definition of p, $J and r. 

results that the deflection converges gradually to the exact one along with refinement of the 
element meshes. 

6. CONCLUDING REMARKS 

Based on the procedure developed in the paper (Jin and Qin, 1993), a set of boundary 
integrals for a nonlinear Reissner plate resting on an elastic foundation is obtained. Another 
purpose of the paper is to obtain fundamental solutions for bending problems of Reissner 
plates on an elastic foundation by means of two of Hu’s functions and resolution method of 
differential operator. Three numerical examples have been considered and the convergence is 
achieved with a relatively small number of boundary elements and iterative cycles. Although 
the proposed boundary integral equation and the numerical examples are confined to plates 
on Winkler-type foundation, it is easy to extend the procedure to the case of Pasternak- 
type foundations. 
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APPENDIX : FUNDAMENTAL SOLUTIONS {z?}(‘“~ 

8” = $:I = [C(z,)+E(Z,,Zdlcos ~cos(B-d)+[D(Z,)-~(Z,,Z~)lcos(28-~), 

i%’ =$x = [C(Z,)+E(Z,,Z,)]cosBsin(B-_)-[D(Z,)+F(Z,,Z,)]sin(28-~), 

;:‘I = w: = [AJC,K,(Z,)(l -DCz/C)+BJC,Y,(Z,)(l -DC,/C)]cos(j?), 

r?j“’ = $z1 = [C(Z,)+E(Z,,Z,)]sin Bcos(B-~)+[D(Z,)-F(Z,,Z,)] sin(2/?-4), 

;y’ = $5 = [C(Z,)+E(ZI,Z~)]~~~~~~~(~-~)+[D(Z~)+F(Z,,Z~)]~OS(~~-~), 

;‘p) = W: = [A&K,(Z,)(l -DC,/C)+B&Y,(Z,)(l -DC,/C)]sin(j?), 

?A:” = $.: = -[BJC,Y,(Z,)+AJC,K,(Z,)lcos(B-~), 

~?(a) = $,: = -[BJC,Y,(Z,)+A~K,(Z,)lsin(B-~), 

:i5) = w: = AC,K,,(Z,)[l -DC,/C]+BY,(Z,)[l +DC,/C], 

where 

D(Zd ‘~[KO(Z’)+~(~,(Z~)-~)], 
E(Z,>ZJ = BC, Y@‘,)-AC&G), 

F(Z,,ZJ = BC, Y,(Z,)/Z, +AC,K,(Z,)IZ,, 

Z, = fir, Z, = Jczr, Z, = Ar. 

SAS 30:22-F 


