球、柱壳组合结构在均布压力下的平衡与稳定性

宋天霞 秦庆华

提 要

本文采用几何非线性理论建立球、柱壳组合结构的能量泛函，并依据能量极值原理提出了环向加肋的球、柱壳组合结构在均布压力下的弯曲和稳定的非线性有限元计算方法。计算结果与实验结果符合得较好。

一、引言

环向加肋球、柱壳组合结构（图1）已在化工、深潜、造船以及海洋工程中得到广泛应用，但这类结构的稳定性问题至今并未得到很好解决。在已有文献中，总是作出这样或那样的过于简略的假定，以致计算结果远远大于实际值，如文献[1]，将半球封头与圆柱壳交接处的肋骨视为柱壳的弹性承压就是一例。

早期的轴压薄柱壳的弹性理论解，是实验结果的五倍*3*4。

图1

图1：图示

薄壳曲度大挠度理论在Donnel大挠度方程的基础上提出了大挠度分析的一般方法，指出了载荷-位移的非线性关系在薄壳曲度理论中的重要作用。之后，近四十年来，许多作者围绕着柱壳的超曲度平衡变形问题进行了深入的研究。他们尽管讨论了带肋与不带肋柱壳的几何非线性稳定问题，但并未涉及到球、柱壳组合一类的结构。随

本文一九八四年十月四日收到。
着化工、深潜以及海洋工程的飞速发展，急需找出有效的计算方法来解决这类组合结构的弯曲和稳定性问题。

本文首先从几何非线性理论出发，采用有限元离散法建立能量计算公式，确定结构变形的极限规律，并根据极值原理导出系统的平衡方程与稳定方程，从而得到求解系统临界载荷的特征方程。在此过程中，还考虑了非对称大挠度变形对外载荷的影响。

这样建立起来的计算方法，即使是对任意布置环向加刺的情形也是适用的。计算结果与实验符合得较好。

二、稳定方程与能量计算

为了简便起见，用 e 表示壳体的轴对称平衡状态，u^e 代表该状态下的位移场。由能量极值原理，可得 e 状态下的平衡方程为：

$$\delta (U^e + \Omega^e) = 0.$$ \hspace{1cm} (1)

式中，δ 为变分符号；U 为弹性变形成，Ω 为外载变形成。式 (1) 即为以能量形式表达的平衡方程的一般形式。

（一）确定方程

为了研究 e 状态的稳定性，取 e 状态下给予微小扰动 u^p（此扰动为 θ 的周期函数），且 u^p 满足运动边界条件，于是有：

$$U = U^e + u^p,$$ \hspace{1cm} (2a)

$$U = U^e + U^{(1)} + \Omega^{(1)} + \text{微小项},$$ \hspace{1cm} (2b)

$$\Omega = \Omega^e + \Omega^{(1)} + \text{微小项},$$ \hspace{1cm} (2c)

式中，上标 (1)、(2) 分别表示由扰动 u^p 所产生的线性项与非线性项（二次项）。

从总势能的变分等于零，即

$$\delta (U + \Omega) = 0,$$ \hspace{1cm} (3)

并根据式 (1)、式 (2) 和式 (3) 可得平衡状态 e 下的稳定性方程的一般形式为：

$$\delta (U^{(1)} + U^{(1)} + \Omega^{(1)}) = 0.$$ \hspace{1cm} (4)

（二）能量计算

考虑几何非线性的结构时，能量计算如下。

1. 壳体能量

由壳体分析的一般理论，壳体应变能可用中面应变 e_{12} 和曲率变化 K_{12} 来表示：

$$U = \frac{1}{2} \int\left[\frac{E_t}{1 - \nu^2} [e_{12}^2 + e_{12} + 2\nu e_{12} + 2(1 - \nu) e_{12}^2] \\
+ \frac{E_t^3}{12(1 - \nu^2)} [K_{12}^2 + K_{12} + 2\nu K_{12} + 2(1 - \nu) K_{12}^2] \right] rdsd\theta,$$ \hspace{1cm} (5)

式中，ν ——泊松比；t ——壳厚。
应变场可表示为:

\[\varepsilon_{\alpha\beta} = \varepsilon^{(1)}_{\alpha\beta} + \varepsilon^{(2)}_{\alpha\beta} + \varepsilon^{(3)}_{\alpha\beta} + \text{微小项} \] \hspace{1cm} (6a)

\[K_{\alpha\beta} = K^{(1)}_{\alpha\beta} + K^{(2)}_{\alpha\beta} + K^{(3)}_{\alpha\beta} + \text{微小项} \] \hspace{1cm} (6b)

因此可将应变能分解为:

\[U = U^{(1)} + U^{(1)}_{\rho\rho} + U^{(1)}_{\phi\phi} + U^{(1)}_{\rho\phi} \] \hspace{1cm} (7)

式中，

\[U^{(1)} = \frac{1}{2} \int \int \left[\frac{E}{1-\nu^2} \left(\varepsilon^{(1)}_{,\alpha\beta} \varepsilon^{(1)}_{,\alpha\beta} + 2\nu \varepsilon^{(1)}_{,\alpha} \varepsilon^{(1)}_{,\beta} + 2(1-\nu) \left(\varepsilon^{(1)}_{,\alpha} \right)^2 \right) \right] r ds d\theta, \] \hspace{1cm} (8a)

\[U^{(1)}_{\rho\rho} = \frac{1}{2} \int \int \left[\frac{2E}{1-\nu^2} \left(\varepsilon^{(1)}_{,\rho\rho} \varepsilon^{(1)}_{,\rho\rho} + \nu \varepsilon^{(1)}_{,\rho} \varepsilon^{(1)}_{,\rho} + \varepsilon^{(1)}_{,\rho} \varepsilon^{(1)}_{,\rho} \right) \right. \]
\[+ 2(1-\nu) \varepsilon^{(1)}_{,\rho} \varepsilon^{(1)}_{,\rho} \left. + \frac{2E}{1-\nu^2} \left(K^{(1)}_{\rho\rho} K^{(1)}_{\rho\rho} + K^{(1)}_{\rho\phi} K^{(1)}_{\rho\phi} + \nu (K^{(1)}_{\rho\rho})^2 \right) \right] r ds d\theta, \] \hspace{1cm} (8b)

\[U^{(1)}_{\phi\phi} = \frac{1}{2} \int \int \left[\frac{2E}{1-\nu^2} \left(\varepsilon^{(1)}_{,\phi\phi} \varepsilon^{(1)}_{,\phi\phi} + \nu \varepsilon^{(1)}_{,\phi} \varepsilon^{(1)}_{,\phi} + \varepsilon^{(1)}_{,\phi} \varepsilon^{(1)}_{,\phi} \right) \right. \]
\[+ 2(1-\nu) \varepsilon^{(1)}_{,\phi} \varepsilon^{(1)}_{,\phi} \left. + \frac{2E}{1-\nu^2} \left(K^{(1)}_{\phi\phi} K^{(1)}_{\phi\phi} + K^{(1)}_{\phi\rho} K^{(1)}_{\phi\rho} + \nu (K^{(1)}_{\phi\phi})^2 \right) \right] r ds d\theta, \] \hspace{1cm} (8c)

\[U^{(1)}_{\rho\phi} = \frac{1}{2} \int \int \left[\frac{2E}{1-\nu^2} \left(\varepsilon^{(1)}_{,\rho\phi} \varepsilon^{(1)}_{,\rho\phi} + \varepsilon^{(1)}_{,\rho} \varepsilon^{(1)}_{,\phi} + \varepsilon^{(1)}_{,\rho} \varepsilon^{(1)}_{,\phi} \right) \right. \]
\[+ 2(1-\nu) \varepsilon^{(1)}_{,\rho} \varepsilon^{(1)}_{,\phi} \left. + \frac{2E}{1-\nu^2} \left(K^{(1)}_{\rho\phi} K^{(1)}_{\rho\phi} + K^{(1)}_{\rho\rho} K^{(1)}_{\phi\phi} + 2(1-\nu) (K^{(1)}_{\rho\phi})^2 \right) \right] r ds d\theta. \] \hspace{1cm} (8d)

上述各式中均略去了二次以上的项（在后面所有能量计算中均是如此）。

2. 肋骨能量

设 \(Z \) 为壳体中面到肋骨形心的距离，\(A_i \) 为肋骨横截面积，\(I_i \) 为截面抗弯惯性矩，则肋骨中面应变

\[\varepsilon'_z = \varepsilon_z + 2K_z \]

和肋骨应变能

\[U_i = \frac{1}{2} \left[E(A_i(\varepsilon'_z)^2 + I_i K_z^2) \right] r d\theta \]

\[= U_i^{(1)} + U_i^{(1)}_{\rho\rho} + U_i^{(1)}_{\phi\phi} + U_i^{(2)} + \text{微小项} \] \hspace{1cm} (9)

式中，

\[U_i^{(1)} = \frac{1}{2} \int E(A_i(\varepsilon'_z)^2 + 2A_i Z \varepsilon'_z K_z^2 + A_i I_i Z^2 + I_i) (K_z')^2 \right] r d\theta, \] \hspace{1cm} (10a)

\[U_i^{(1)}_{\rho\rho} = \frac{1}{2} \int 2E(A'_i Z \varepsilon'_z K_z^2 + A_i Z (K_z')^2 + K_z' (\varepsilon'_z)^2 + (A_i Z^2 + I_i) K_z' (K_z')^2) r d\theta, \] \hspace{1cm} (10b)
\[U_{t \theta}^{(11)} = \frac{1}{2} \int E \{ A_f (e_\theta^{(1)})^2 + 2 A_f Z e_\phi^{(1)} K^{(1)} + A_f Z I_f (K^{(1)})^2 \} r d\theta, \] (10c)

\[U_t^{(2)} = \frac{1}{2} \int E \{ 2 A_f e_\phi^{(2)} (e_\phi^{(2)} + \bar{Z} K^{(2)}_e) \} r d\theta. \] (10d)

3. 外载势能

在考虑轴对称变形引起的势能变化的同时，还须考虑非轴对称大挠度变形对外载的影响，这样，在图2所示坐标及其位移变量下，外载势能为：

\[\Omega = \int_A \int_{\mathbb{R}} p dA d\mathbf{u}, \] (11)

式中，

\[d\mathbf{u} = (du, dv, dw), \] (12a)

\[dA = (R_n, R_r, d\theta) ds, \] (12b)

\[\mathbb{R} \text{为任一沿经线发生位移}(u, w)后的位置矢量} \]

\[\mathbb{R} = (s + u, v, r + w). \] (12c)

于是式(11)又可写成，

\[\Omega = \int_A \int_{\mathbb{R}} p \{ (R_n, R_r, d\theta) \cdot (du, dv, dw) \} d\mathbf{u} ds. \] (13)

同样，由(2c)式，\(\Omega \)又可分成：

\[\Omega = \Omega_1^{(1)} + \Omega_1^{(2)} + \Omega_1^{(3)} + \text{微小项}, \] (14)

式中，

\[\Omega_1^{(1)} = \int \int pr w^{(1)} d\mathbf{u} ds + \frac{1}{2} p \int \int \left[(w^{(1)})^2 + w^{(2)} w^{(2)} + r w^{(2)} w^{(2)} - v^{(2)} w^{(2)} w^{(2)} \right] d\mathbf{u} ds, \] (15a)

\[\Omega_1^{(2)} = \frac{1}{2} p \int \int \left[2 w^{(2)} w^{(2)} + w^{(2)} v^{(2)} + w^{(2)} v^{(2)} + r w^{(2)} w^{(2)} - v^{(2)} w^{(2)} w^{(2)} \right] d\mathbf{u} ds, \] (15b)

\[\Omega_1^{(3)} = \frac{1}{2} p \int \int \left[(w^{(2)})^2 + w^{(2)} v^{(2)} + r w^{(2)} w^{(2)} - v^{(2)} w^{(2)} w^{(2)} \right] d\mathbf{u} ds. \] (15c)

在(15)式中，不仅注意到扰动函数的周期性，而且还考虑了线性分支屈曲。

三、有限元法

将式(8)、式(10)、式(15)代入式(4)，就可得到结构系统的稳定方程的具体形式。直接求解这种方程似乎是不太可能的。这里，仅就图1所示的环向加肋的球、柱壳组合结构采用非线性有限离散方法来建立求解这种方程的计算格式。
由于对称性，加上正中间又有刚性很强的横向隔板，故计算时可只取结构的 $\frac{1}{2}$，如图3所示。

将壳体离散成环状单元，如图4所示。加强肋可任意布置，如加强肋在节圆处，则认为该节圆与其肋的心心轴线重合。

图3

图4

(一) 位移函数

一般说来，这种环状单元具有四个自由度：u, v, w, w_r。因而单元位移函数可选为：

$$
\begin{align*}
\{u\} &= \{N\}\{a\}, \\
\{v\} &= \{a\}, \\
\{w\} &= \{(a_5 + a_6 s + a_7 s^2 + a_8 s^3) \cos \theta\}.
\end{align*}
$$

式中，

$$
\{a\} = \{a_1, a_2, \ldots, a_7, a_8\}^T,
$$

$$
\{\Delta\} = \{u_1 v_1 w_1 w_{r1}, u_2 v_2 w_2 w_{r2}\}^T.
$$

$$
[G_a] = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1/l & 0 & 0 & 0 & 1/l & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -3/l^2 & -2/l & 0 & 0 & 3/l^2 & -1/l \\
0 & 0 & 2/l^3 & 2/l^2 & 0 & 0 & -2/l^3 & 1/l^2
\end{pmatrix}.
$$

而 l 为单元中心线长。

由式(16)可知：

$$
\begin{align*}
\{u\} &= a_1 + a_2 s, \\
\{v\} &= 0, \\
\{w\} &= a_5 + a_6 s + a_7 s^2 + a_8 s^3, \\
\{w_r\} &= u, \\
\{v_r\} &= v, \\
\{w_r\} &= w.
\end{align*}
$$
（二）应变与曲率

式（19）给定的各种位移场下的应变与曲率如下。

柱壳：

\[
\begin{align*}
\epsilon^{(e)}_t &= \frac{\partial u^{(e)}}{\partial s}, \\
\epsilon^{(e)}_s &= \frac{1}{2} \left(\frac{\partial w^{(e)}}{\partial s} \right)^2, \\
\epsilon^{(e)}_\theta &= \frac{\partial v^{(e)}}{R \partial \theta} + \frac{w^{(e)}}{R}, \\
\epsilon^{(e)}_{s \theta} &= \frac{\partial u^{(e)}}{R \partial \theta} + \frac{\partial v^{(e)}}{\partial s} = 0, \\
\epsilon^{(e)}_{s \theta} &= \frac{\partial w^{(e)}}{R \partial \theta}.
\end{align*}
\]

\[
\begin{align*}
K^{(e)}_t &= -\frac{\partial^2 w^{(e)}}{\partial s^2}, \\
K^{(e)}_s &= -\frac{\partial^2 w^{(e)}}{R^2 \partial \theta^2} = 0, \\
K^{(e)}_{s \theta} &= -\frac{\partial^2 w^{(e)}}{R \partial s \partial \theta} = 0, \\
K^{(e)}_{s \theta} &= -\frac{\partial^2 w^{(e)}}{R \partial \theta}.
\end{align*}
\]
(三) 能量显式

在上述球壳的应变式中含有三角函数项，因此在进行能量积分时，需采用数值积分，这里所采用的是三点高斯求积法。

将式(20)和式(21)以及式(22)和式(23)分别代入式(8)、式(10)，将式(16)代入式(15)，然后进行积分并整理得

柱壳：

\[
\begin{align*}
U_{ee}^1 &= \frac{1}{2} \Delta^T \left[k_e \right] \{ \Delta \}, \\
U_{e \theta}^1 &= 0, \\
U_{e \phi}^1 &= \frac{1}{2} \Delta^T \left[L_e \right] \{ \Delta \}, \\
U_{e \phi}^{(2)} &= \frac{1}{2} \Delta^T \left[M_e \right] \{ \Delta \};
\end{align*}
\]

肋骨：

\[
\begin{align*}
U_{r e}^1 &= \frac{1}{2} \Delta^T \left[k_r \right] \{ \Delta \}, \\
U_{r \theta}^1 &= 0, \\
U_{r \phi}^1 &= \frac{1}{2} \Delta^T \left[L_r \right] \{ \Delta \}, \\
U_{r \phi}^{(2)} &= \frac{1}{2} \Delta^T \left[M_r \right] \{ \Delta \};
\end{align*}
\]

球壳：

\[
\begin{align*}
U_{r e}^1 &= \frac{1}{2} \Delta^T \left[k_r \right] \{ \Delta \}, \\
U_{r \theta}^1 &= 0, \\
U_{r \phi}^1 &= \frac{1}{2} \Delta^T \left[L_r \right] \{ \Delta \}, \\
U_{r \phi}^{(2)} &= \frac{1}{2} \Delta^T \left[M_r \right] \{ \Delta \};
\end{align*}
\]

外载：

\[
\begin{align*}
\Omega_{r e}^{(1)} &= 2 \pi r R^2 \{ a \}^T \left[\Phi_e \right] \{ a \}, \\
\Omega_{r \theta}^{(1)} &= \Omega_{r \theta}^{(2)} = 0, \\
\Omega_{r \phi}^{(1)} &= 2 \pi r R^2 \{ a \}^T \left[\Phi_e \right] \{ a \}, \\
\Omega_{r \phi}^{(2)} &= 2 \pi r R^2 \{ a \}^T \left[\Phi_e \right] \{ a \}.
\end{align*}
\]
以上各式中，矩阵 \([k_e], [k_f], [L_e], [L_f], [M_e], [M_f], [N_e], [N_f], [R_e], [R_f]\) 参见附录。

(四) 球顶单元

从球壳的应变计算式(15) 可知在球顶外会出现奇异现象。为保证应变为有限值，在球顶奇异点处需作如下处理:

\[
\begin{align*}
\frac{\partial w}{\partial \theta} \bigg|_{\theta = 0} &= 0, \\
\frac{\partial w}{\partial \phi} \bigg|_{\phi = 0} &= 0.
\end{align*}
\]

这样，在包括球顶的单元中，单元的位移矢量应为:

\[
\{\Delta\} = \{0, 0, w_1, 0, u_2, v_2, w_2, w_{12}\}^T
\]

(29)

四、平衡与稳定性问题的解

(一) 平衡问题的解

对平衡问题，可取轴对称平衡状态的一阶变分为零，即用式(1) 来描述。

由式(24)、式(25)、式(26) 可得:

\[
\begin{align*}
U^{(e)} &= U^{(e)} + U^{(s)} + U^{(s)} \\
&= \frac{1}{2} \{\Delta\}^T \{K\} \{\Delta\},
\end{align*}
\]

式中，

\[
\{K\} = \{[k_e], [k_f], [k_e]\}.
\]

同样，由式(27) 可得:

\[
\begin{align*}
\Omega^{(e)} &= \Omega^{(e)} + \Omega^{(s)} \\
&= 2\pi pR \{\Delta\}^T \{N\},
\end{align*}
\]

式中，

\[
\{N\} = \{[N_e], [N_f]\}.
\]

值得注意的是，从本节开始，所有符号都是对按有限元的常规办法由单元迭加而构成的整个系统来说的。例如，\{\Delta\} 是整体节点位移矢量，\{N\} 是整体刚度矩阵等等。

将式(30)、式(32) 代入式(1)，可得系统的平衡方程:

\[
\{K\} \{\Delta\} = \frac{(1 - v^2)pR}{Et} \{N\}.
\]

于是平衡问题的解为:

\[
\{\Delta\} = \frac{(1 - v^2)pR}{Et} [K]^{-1} \{N\}.
\]

(53)

(二) 稳定问题的解

式(4) 表明，从\(e\) 状态到\(p\) 状态时，扰动所引起的总势能的变分等于零。这意味着由这一判据所建立的方程不唯一一解，而在变形与载荷曲线上出现分叉点。相应于这种分叉点的载荷，正是我们所要求的临界载荷，即稳定问题的解。

将有关能量式(24)、式(25)、式(26)、式(27) 代入式(4)，并对扰动位移进行变分后加以整理，可得:
式中，

\[[L] = [L_e] + [L_i] + [L_s] \]
\[[H] = [H_e] + [H_i] \]
\[[M] = [M_e] + [M_i] + [M_s] = [M(\Delta)] \]
\[[M_k] = [M_k(\Delta)] \]

而

\[m_{kij} = \sum_{i=1}^{n} \Delta_i \frac{\partial M_{ij}}{\partial \Delta_i} \]

\(n \)——总刚阶数， \(\Delta \)——第1个位移。

很显然，\([H]、[M] \)和\([M_k] \)所构成的几何刚度矩阵是\(\{\Delta\} \)的函数。由于我们是给平衡状态（即\(e \)状态）以扰动，所以如\(\{\Delta\} \)表示扰动的某一值，则几何刚度矩阵中的位移应由式（35）所确定的值代入，即以

\[\{\Delta\} = \phi(b) \quad \text{和} \quad \{b\} = \frac{1 - \nu^2}{Et} R[K]^{-1}\{N\} \]

代入，于是有

\[\frac{1}{2} [M_k] + [M] = p[M]. \]

这时\([M] \)与位移无关，这样，由式（36）可得到确定临界载荷的特征方程

\[([L] + \lambda[X]) \{\Delta\} = 0, \]

式中，

\[[X] = \frac{4\pi R^2 [H] + [M]}{2b} \]

\[\lambda = p. \]

由此，求解临界载荷的问题变为求广义特征值问题；

\[([L] + \lambda[X]) = 0. \]

五、实例计算

为了检验理论与方法的正确性，对图1所示的结构进行了验算。

(一) \(e \)状态的应力计算

有关数据为：\(p_1 = 60 \)kg/cm\(^2\)，\(p_2 = 66 \)kg/cm\(^2\)，\(p_3 = 72 \)kg/cm\(^2\)，\(\nu = 0.3 \)，\(E = 2.1 \times 10^4 \)kg/cm\(^2\)；其几何尺寸如图5所示。

将球、柱壳两部分分别划为7个单元、15节点。

计算与实验结果均列于表1。
表1 特征点应力的计算值与实测值的比较

<table>
<thead>
<tr>
<th>压 力</th>
<th>方法类别</th>
<th>球壳交接处</th>
<th>柱壳中部</th>
<th>球顶处</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_1 = 60$</td>
<td>本法</td>
<td>-2741</td>
<td>-4103</td>
<td>-2772</td>
</tr>
<tr>
<td></td>
<td>实测</td>
<td>-2577</td>
<td>-4053</td>
<td>-2534</td>
</tr>
<tr>
<td></td>
<td>误差</td>
<td>-6.4%</td>
<td>-1.2%</td>
<td>-9.4%</td>
</tr>
<tr>
<td>$P_2 = 66$</td>
<td>本法</td>
<td>-2949</td>
<td>-4260</td>
<td>-3050</td>
</tr>
<tr>
<td></td>
<td>实测</td>
<td>-2732</td>
<td>-4441</td>
<td>-2782</td>
</tr>
<tr>
<td></td>
<td>误差</td>
<td>-7.9%</td>
<td>4.1%</td>
<td>-9.6%</td>
</tr>
<tr>
<td>$P_3 = 72$</td>
<td>本法</td>
<td>-3217</td>
<td>-4946</td>
<td>-3327</td>
</tr>
<tr>
<td></td>
<td>实测</td>
<td>-3069</td>
<td>-4861</td>
<td>-3032</td>
</tr>
<tr>
<td></td>
<td>误差</td>
<td>-4.8%</td>
<td>-1.7%</td>
<td>-9.7%</td>
</tr>
</tbody>
</table>

（二）求临界压力

各种情况的计算结果列于表2—表4。

表2 极值波数与临界压力

<table>
<thead>
<tr>
<th>波 数</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>临界载荷</td>
<td>252.5kg/cm²</td>
<td>136.6kg/cm²</td>
<td>200.3kg/cm²</td>
</tr>
<tr>
<td>理 论 值</td>
<td>$P_{cr} = 125$kg/cm²</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 加载到此值后钢模还未完全破坏，但因压力筒满载，不能继续加载。

表3 带肋球、柱壳组合结构的 P_{cr} 和 t 以及 P_{cr} 和 L 的关系

<table>
<thead>
<tr>
<th>$R = 50$</th>
<th>t/P_{cr}</th>
<th>L/P_{cr}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.3/108.2</td>
<td>100/128.2</td>
</tr>
<tr>
<td></td>
<td>0.4/115.3</td>
<td>150/75.4</td>
</tr>
<tr>
<td></td>
<td>0.5/132.5</td>
<td>200/59.5</td>
</tr>
<tr>
<td></td>
<td>0.6/147.2</td>
<td>250/55.3</td>
</tr>
</tbody>
</table>

表4 不带肋球、柱壳组合结构的 P_{cr} 和 t 以及 P_{cr} 和 L 的关系

<table>
<thead>
<tr>
<th>$R = 50$</th>
<th>t/P_{cr}</th>
<th>L/P_{cr}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.3/79.5</td>
<td>140/42</td>
</tr>
<tr>
<td></td>
<td>0.4/92.3</td>
<td>110/62</td>
</tr>
<tr>
<td></td>
<td>0.5/101.2</td>
<td>95/77</td>
</tr>
<tr>
<td></td>
<td>0.6/112.7</td>
<td>70/110</td>
</tr>
</tbody>
</table>

以上计算中所用到的其余数据如图5所示。

由此可以看出，理论计算值与实测的结果（见表1、2）是符合的，其它计算结果（见表3、表4）也是符合物理规律的。
根据本文的方法已编制一整套能很方便地用于球壳、柱壳等一类的组合结构的稳定计算和力计算程序。

附 录

柱壳：

\[
[k_c] = \iiint [\Gamma_c]^T [B_c] [K_c] [B_c]^T \frac{d\gamma}{R} d\theta,
\]

\[
[L_c] = \iiint [\Gamma_c]^T [B_c] \frac{d\gamma}{R} d\theta,
\]

\[
[M_c] = \iiint [\Gamma_c]^T [B_c] \frac{d\gamma}{R} d\theta,
\]

\[
M_{c, i j} = \frac{1}{2} (M_{c, i i} + M_{c, j j}) = M_{c, i j},
\]

\[
[k_f] = \iiint [\Gamma_c]^T [B_c] \frac{d\gamma}{R} d\theta,
\]

\[
[L_f] = \iiint [\Gamma_c]^T [B_c] \frac{d\gamma}{R} d\theta,
\]

式中，

\[
[K_1] = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 2(1 - \nu) & 0 \\
\end{pmatrix}
\]

对称

\[
[K_2] = \begin{pmatrix}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & 2(1 - \nu) \\
\end{pmatrix}
\]

\[
[K_3] = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

\[
[B_c] = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

\[
[B_c] = \begin{pmatrix}
P & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & kP/R & 0 & 0 & 0 \\
0 & 0 & 0 & P & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & k\theta/R & 0 \\
0 & 0 & 0 & k\theta/R & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]
\[
[B^{(s)}_{*}]_c = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & R & s/R & s^2/R \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix} \\

[B^{(12)}_{*}]_c = \begin{pmatrix}
0 & 0 & 0 & 0 & a_9 + 4a_9s + 6a_9s^2 & 4a_9s^2 + 12a_9s^3 & 9a_9s^4 \\
0 & 0 & 0 & B^{(12)}_{2, 28} & B^{(12)}_{2, 28} & \frac{Q^2k^2s^4}{PR^2} (a_9 + 2a_9s) & \frac{Q^2k^2}{PR^2} a_9s^8 \\
0 & 0 & 0 & B^{(12)}_{2, 28} & B^{(12)}_{2, 28} & -\frac{2Qk}{PR} (a_9s^3 + 5a_9s^4) & -\frac{2Qk}{PR} a_9s^8 \\
\end{pmatrix}
\]

而
\[
B^{(12)}_{2, 28} = \frac{k^2}{R^2} s^2 (a_9 + a_9s + 2a_9s^2) \cdot \frac{Q^2}{P^2},
\]

\[
B^{(12)}_{2, 28} = \frac{k^2}{R^2} [a_9 + 2(a_9s + a_9s^2 + a_9s^3)] \frac{Q^2}{P^2},
\]

\[
B^{(12)}_{2, 28} = -\frac{2Qk}{RP} (a_9s^3 + 3a_9s^4 + 4a_9s^5),
\]

\[
B^{(12)}_{2, 28} = -\frac{2Qk}{RP} (a_9 + 2a_9s + 3a_9s^2),
\]

式中，\(P = \cos \theta \), \(Q = \sin \theta \), \(s \) 为子午线弧长的局部坐标。

对于柱壳还有:

\[
[M]_c = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

\[
[M]_c = \begin{pmatrix}
M_{f_0} & M_{f_0} & M_{f_0} & M_{f_0} & M_{f_0} & M_{f_0} & M_{f_0} \\
M_{f_0} & M_{f_0} & M_{f_0} & M_{f_0} & M_{f_0} & M_{f_0} & M_{f_0} \\
M_{f_0} & M_{f_0} & M_{f_0} & M_{f_0} & M_{f_0} & M_{f_0} & M_{f_0} \\
\end{pmatrix}
\]

式中，

\[
M_{f_0} = a_9 + 3a_9s + 3a_9s^3 + 3a_9s^5 + 3a_9s^7 + 3a_9s^9;
\]

\[
M_{f_0} = \frac{3}{2} a_9s^3 + 3a_9s^5 + 3a_9s^9;
\]

\[
M_{f_0} = \frac{3}{2} a_9s^3 + 3a_9s^5 + 3a_9s^9;
\]

\[
M_{f_0} = a_9s^3 + 3a_9s^5 + 3a_9s^9;
\]

\[
M_{f_0} = a_9s^3 + 3a_9s^5 + 3a_9s^9;
\]

\[
M_{f_0} = a_9s^3 + 3a_9s^5 + 3a_9s^9;
\]

\[
M_{f_0} = a_9s^3 + 3a_9s^5 + 3a_9s^9;
\]

\[
M_{f_0} = a_9s^3 + 3a_9s^5 + 3a_9s^9.
\]
而s_i为轴心所在单元的局部坐标，于是有：

$$[M_i] = [T_a]^T [M_i] [T_a].$$

球壳：

$$[k_s] = \int \int \int [T_a]^T [B^{s*}_s]^T [K_1] [B^{s}_s]^T [T_a] R^2 \sin \varphi d \theta d \varphi,$$

$$[L_s] = \int \int \int [T_a]^T [B^{s^2}_s]^T [K_1] [B^{s^2}_s]^T [T_a] R^2 \sin \varphi d \theta d \varphi,$$

$$[M_s] = \int \int \int [T_a]^T [B^{s^3}_s]^T [K_2] [B^{s^3}_s]^T [T_a] R^2 \sin \varphi d \theta d \varphi,$$

$$M_{s,ij} = M_{s,ij} = \frac{1}{2} (M_{s,ij} + M_{s,ij}).$$

式中，

$$[B^{s*}_s] = \begin{bmatrix}
0 & 1 & 0 & 0 & 1/R & s/R & s^2/R & s^3/R \\
B & Bs & 0 & 0 & 1/R & s/R & s^2/R & s^3/R \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 6s & \\
0 & 0 & 0 & 0 & B & 2Bs & 3Bs^2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}.$$
式中，\(I(i) = \int_0^1 s^i \sin \varphi ds \).

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & -RI/2 & -RI^2/2 & -RI^3/2 \\
0 & 0 & 0 & RI/2 & 0 & -RI^3/6 & -RI^4/4 \\
1 & l^2/2 & kl & kl^2/2 & kl^3/3 & kl^4/4 \\
1^3/3 & kl^2/2 & kl^3/3 & kl^4/4 & kl^5/5 \\
1^5/5 & l^2/2 & l^3/3 & l^4/4 & l^5/6 \\
1^7/7 & 1^7/6 & & & & & \\
\end{bmatrix}
\]

\([H_i]\) 的元素除以下六个外：

\[
H_{i15} = -\frac{RI(0)}{2}, \quad H_{i17} = -RI(1), \quad H_{i13} = \frac{3}{2} RI(2), \\
H_{i25} = \frac{RI(0)}{2}, \quad H_{i27} = -RI(2)/2, \quad H_{i28} = -RI(3),
\]

其余均为 \(H_{ii} = H_{ei}\).

参考文献

Equilibrium and Buckling of Combined Spherical and Cylindrical Shells under Uniform External Pressure

Song Tianxia Qin Qingnua

Abstract

Nonlinear strain is used to formulate the energy functional of combined structure with spherical and cylindrical shells. The nonlinear finite element method is proposed for calculating the bending and buckling of structure with stiffened ring under uniform external pressure. The numerical computation results are found to be in good agreement with experimental ones.