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Abstract A meshless numerical model is developed for
analyzing transient heat conduction in non-homoge-
neous functionally graded materials (FGM), which has a
continuously functionally graded thermal conductivity
parameter. First, the analog equation method is used to
transform the original non-homogeneous problem into
an equivalent homogeneous one at any given time so
that a simpler fundamental solution can be employed to
take the place of the one related to the original problem.
Next, the approximate particular and homogeneous
solutions are constructed using radial basis functions
and virtual boundary collocation method, respectively.
Finally, by enforcing satisfaction of the governing
equation and boundary conditions at collocation points
of the original problem, in which the time domain is
discretized using the finite difference method, a linear
algebraic system is obtained from which the unknown
fictitious sources and interpolation coefficients can be
determined. Further, the temperature at any point can
be easily computed using the results of fictitious sources
and interpolation coefficients. The accuracy of the pro-
posed method is assessed through two numerical
examples.

Keywords Transient heat conduction Æ Virtual
boundary collocation method Æ Fundamental
solution Æ Superposition principle Æ Radial basis
functions Æ Analog equation method Æ Functionally
graded media.

1 Introduction

Due to its excellent thermal properties, transient heat
conduction problems in FGMs exist in many engineer-
ing processes, such as electronic cooling, encapsulation
and cryogenics, and have received a considerable
attention from researchers. However, because of the
intrinsic complexity of the corresponding governing
equation, analytical solutions are usually difficult to
obtain except for problems with simple geometry and
boundary conditions. As a result, various numerical
models have been developed for analyzing transient heat
conduction problems [1, 2].

It is noted that numerical methods such as the finite
element method (FEM), finite difference method (FDM)
and boundary element method (BEM) have been well
established over the past few decades and have been
successfully applied to transient heat conduction prob-
lems [1, 2]. Compared to FEM and FDM, BEM gen-
erally involves boundary discretization only and the
governing differential equation is satisfied exactly inside
the domain. This is an important advantage over
domain-type methods such as FEM and FDM. How-
ever, the use of BEM, based on discretization in time,
usually results in domain integrals which may increase
computing time and even cause some numerical prob-
lems [1]. In particular, a time-consuming domain inte-
gral is required when calculating temperatures at
internal points, which makes BEM relatively inefficient
compared to FEM and FDM. To overcome the ineffi-
ciency, several approaches based on conventional
boundary integral equations have been developed to
compute domain integrals engendered by time and
inhomogeneous terms. A frequently used method is the
dual reciprocity boundary element method (DRBEM)
[3], which converts the domain integral occurring in
BEM equations into a boundary integral by using a set
of locally based radial functions (RBF) to approximate
the inhomogeneous term related to the particular
solution. The application of this approach to the tran-
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sient heat conduction problem can be found in [4–7].
The multiple reciprocity boundary element method
(MRBEM) appeared in [8] is also an efficient method for
dealing with domain integrals. It removes the domain
integral in a recurrent manner by introducing higher
order fundamental solutions.

Alternatively, meshless methods have received
considerable attention in recent years because of their
lack of dependence on mesh and avoiding meshing,
remeshing, mesh distortion in large deformation cases
and easy to prepare initial data. At present, meshless
methods can be divided into two major categories: do-
main-based and boundary-based. Compared to domain-
based meshless methods, boundary-based meshless
methods inherit the advantages of BEM and mainly
collocate points on the boundary or sub-boundary.
Since the method developed in this paper can be viewed
as a boundary-based meshless method, developments
corresponding to this category only are briefly reviewed
here. Zhu et al. [9] developed a local boundary integral
equation (LBIE) method by dividing the entire domain
into several small subdomains, in which LBIE and
moving least square (MLS) approximation are used.
Sladek et al. [10] applied this method to analyze tran-
sient heat conduction problem in FGM. Recently, Chen
[11, 12] derived a boundary particle method (BPM)
based on the multiple reciprocity principle and the
nonsingular higher-order general solution and applied it
to convection-diffusion problems. In addition to the
above direct boundary-based meshless methods, there
are indirect ones. The method of fundamental solution
(MFS) [13] is an indirect method involving no mesh or
integration which has advantages of simplicity and
effectiveness. This method essentially uses fictitious
source points outside the solution domain and the cor-
responding fundamental solutions to approximate the
target function. The unknown coefficients of the fun-
damental solutions and the coordinates of the fictitious
sources are found by forcing the approximation to sat-
isfy the boundary conditions. There are other similar
methods such as the virtual boundary collocation
method (VBCM) [14] and charge simulation method
[15], in which the locations of fictitious source points are
fixed and the only unknowns are the coefficients of the
fundamental solutions. However, the methods men-
tioned above have not included a process for dealing
with body sources. The combination of MFS and RBF
provides the possibility of developing a real meshless
method. From the early version of RBF, 1+r, to com-
pactly support RBFs (CS-RBF), the rich class of RBFs
has been widely used due to the improvement in accu-
racy and solid mathematical foundation. The most
popular RBFs are polyharmonic splines, thin plate
spline (TPS) and multiquadrics (MQs), which are all
globally supported, and have been applied successfully
to many engineering problems. However, as suggested in
ref. [16, 17], the user must be very careful about the
order of the basis function. It should be as low as the
application tolerance, and any excessive order will have

negative effects on stability. Furthermore, for low den-
sity interpolation points, a high-order basis function can
be used, and for higher density interpolation points, a
low-order basis function should be employed to avoid
numerical problems. Additionally, augmented polyno-
mials can increase stability and accuracy.

In this paper, a (VBCM) [14] in conjunction with
RBF approximation and the analog equation method
(AEM) [18] is developed to analyze transient heat con-
duction problems in FGM. AEM is introduced to con-
vert the original governing differential equation to an
equivalent Poisson’s equation, which has a simpler
fundamental solution than the fundamental solution of
the original problem required in most boundary-type
methods. RBF approximation is then employed to de-
rive the particular solutions related to the fictitious
internal source which appears when AEM is introduced
and VBCM is used to implement the corresponding
homogeneous solutions. Further, the full solution at a
particular time is constructed by adding the two parts
mentioned above. In the derivation, the time domain is
discretized using the finite difference method. Enforcing
satisfaction of the boundary conditions and governing
equation at certain collocation points yields a linear
algebraic system, from which unknown sources and
interpolation coefficients at any particular time can be
determined. Further, the field function at random points
can be computed at a particular time.

2 Basic formulas of transient heat conduction

Consider a transient heat conduction problem, occupy-
ing an arbitrarily shaped region W bounded by its
boundary C. In the Cartesian coordinates system, the
transient temperature field in a FGM or a heterogeneous
isotropic medium is governed by the diffusion equation

r � ðkruÞ þ f ðX ; tÞ ¼ kr2uþrk � ruþ f ðX ; tÞ

¼ qc
@uðX ; tÞ
@t ð1Þ

with the boundary conditions:

–Dirichlet boundary condition related to unknown
temperature field is

uðX ; tÞ ¼ �uðX ; tÞ X 2 C1 ð2aÞ

–Neumann boundary condition for the boundary heat
flux is

qðX ; tÞ ¼ �qðX ; tÞ X 2 C2 ð2bÞ

–Convection or Robin boundary condition is

qðX ; tÞ¼ h1ðu�u1Þ or h1u�q¼ h1u1 X 2C3 ð2cÞ
where r2 represents the Laplacian operator, t denotes
time (t > 0). k is the thermal conductivity dependent on
the special variables X 2 X � Rd , d is the dimension of
the domain is W; q is the mass density and c is the
specific heat. f ðX ; tÞ stands for the internal heat source
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generated per unit volume. q represents the boundary
heat flux defined by q ¼ �kru � n ¼ �k @u

@n, n is the unit
outward normal to the boundary C. �u and �q are specified
values on the boundary. The constant h1 is the con-
vection coefficient and u1 is the environmental temper-
ature. For a well-posed problem, we have
C ¼ C1 \ C2 \ C3.

For functionally graded materials (FGM), for in-
stance, assume that the thermal conductivity varies
exponentially in one Cartesian coordinate, i.e.,

kðxÞ ¼ k0ekx; ð3Þ
where k is the non-homogeneity parameter. Specially,
for homogeneous and isotropic materials, the thermal
conductivity k is a constant. In this case, Eq. (1) can be
simplified as a popular hyperbolic poisson equation,

kr2uþ f ðX ; tÞ ¼ qc
@u
@t
; ð4Þ

which has been studied by many researchers.
Finally, the initial condition must be supplied

uðX ; t ¼ 0Þ ¼ gðX Þ: ð5Þ

3 Numerical process

A meshless model for solving the hyperbolic boundary
value problem (BVP) defined by Eqs. (1), (2a)–(2c) and
(5) is derived in this section. We start by converting Eq.
(1) into a simple Poisson equation using the analog
equation method. We then consider the RBF approx-
imation of the fictitious loading term induced in the
converting process. Finally a virtual boundary collo-
cation formulation is given for two-dimensional
problems.

3.1 The analog equation method (AEM) [18]

Suppose u0ðX Þ ¼ uðX ; tÞ is the solution sought at a par-
ticular time t to the boundary value problem (BVP) de-
fined by Eqs. (1), (2a)–(2c) and (5). Assume also uðX ; tÞ to
be two times continuously differentiable in W. Applying
the analog equation method to Eq. (1), we have

r2ut ¼ btðX Þ ð6Þ

together with the boundary conditions as described in
Eqs. (2a)–(2c) and the initial condition as given in Eq.
(5). The fictitious source btðX Þ, here, may be evaluated in
many ways, including global RBF approximation and
CS-RBF approximation. The simplest and most efficient
way to evaluate btðX Þ is the global RBF function ap-
proach discussed in Sect. 3.2. In addition, to make the
derivation tractable, we can decompose ut at any par-
ticular time t into two major parts: the homogeneous
solution ut

h and the inhomogeneous solution or partic-
ular solution ut

p

ut ¼ ut
h þ ut

p ð7Þ

where ut
h and ut

p satisfy respectively

r2ut
pðX Þ ¼ btðX Þ ð8Þ

and

r2ut
hðX Þ ¼ 0 X 2 X

ut
hðX Þ ¼ �ut � ut

pðX Þ X 2 C1
qt

hðX Þ ¼ �qt � qt
pðX Þ X 2 C2

h1ut
hðX Þ � qt

hðX Þ ¼ h1u1 � h1ut
p þ qt

p X 2 C3

8
>><

>>:

ð9Þ

3.2 The RBF approximation for the particular
solution ut

p

In this section a RBF approximation is presented for
evaluating the particular solution at any given time t.
The right-hand term of Eq. (8) can be approximated by
[3–7]

btðX Þ ¼
XM

j¼1
at

jfjðX Þ ð10Þ

where M is the number of interpolation points including
interior and boundary points as shown in Fig. 1; at

j are
coefficients to be determined, and fj are a set of RBF.

Similarly, the particular solution ut
p and its normal

derivative are also approximated in the form

ut
pðX Þ ¼

XM

j¼1
at

jûjðX Þ ð12Þ

qt
pðX Þ ¼ �k

XM

j¼1
at

j
@ûj

@n

" #

ð13Þ

where ûj and q̂j are a corresponding set of particular
solutions and its normal derivatives, respectively. Be-
cause the particular solution ut

p satisfies Eq. (8), the key
to this approximation is the existence of a corresponding
set of approximating particular solutions ûj, which are
largely dependent on the underlying differential operator

Fig. 1 Distribution of interpolation points within the physical domain
and on its boundary
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and the choice of RBF fj. Noting that, in Eq. (8), only
the Laplacian operator is involved, a set of particular
solutions ûj can be chosen in such a way that

r2ûjðX Þ ¼ fjðX Þ ðj ¼ 1! MÞ ð14Þ
The effectiveness and accuracy of the interpolation
depends on the choice of the RBFs fj. Besides the ad-
hoc function 1+r [19], which is merely a special type
of RBF [20] that is used almost exclusively and
uncritically in the engineering literature, the three ra-
dial basis functions, polyharmonic splines, TPS and
multiquadrics (MQ) are also commonly used in
meshless formulation. r X ;Xj

� �
¼ rjðX Þ ¼ X � Xj

�
�

�
� here

denotes the distance from the source point Xj to the
field point X. In this paper, different orders of RBFs fj
are investigated in Sect. 4 to demonstrate their accu-
racy and stability for time-dependent heat conduction
problems.

Since the inhomogeneous term btðX Þ is an unknown
function depending on the unknown function utðX Þ, the
coefficients at

j cannot be determined directly through

solving Eq. (10). However, this problem can be tackled

in the way described below.

3.3 Virtual boundary collocation method (VBCM)
for the homogeneous solution

To obtain a weak solution of Laplace problem (9), N
collocation points Xj ðj ¼ 1; 2; . . . ;NÞ on the physical
boundary and N fictitious source points
X 0i ði ¼ 1; 2; . . . ;NÞ on the virtual boundary are selected.
Moreover, it is assumed that at each source point there
exists a virtual load uið1 � i � NÞ. The potential ut

h and
the boundary heat flux at field points X in the domain
or on the boundary can be expressed by a linear
combination of fundamental solutions in terms of fic-
titious sources located on the virtual boundary [13, 14],
that is

ut
hðX Þ ¼

XN

i¼1
ut

iu
� X ;X 0i
� �

ð15Þ

qt
hðX Þ ¼ �k

XN

i¼1
ui

t
@u�

@n

" #

ð16Þ

in which u� and q� are the fundamental solution of the
Laplacian operator and its normal derivative,

u�ðX ;X 0Þ ¼ 1

2p
ln

1

rðX ;X 0Þ ð17Þ

q�ðX ;X 0Þ ¼ @u�ðX ;X 0Þ
@n

¼ @u�ðX ;X 0Þ
@r

@r
@n

¼ � 1

2pr
cosðr; nÞ

ð18Þ

for 2-D problems.
It should be mentioned that a boundary with a shape

similar to that of the physical boundary, or simply a cir-
cular boundary for the 2D domain and a spherical
boundary for 3D problems, are usually selected as the
shape of the virtual boundary. A virtual boundary which
mimicked the shape of the physical boundary was used by
Sun et al. [14] because of the advantage ofmaintaining the
source at roughly the same magnitude from the physical
boundary. However, the construction of a similar virtual
boundary may be inconvenient, especially for compli-
cated boundaries. A circular virtual boundary has good
flexibility and can be applied easily to most problems. But
in some cases, differences of large magnitude may be
encountered which lead to ill-conditioned solutions.

The distance between the fictitious source point and
the physical boundary is another interesting issue in the
present meshless model. Theoretically, there are no rules
for selecting the location of the virtual boundary.
However, from the point of view of computation and
considering the singularity of the fundamental solution,
the accuracy of the result will degrade when the distance
between the virtual and physical boundaries becomes
very close [14]. Conversely, round-off error in C/Fortran
floating point arithmetic may be a serious problem when
the source points are far from the physical boundary. In
that case, the coefficient matrix of the system of equa-
tions is nearly zero [19, 20]. For a virtual boundary that
is similar in shape to the physical boundary, the location
can be determined by defining the similarity ratio
between the virtual and physical boundaries as

similarity ratio

¼ characteristic length of the virtual boundary

characteristic length of the physical boundary

For a circular virtual boundary, the center of the circle
may overlap with the center of the domain, and the ra-
dius is an important parameter to measure its location.
In particular, for a rectangular domain, the real
parameter b (Fig. 3), representing the similarity ratio of
the similar virtual boundary, can measure the radius of
the circular virtual boundary.

The shape and location of the virtual boundary are
discussed in Sec. 4.

Fig. 2 Illustration of the computational domain and collocation
points discretization on the physical and virtual boundaries
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3.4 The backward time stepping scheme

Based on the discussion above, the solution utðX Þ to
Eqs. (1) and (2a)–(2c) at a particular time t can be
written as

utðX Þ ¼
XN

i¼1
ut

iu
�ðX ;X 0i Þ þ

XM

j¼1
at

jûjðX Þ ð19Þ

qtðX Þ ¼ �k
XN

i¼1
ut

i
@u�

@n
þ
XM

j¼1
at

j
@ûj

@n

 !

ð20Þ
Differentiating Eq. (19) with respect to x or y yields

ut
;xx ¼

XN

i¼1
ut

iu
�
;xx þ

XM

i¼1
at

jðûjÞ;xx; ð21aÞ

ut
;yy ¼

XN

i¼1
ut

iu
�
;yy þ

XM

i¼1
at

jðûjÞ;yy ; ð21bÞ

ut
;x ¼

XN

i¼1
ut

iu
�
;x þ

XM

i¼1
at

jðûjÞ;x; ð21cÞ

ut
;y ¼

XN

i¼1
ut

iu
�
;y þ

XM

i¼1
at

jðûjÞ;y : ð21dÞ

The formulations given in Sects 3.1, 3.2 and 3.3 are in
terms of a particular time t. In order to obtain the
temperature field and its flux at any time, the time do-
main is divided into elements and a simple backward
time stepping scheme is used, i.e.,

ot
ot

�
�
�
�
tþDt
¼ utþDt � ut

Dt
;

ð22Þ
where Dt is the time step.

Substituting Eq. (22) into Eqs. (1) and (2a)–(2c), we
have

kr2utþDt þrk � rutþDt � qc
Dt

utþDt

¼ � qc
Dt

utðX Þ � f tþDtðX Þ
ð23Þ

with boundary conditions

utþDtðX Þ ¼ �utþDt on C1 ð24aÞ
qtþDtðX Þ ¼ �qtþDt on C2 ð24bÞ
qtþDtðX Þ ¼ h1ðutþDt � u1Þ on C2 ð24cÞ

Using Eqs. (19), (20) and (21a)–(21d), satisfaction of
the governing equation (23) at M interpolation points
inside W and the boundary conditions (24a)–(24c) at N
nodal points on the physical boundary provides N + M
equations to determine unknowns at

j and ut
i:

PN

i¼1
utþDt

i kr2u� þ rk � ru� � qc
Dt u�

� �
þ

PM

j¼1
atþDt

j kr2ûj þrk � rûj � qc
Dt ûj

� �

¼ �f tþDt � qc
Dt ut

PN

i¼1
utþDt

i u� þ
PM

j¼1
atþDt

j ûj ¼ �utþDt

PN

i¼1
utþDt

i �k
ou�

@xm
nm

� �

þ
PM

j¼1
atþDt

j �k
oûj

oxm
nm

� �

¼ �qtþDt

PN

i¼1
utþDt

i h1u� þ k
ou�

oxm
nm

� �

þ
PM

j¼1
atþDt

j h1ûj þ k
oûj

oxm
nm

� �

¼ h1u1

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ð25Þ
The unknown coefficients atþDt

j and utþDt
t can thus be

determined by solving the linear algebraic system (25)
and using the initial condition Eq. (5). Once these un-
known coefficients are determined, the solution utþDt and
it normal derivative at any field point X in the domain or
on its boundary can be calculated using Eqs. (19) and
(20).

Here, we notice that the process described above
(Sects. 3.1 to 3.4) is fully independent on the original
problem. Only the formation of equation (25) involves
the original different equations. Therefore, the proposed
meshless method has high adaptation to solve other
potential problems, for example, nonlinear heat con-
duction problems in the case that the thermal conduc-
tivity is in terms of temperature field or the internal
source fðX; tÞ is function of temperature. The only dif-
ference is that Eq. (25) in this case is a nonlinear alge-
braic system and can be solved by means of iterative
methods.

4 Numerical implementation

In order to demonstrate the efficiency and accuracy of
the proposed meshless method and the selected RBF and
virtual boundary, a transient heat conduction in iso-
tropic materials is first considered since corresponding

Fig. 3 Similar and circular virtual boundaries for a rectangular
domain
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exact results can be used for verification. Then the
transient heat conduction in the functionally graded
materials is discussed. Though the proposed meshless
method has no restrictions on the spatial variation of the
material parameters of FGM, the numerical example
presented here is restricted to an exponential variation of
the material properties with Cartesian coordinates for
the purpose of comparison.

Example 1 Consider a benchmark problem [7] whose
geometry is a unit square in which no internal heat
source exists. Zero initial temperature has been assumed
and homogeneous Neumann boundary conditions
(insulation) are prescribed on the sides x = 0, y= 0 and
y = 1, respectively. The remaining side is subjected to a
sudden unit temperature jump. The geometry and
boundary conditions of the problem are shown in Fig. 4.

Using the method of variable separation, the analytic
solution can be obtained as

uðx; tÞ ¼ 1�
X1

i¼0
ð�1Þi 4

ð2iþ 1Þp cosðlixÞ expð�l2
i tÞ

qðx; tÞ ¼ �k �
X1

i¼0
ð�1Þi 4li

ð2iþ 1Þp sinðlixÞ expð�l2
i tÞ

 !

�nx

with li defined by

li ¼ ð2iþ 1Þp=2
In the computation, thermal diffusivity a = 1 m2/s and
thermal conductivity of materials k = 1 W/(m ��C) is
assumed. The uniform interpolation scheme is used in
the domain. A total of 20 fictitious source points are
selected on the virtual boundary and 121 uniform
interpolation points are used, unless there is a special
statement.

Firstly, both the first- and third-order BRFs, 1+r
and 1+r3, which have been widely used in the literature,
are used in the calculation and the corresponding results
are compared. The numerical results in Fig. 6 show that
the use of higher-order RBF interpolation functions
does not improve computing accuracy in transient

problems. This phenomenon has also been observed in
previous work [16]. Therefore, care must be taken in
using higher-order RBFs since the linear system associ-
ated with the computation of the particular solution can
easily result in an ill-conditioned number, which is di-
rectly linked to the order of the radial basis functions
and density of the interpolation points. In contrast,
low-order RBF functions can maintain the necessary
accuracy and stability, especially for time-dependent
problems, in which the dominant error is presumably
caused by the time-stepping scheme [16, 17]. Therefore,
the first-order interpolation function 1+r, also known
as the ad-hoc function, is employed first in the following
computation.

In Fig. 6, the effects of different source distributions,
rectangular and circular virtual boundary in this case,
respectively, (see Fig. 5) are also considered. Assume
that the similarity ratio is 3.0 and thus the corresponding

radius of the circular virtual boundary is 3.0�
ffiffiffi
2
p

=2 (see

Fig. 3). The relative error of temperature at t = 0.5 s is

Fig. 4 Geometry of the benchmark problem and boundary condi-
tions

Fig. 5 Configuration of collocation points on the virtual and physical
boundaries

Fig. 6 Effect of order of RBF function on relative error of
temperature at t = 0.5 s
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computed along the line y = 0.5 m and with time steps

of Dt = 0.01 s. It is evident from Fig. 6 that no distinct

difference is observed; the results demonstrate that the

use of both rectangular and circular virtual boundaries

can yield acceptable results. The shape of virtual

boundary has little influence on results when the simi-

larity ratio is 3.0 or above. Therefore, a virtual boundary

similar in shape to the physical one is used in the fol-

lowing computation unless a special statement is made.
To study the effect of the location of the virtual

boundary on the accuracy of the proposed algorithm,
Fig. 7 presents the relative error of temperature versus
similarity ratio (defined in Sect 3.3) at point (0.5, 0.5)
with time step Dt= 0.01 s. The results in Fig. 7 show
that good computational accuracy and stability is
achieved when the similarity ratio is greater than 2, and
the optimal value of the similarity ratio is between 2.5–
5.0. Although the virtual boundary can theoretically be
chosen arbitrarily outside of the domain, either too
small or too great a distance between the virtual and
physical boundaries will reduce accuracy, due to the
singularity of the fundamental solution and the restric-
tion of computer precision including round-off error
[14, 22].

Figure 8 shows the percentage error of temperature
for two different time steps. It can be seen that the
smaller the time step, the greater the accuracy of the
results obtained. However, more computational time
will inevitably be required if a smaller time step is cho-
sen. Additionally, further reduction in the time step
doesn’t reduce the relative error [17].

Example 2 Consider a functionally graded finite strip
with a unidirectional variation of thermal conductivity
[10]. In this example, zero initial temperature is consid-
ered and the same exponential spatial variation for
thermal conductivity and diffusivity is assumed

kðX Þ ¼ k0ekx

a ¼ k
qc
¼ a0ekx

where k0 = 17 W/m�C and a0 = 0.17 · m2/s. Two
different exponential parameters k = 0.2 and 0.5 cm)1

[10] are assumed in numerical calculation. On the sides
parallel to the y-axis two different temperatures are
prescribed. One side is kept at zero temperature and the
other has the Heaviside function of time, i.e., u= T H(t)
with T = 1�C. On the lateral sides of the strip the heat
flux vanishes. In the numerical calculation, a square with
side length L = 0.04 m is considered (see Fig. 9).

The special case with an exponential parameter k = 0
is considered first. In this case the analytical solution is
written as

uðx; tÞ ¼ T
x
L
þ 2

p

X1

n¼1

T cos np
n

sin
npx
L

exp � an2p2t
L2

� �

which can be used to check the accuracy of the present
numerical method. Numerical results are obtained using

Fig. 7 Effect of similarity ratio on temperature at point (0.5, 0.5) with
Dt = 0.01 s

Fig. 8 Effect of time step on relative error of temperature (similarity
ratio = 3.0)

Fig. 9 Geometry of a functionally graded finite square strip and
boundary conditions
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36 fictitious source points, 169 interpolation points,
similarity ratio = 3.0 and, time step Dt = 1 s. The
following computation is carried out using the first-
order interpolation function 1+r only. Figure 10 shows
the temperature field at the three points (x = 0.01 m,
0.02 m and 0.03 m). A good agreement between
numerical and analytical results is observed from
Fig. 10.

The discussion above concerns heat conduction in
homogeneous materials only since analytical solutions
can be used for verification. To illustrate the application
of the proposed algorithm to the FGM, consider now
the FGM with k = 0.2, and 0.5 cm)1, respectively. The
variation of temperature with time for three k-values
and at position x = 0.02 m is presented in Fig. 11.
Fig. 12 shows the distribution of temperature along the
x-axis at t = 30 s. As expected, it is found from Fig. 11
that the temperature increases along with an increase in
k-values (or equivalently in thermal conductivity), and

the temperature approaches a steady state when t >
20 s. It is observed from Fig. 12 that the temperature
increases along with an increase in k-values again.

For final steady state an analytical solution can be
obtained as

uðxÞ ¼ T
ekx�1

eka� 1
u! T

x
a

with k! 0
� �

Analytical and numerical results computed at time t =
70 s corresponding to stationary or static loading con-
ditions are presented in Fig. 13. The numerical results
are in good agreement with the analytical results for the
steady state case.

For comparison, the results at some particular points
obtained by both the proposed method and the meshless
local boundary integral equation method (LBIEM)[10]
are listed in Table 1. It can be seen from Table 1 that the
results from the proposed method is slightly larger than
those obtained LBIEM and after t = 50 s a relatively

Fig. 10 Time variation of temperature in a finite square strip at three
different positions with k = 0

Fig. 11 Time variation of temperature at position x = 0.02 m of
functionally graded finite square strip

Fig. 12 Distribution of temperature at t = 30 s along x-axis of
functionally graded finite square strip

Fig. 13 Distribution of temperature along x-axis for a functionally
graded finite square strip under steady-state loading conditions
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steady state reaches. It should be here mentioned that
the numerical solutions displyed from Figs. 4 and 5 in
reference [10] probably have certain error to practical
computing results produced by use of LBIEM. More-
over, the different treatment of time domain may also be
the main reason causing the discrepancy. In the deriva-
tion of LBIEM [10], we noticed that Laplace transfor-
mation technology is used instead of the time stepping
scheme. However, to the steady-state temperature field
at x = 0.01 m, the two methods provided almost same
results (see Table 1).

5 Conclusion

A meshless model is developed for analyzing transient
heat conduction in FGMs. It is accomplished by an
ingenious combination of VBCM with the analog
equation method and RBF approximation. Although we
note that the proposed method still has some disad-
vantages, such as the linear system of equations formed
at length being dense and possibly being ill-conditioned
for large and complex domains (which are also the
common disadvantages of MFS and RBF approxima-
tion), the proposed meshless method has the following
advantages compared with general boundary-based
methods:

(1) the fundamental solutions used in general BEM

L�ðu�Þ ¼ dðx� nÞ;

where L�ð�Þ is the adjoint operator to Lð�Þ and
dðx� nÞ is the Dirac delta function, are usually
complex and difficult to obtain. In contrast, the
proposed meshless method requires the fundamental
tsolution of the standard Laplacian operator only,
even in complex problems.

(2) No boundary element is required in the method, and
thus the general singular integral is avoided and the
proposed method is fully independent of mesh.

(3) There are no extra equations required to compute the
internal fields.

(4) Compared with other meshless methods, the
computing process is relatively simple and efficient.

(5) No inversion of coefficient matrix is involved in the
process of RBF approximation.

(6) There have no restrictions on exponential variation
of the material properties with Cartesian coordi-

nates. Therefore, other spatial variations of the
material parameters of FGM can also apply.

(7) The proposed meshless method is easy to extend to
nonlinear problems.
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