Contents

Chapter 1 Introduction
 1.1 Foundation of heterogeneous media
 1.2 Multifield coupling theory of heterogeneous media
 1.3 Solution approach of heterogeneous media
 1.4 Overview and structure of this book

References

Chapter 2 Homogenization theory of heterogeneous media
 2.1 Microstructures of heterogeneous media
 2.2 Concepts of effective fields and effective properties
 2.3 Direct homogenization method
 2.4 Homogenization method based on inclusion theory
 2.4.1 Self-consistent and generalized self-consistent method
 2.4.2 Mori-Tanaka method
 2.4.3 Self-consistent and M-T finite element method
 2.5 Differential method and variational method
 2.5.1 Differential method
 2.5.2 Variational method
 2.6 Two-scale expansion method
 2.6.1 Expansion of displacement field
 2.6.2 Basic equations of elastic material with micro-structures
 2.6.3 Effective properties of micro-structures
 2.6.4 Variational formalism
 2.6.5 Finite element formulation
 2.6.6 Formulation for two dimensional problem
 2.7 Multi-inclusion problems
 2.8 Comparison among self-consistent, MT-, and differential methods

References

Chapter 3 Thermo-electro-elastic problems
 3.1 Introduction
 3.2 Linear theory of piezoelectricity
 3.2.1 Basic equations of linear piezoelectricity
 3.2.2 Two dimensional simplification
 3.3 Two classical solution approaches for piezoelectricity
 3.3.1 Solution with Stroh formalism
 3.3.2 Solution with Lekhnitskii formalism
 3.3.3 Some identities
 3.4 Logarithmic singularity of crack-tip fields in a homogeneous piezoelectricity
 3.4.1 General solution for crack-tip fields
 3.4.2 Modified solution for p being a multiple root
 3.4.3 Modified solution for η being a multiple root
 3.5 Trefftz finite element method for piezoelectricity
 3.5.1 Basic field equations and boundary conditions
3.5.2 Assumed displacement and electric potential fields
3.5.3 Variational principles
3.5.4 Elemental stiffness matrix
3.5.5 Application to anti-plane problem
3.5.6 Numerical examples

3.6 Theory of coupled thermopiezoelectricity
3.6.1 Basic equations
3.6.2 Uniqueness of the solution

3.7 Solutions by Fourier transform method
3.7.1 Fourier transform method and induced general solution
3.7.2 Crack-tip singularity
3.7.3 Griffith crack in a homogeneous piezoelectricity
3.7.4 Asymptotic solution of crack-tip field and energy release rate
3.7.5 Arbitrarily oriented cracks

3.8 Penny-shaped cracks
3.8.1 Problem statement and basic equation
3.8.2 Reduction of crack problem to the solution of a Fredholm
3.8.3 Numerical assessment

3.9 Piezoelectric fibre composites
3.9.1 Theoretical model for piezoelectric fibre push-out
3.9.2 Stress transfer in the bonded interface
3.9.3 Frictional sliding
3.9.4 Partially debonding model
3.9.5 Interfacial debonding criterion
3.9.6 Numerical examples

References

Chapter 4 Thermomagnetoelectroelastic problems
4.1 Introduction
4.2 Basic field equations for magnetoelectroelastic solids
4.2.1 Basic equations
4.2.2 Eight groups of constitutive equations
4.2.3 Transversely isotropic simplification
4.2.4 Extension to include thermal effect
4.3 Variational formulation
4.4 General solution for 3D transversely isotropic magnetoelectroelastic solid
4.5 Green’s function of magnetoelectroelastic solids
4.5.1 Preliminary formulations
4.5.2 New coordinate variables
4.5.3 Green’s function for full space
4.5.4 Green’s function for half-space
4.5.5 Green’s function for a bimaterial problem
4.5.6 Green’s function for an inclined interface or half-plane boundary
4.6 Green’s function for wedge problems
4.6.1 Basic formulations
4.6.2 Green’s function for a wedge or a semi-infinite crack
4.7 Antiplane shear crack in a magneto-electroelastic layer
 4.7.1 Statement of the problem
 4.7.2 Solution Procedure
References
Chapter 5 thermoelectrochemoelastic problems
 5.1 Introduction
 5.2 Historical development of thermoelectrochemoelastic problems
 5.3 Balance laws of porous media
 5.3.1 Mass balance
 5.3.2 Momentum balance
 5.3.3 Energy balance
 5.4 Three-phase and four-phase models
 5.4.1 three-phase model
 5.4.2 four-phase model
 5.5 Chemical potential
 5.5.1 Oxidizing and reducing reaction
 5.5.2 Electrochemical potential
 5.5.3 Donnan osmotic theory
 5.5.4 Eletro-potential of membrane
 5.5.5 Diffusion of ion
 5.6 Basic equations of thermoelectrochemoelastic problems
 5.7 Free energy and constitutive equation
 5.8 Variational principles
 5.9 Finite element formulation
 5.10 Chemo-elastic problems
 5.11 Finite element and numerical results of chemo-elastic problems
References
Chapter 6 Thermoelectroelastic bone remodelling
 6.1 introduction
 6.2 Thermoelectroelastic internal bone remodelling
 6.2.1 Linear theory of thermoelectroelastic bone
 6.2.2 Adaptive elastic theory
 6.2.3 Analytical solution of a homogeneous hollow circular cylindrical bone
 6.2.4 Semi-analytical solution for inhomogeneous cylindrical bone layers
 6.2.5 Internal surface pressure induced by a medullar pin
 6.2.6 Numerical examples
 6.3 Thermoelectroelastic surface bone remodelling
 6.3.1 Equation for surface bone remodeling
 6.3.2 Differential field equation for surface remodelling rate
6.3.3 Approximation for small changes in radii
6.3.4 Analytical solution of surface remodelling
6.3.5 Application of semi-analytical solution to surface remodelling of inhomogeneous bone
6.3.6 Surface remodelling equation modified by an inserting medullar pin
6.3.7 Numerical examples
6.4 Extension to thermomagnetoelastoelectric problem
6.4.1 Linear theory of thermomagnetoelastoelectric solid
6.4.2 Solution for internal bone remodeling
6.4.3 Solution for surface bone remodeling

References

Chapter 7 Effective coupling properties of heterogeneous media

7.1 Basic equations of multi-field materials
7.2 Direct method
7.3 Indirect method
7.4 Two-scale expansion method
7.4.1 Expansion of physical field
7.4.2 Effective magnetoelastoelectric constants
7.5 Numerical results
7.6 References

Chapter 8 Effective properties of thermopiezoelectricity

8.1 Introduction
8.2 Micromechanics model of thermopiezoelectricity with microcracks
8.2.1 Basic formulation of two-phase thermopiezoelectricity
8.2.2 Effective conductivity
8.2.3 Effective electroelastic constants
8.2.4 Effective thermal expansion and pyroelectric constants
8.3 Micromechanics model of thermopiezoelectricity with microvoids
8.3.1 Effective conductivity
8.3.2 Effective electroelastic constants
8.3.3 Effective concentration factors based on various micromechanics models
8.4 Micromechanics model of piezoelectricity with inclusions
8.4.1 Eshelby’s tensors for a composite with an ellipsoidal inclusion
8.4.2 Effective elastoelectric moduli
8.4.3 Effective thermal expansion and pyroelectric coefficients
8.5 Micromechanics-boundary element mixed approach
8.5.1 Two-phase BE formulation
8.5.2 Algorithms for self-consistent and Mori-Tanaka approaches

References
Q.-H. Qin, University of Canberra, Australia; Q.-S. Yang, Beijing University of Technology, China

Macro-Micro Theory on Multifield Coupling Behavior of Heterogeneous Materials

This book contains a comprehensive treatment of heterogeneous materials under coupled thermal, magnetic, electric, and mechanical loads. The easy-to-understand text clarifies some of the most advanced techniques for analysing and solving multifield problems of heterogeneous materials: micromechanics approach and homogenization method. Readers will benefit from the authors’ thorough coverage of the fundamentals followed by detailed mathematical derivation with worked examples.

Comprehensive treatment of Multifield heterogeneous materials Efficient homogenization and micromechanics approach Coupled thermo-chemo-electro-elastic analysis Thermopiezoelectric bone remodelling

approx. 95,95 €, approx. $129.00, approx. SFr. 167.50, approx. £74.00
ISBN 978-3-540-78258-2