
A Graph Matching Attack
on Privacy-Preserving Record Linkage∗

Anushka Vidanage, Peter Christen
Thilina Ranbaduge

{anushka.vidanage,peter.christen,thilina.ranbaduge}@anu.edu.au
The Australian National University

Canberra, ACT, Australia

Rainer Schnell
rainer.schnell@uni-due.de
University Duisburg-Essen

Duisburg, Germany

ABSTRACT
To facilitate advanced analytics, data science projects increasingly
require records about individuals to be linked across databases. Gen-
erally no unique entity identifiers are available in the databases to
be linked, and therefore quasi-identifiers such as names, addresses,
and dates of birth are used to link records. The process of linking
records without revealing any sensitive or confidential informa-
tion about the entities represented by these records is known as
privacy-preserving record linkage (PPRL). Various encoding and
encryption based PPRL methods have been developed in the past
two decades. Most existing PPRL methods calculate approximate
similarities between records because errors and variations can oc-
cur in quasi-identifying attribute values. Even though being used
in real-world linkage applications, certain PPRL methods, such as
popular Bloom filter encoding, have shown to be vulnerable to
cryptanalysis attacks. In this paper we present a novel attack on
PPRL methods that exploits the approximate similarities calculated
between encoded records. Our attack matches nodes in a similarity
graph generated from an encoded database with a corresponding
similarity graph generated from a plain-text database to re-identify
sensitive values. Our attack is not limited to any specific PPRL
method, and in an experimental evaluation we apply it on three
PPRL encoding methods using three different databases. This eval-
uation shows that our attack can successfully re-identify sensitive
values from these encodings with high accuracy where no previous
attack on PPRL would have been successful.

CCS CONCEPTS
• Information systems → Entity resolution; • Security and
privacy→Cryptanalysis and other attacks; Privacy-preserving
protocols; Management and querying of encrypted data.

KEYWORDS
Graph matching, graph alignment, feature generation, Bloom filter,
tabulation hashing, two-step hashing, min hash

∗Partially funded by the Australian Research Council under grant DP160101934.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3411931

ACM Reference Format:
Anushka Vidanage, Peter Christen, Thilina Ranbaduge, and Rainer Schnell.
2020. A Graph Matching Attack on Privacy-Preserving Record Linkage.
In Proceedings of the 29th ACM International Conference on Information
and Knowledge Management (CIKM ’20), October 19–23, 2020, Virtual Event,
Ireland.ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3340531.
3411931

1 INTRODUCTION
Linking records that belong to the same individual across different
databases has gained increasing interest in the past few decades.
Domains ranging from national security and healthcare to pop-
ulation informatics have a high demand for linking records for
various reasons including data enrichment, advanced knowledge
extraction, and missing value imputation [7]. Since unique entity
identifiers across different data sources are generally not available,
record linkage often needs to be conducted using sensitive personal
information (known as quasi-identifiers [35]) of people, such as
their names, addresses, and dates of birth [7]. However, such use of
sensitive personal information can raise concerns about individuals’
privacy and data security [6, 35]. Accordingly, rules and laws are
in place in many countries, that regulate how and when personal
information can be used. One example is the EU’s General Data
Protection Regulation (GDPR, see: https://gdpr-info.eu/).

The need for techniques that can perform record linkage us-
ing personal information without compromising the privacy of
individuals led to the development of privacy-preserving record
linkage (PPRL) methods [35]. Over the last few decades various
PPRL methods have been proposed to enable the linkage of sen-
sitive data while protecting the privacy of the individuals whose
records are being linked. Generally, PPRL methods are based on
encoding or encrypting quasi-identifiers that are used to perform
the linkage in such ways that no sensitive information can be ex-
tracted during the linkage process. PPRL methods can be divided
into two categories, perturbation and secure multi-party computa-
tion (SMC) based techniques [35]. SMC based techniques, while
provably secure and accurate [22], generally have high computa-
tion and communication costs. Perturbation based techniques, on
the other hand, have a trade-off between linkage quality, scalability
to linking large databases, and privacy protection [35]. Perturba-
tion based techniques are generally more practical for real-world
linkage situations compared to SMC based techniques [6].

One popular perturbation based technique widely used for PPRL
is Bloom filter (BF) encoding [4, 30], which we describe in detail in
Sect. 2.1. Because of its ability to efficiently calculate approximate
similarities between records, and the ease of implementation, BF

https://doi.org/10.1145/3340531.3411931
https://doi.org/10.1145/3340531.3411931
https://doi.org/10.1145/3340531.3411931
https://gdpr-info.eu/

f1 f2 f3 fmf4

1v

2v

3v

4v

5v

6v

7v

8v

f1 f2 f3 fmf4

u1

u2

u3

u4

u5

u6

u7

u8

u7

u1

u2

u3

u4

u5

u6

u7

u8

v2

v1

v3

v4

v5

v7

v8

Block 1

v2

v1
u1

u2

u3

Block 2

Block n

v4

v3 u4

u3

u6

u8

v8

.

.

.

extraction
Feature

extraction
Feature

locality sensitive hashing

Cosine

u1

u2

u3

u4

u5

u6

u7

u8

v2

v1

0.75

0.66

0.78

0.42

0.69 0.89

0.56

0.74

0.90

0.41

0.40

0.87

0.94

0.63

0.45

0.81

0.97

0.91

0.44

0.83
0.76

0.44

0.70
0.89

0.78

0.44

0.58

0.96

0.87
0.40

0.98

0.65
u4

u2

u1

u3

u8

u6u5

. . . .

. . . .

E

P

Plain−text

Encoded

generation

generation

G = Ve E, ee

Node pair−wise

v3

v4

v5

v6

v7

v8

v6

Bi−partite graph

()

comparison

Node one−to−one

matching
v3

v1

v2

v8

v4

v6

v7

v5

Fe

Fp
G = Vp E, pp ()

G = Vbb bE, Ub ,()

0.81

0.87

0.99 0.89

0.9

1.0

0.94

0.92

0.87

0.78

0.95

0.91
0.71

0.81 0.9

0.7

1.0

0.87

0.89 0.99

0.91

database

database

Graph

Graph

Encoded feature matrix

Plain−text feature matrix

Figure 1: An overview of our proposed graph based attack. As we describe in Sect. 3, in the first step we generate two similarity
graphs,𝐺𝑒 and𝐺𝑝 , from the encoded and plain-text databases, E and P, respectively. Next we extract a set of features, f , for each
node in both graphs using the node’s neighbourhood, resulting in the two feature matrices, F𝑒 and F𝑝 . We then use locality
sensitive hashing (LSH) to identify groups of similar feature vectors in F𝑒 and F𝑝 , and build a bi-partite graph connecting nodes
v𝑖 ∈ F𝑒 with nodes u𝑗 ∈ F𝑝 based on their similar feature vectors. Finally, we apply one-to-one matching to identify which
node v𝑖 from E corresponds to which node u𝑗 from P, allowing us to re-identify the encoded value in v𝑖 from 𝑢 𝑗 .

encoding is already being used in several real-world PPRL applica-
tions [3, 6, 26]. However, research has shown that the bit patterns
in BFs, especially frequently occurring patterns, are susceptible to
privacy attacks [8, 18, 20, 36], as we discuss in Sect. 2.2.

To overcome the privacy weaknesses of BF encoding, alterna-
tive perturbation based encoding techniques for PPRL have been
developed. One of these uses tabulation Min-hashing [34] while an-
other recently proposed method uses two hash encoding steps [27].
We discuss these two techniques in detail in Sect. 2.1. Given these
encoding techniques for PPRL are to be used in real-world linkage
applications where sensitive databases that contain personal infor-
mation about people are being linked, it is important to understand
the limitations and weaknesses of these encoding techniques in
terms of the privacy protection they provide.

While the majority of attacks on PPRL are limited to BF encoding,
we propose a novel attack technique that exploits the calculated
similarities between encoded records using a graph based matching
approach. As illustrated in Fig. 1, we generate one similarity graph
from the encoded values and a second similarity graph from a set of
plain-text values, where graph nodes correspond to the encoded or
plain-text values, respectively, and graph edges correspond to the
approximate similarities calculated between those values. We then
apply graph matching techniques [1, 11, 15] to align nodes across
these two graphs that are similar with regard to their local network
structure, which allows us to match encoded values to plain-text
values. This proposed attack can be applied on any PPRL encoding
method that calculates similarities between encoded values.

We investigate different scenarios of the attack, such as different
assumptions about the resources an adversary might have access

to, in order to understand the strength and limitations of our attack
on different PPRL encoding methods. Our experimental results
show that in certain situations these encoding methods can be
vulnerable to such a graph-based attack where encoded values can
be re-identified with high accuracy.

Contributions: We specifically contribute (1) a novel attack
using graph matching that works on any PPRL encoding method
that calculates similarities between encoded values; (2) a method
to adjust similarities between the encoded and plain-text graphs
to improve the re-identification accuracy of our attack; and (3) an
extensive experimental evaluation using three databases and three
perturbation based PPRL techniques (BF encoding and two recent
techniques that aim to overcome the vulnerabilities of BFs).

2 BACKGROUND
To provide the reader with an understanding of encoding methods
used for PPRL, we now briefly describe the three methods we will
use in the experimental evaluation of our attack: popular and prac-
tically used Bloom filter (BF) encoding [3, 6, 26, 28, 30], and the
more recently proposed tabulation min-hashing (TMH) [34] and
two-step hashing (2SH) [27] methods. We then provide an overview
of existing attack methods on PPRL in Sect. 2.2.

For notation, throughout this paper we use bold letters for sets
and lists (with upper-case bold letters for sets and lists of sets and
lists), and normal type letters for integers and strings. Lists are
shown with square and sets with curly brackets, where lists have
an order while sets do not. For graphs, however, we use standard
graph notation [5] where a graph is denoted by 𝐺 = (𝑉 , 𝐸) such
that 𝑉 is the set of nodes (vertices) and 𝐸 is the set of edges.

2.1 Encoding Methods
We now describe how the three encoding methods BF, TMH, and
2SH can be used to encode sensitive values in the context of PPRL.

2.1.1 Bloom Filter Encoding. Bloom filter (BF) [4] based encoding
was first proposed in the context of PPRL by Schnell et al. [30] due
to the ability of BFs to efficiently calculate set similarities while
providing sufficient privacy. A BF b is a bit vector of length 𝑙 = |b|,
where initially all bits are set to 0. The elements in a set s are
hashed into b using 𝑘 ≥ 1 independent hash functions ℎ1, . . . , ℎ𝑘 .
Each hash function ℎ𝑖 , outputs an index which is used to set the
bit at that index (position) in b to 1, b[ℎ𝑖 (𝑠)] = 1, with 1 ≤ 𝑖 ≤ 𝑘 ,
1 ≤ ℎ𝑖 (𝑠) ≤ 𝑙 , and is performed ∀𝑠 ∈ s.

In PPRL, a set s is generally the q-grams generated from one or
more attribute values selected from each record in a database that
needs to be encoded. A q-gram is a sub-string of length 𝑞 characters
extracted from a string using a sliding window approach [7, 30].
Each q-gram in s is hashed into a BF using 𝑘 hash functions. Set
based similarity functions, such as the Dice coefficient [7], can be
used to calculate the similarity between two BFs. Collisions are
possible where two different q-grams map to the same bit position.
These can lead to increased Dice similarities and potentially to
wrongly matched records [30]. Collisions can however also improve
the privacy of BF encoding by distorting the frequency distributions
of bit patterns [8, 20, 36], as we discuss in Sect. 2.2.

Different methods have been proposed to encode the sensitive
attribute values of a record into BFs. Attribute-level BF (ABF) en-
coding [30] generates one BF per attribute, allowing multiple simi-
larities can be calculated if several attributes are used to compare
records. It has, however, been shown that ABF encoding is suscep-
tible to frequency based privacy attacks [8]. Cryptographic long
term key (CLK) [31] encoding was proposed to provide increased
privacy guarantees. With CLK encoding multiple attribute values
from a record are encoded into a single BF so that frequency based
attacks would be more difficult [8]. However, CLK encoding can
still be vulnerable to pattern mining based attacks [36]. Record level
Bloom filter (RBF) encoding [10] was proposed as an alternative to
CLK encoding and to overcome the privacy issues of ABF encoding.
Using a weighted bit sampling process, RBF generates record level
BFs which contain minimum frequency information [10].

To further improve the privacy of BF encoding, various harden-
ing techniques have been proposed, including balancing, salting,
XOR-folding, Markov chaining, and Bloom-and-FLIP (BLIP) [31–33].
However, there is generally a trade-off between improved privacy
and the linkage quality obtained when using these techniques, be-
cause hardened BFs likely result in distorted similarities compared
to plain-text similarities.

2.1.2 Tabulation Min-hash Encoding (TMH). A tabulation hashing
based method was proposed by Smith [34] as an alternative to BF
encoding to encode sensitive attribute values. This method uses
more complex hashing which makes it more secure than BF encod-
ing. The basic idea behind this method is to use tabulation based
hashing to perform min-hash based locality sensitive hashing.

Similar to BF encoding, in TMH encoding one bit array (of 0s and
1s) of length 𝑙 is created for each record in the sensitive database to
be encoded. First 𝑙 sets of look-up tables are created, where each

set consists of 𝑐 look-up tables. Each look-up table contains keys
of length 𝑘 with a key space of size 2𝑘 , where 1 < 𝑘 , and each key
points to a random bit string. Each element in a set s is then hashed
using a one-way hash function (such as MD5 or SHA1 [29]), and a
fixed length binary value is extracted from such hash values. This
binary value is divided into 𝑐 sub-keys of length 𝑘 , and each sub-key
is used as the index key into one of the previously generated look-
up table to obtain a random bit string. 𝑐 such random bit strings are
retrieved using 𝑐 sub-keys, and these bit strings are then XORed to
generate a single bit string for each of the 𝑙 positions.

For each 𝑠 ∈ s such a bit string is generated using this table look-
up mechanism, and the minimum of all those bit strings is then
selected as a min-hash signature. Since there are 𝑙 sets of look-up
tables, for a given set s, 𝑙 min-hash signatures are generated. Smith
argued that generating tabulation min-hash signatures alone will
not be able to provide enough security against privacy attacks [34].
Therefore, a 1-bit hashing mechanism is used to prevent against
attacks where only the least significant bit of each of the previously
generated 𝑙 min-hash signatures is kept. These 𝑙 bits are then con-
catenated into the final bit array that is used as the encoding of a
sensitive value that is represented by the set s of q-grams.

This tabulation hashing based method provides improved secu-
rity against privacy attacks but at the cost of much higher com-
putational requirements. Generating 𝑙 sets of look-up tables will
increase both the time and memory consumption of the overall
encoding process compared to BF encoding.

2.1.3 Two-Step Hash Encoding (2SH). This recently proposed novel
PPRL encoding method [27] aims to address both privacy issues
of BF encoding as well as the high computational costs of TMH
encoding. This method employs two efficient hashing steps based
on bit vectors and an integer mapping to provide accurate Jaccard
similarity calculations with improved privacy protection.

Similar to BF encoding, the 2SH encoding process first converts
the quasi-identifying attribute values selected from each record
into a set of q-grams s. Next 𝑘 independent hash functions, where
𝑘 > 1, are employed to hash each q-gram 𝑠 ∈ s into 𝑘 bit vectors of
length 𝑙 . Unlike BF encoding, the 2SH encoding process generates
one bit vector per hash function, resulting in 𝑘 bit vectors each
of length 𝑙 , which corresponds to a bit matrix with 𝑘 rows and 𝑙
columns at the end of the first hashing step. In the second step of
2SH, each column of this matrix that contains at least one 1-bit is
hashed by mapping the column bit vector into an integer value in
a defined range. The column number along with a secret key is
used in the hashing process such that two columns with the same
bit pattern will not result in the same integer value. For hashing
each column bit vector into an integer value, either a hash function
such as SHA2 [29] or a pseudo-random number generator [29] can
be employed. Columns that only contain 0-bits will not be hashed
because they do not encode any q-grams, and 0-bit columns that
are common in two bit matrices would result in additional common
integer values in their corresponding encodings that would lead to
incorrect similarity calculations.

At the end of this two-step hashing process each record from a
sensitive database will be represented by a set of integers, and these
sets can be used to calculate the Jaccard similarity [7] between pairs
of encoded records.

2.2 Privacy Attacks on PPRL
Given its popularity and wide use in real-world linkage applica-
tions [3, 6, 26], understanding the limitations of BF encoding in
terms of its vulnerabilities with regard to privacy attacks is highly
important. We now briefly discuss previous attack methods pro-
posed on (mainly) BF encoding for PPRL. No attacks have so far
been developed specifically for TMH and 2SH encoding.

The first attack method for BF encoding in PPRL was proposed
by Kuzu et al. [20]. The attack assumes that an adversary has access
to a plain-text database and knows the number of hash functions 𝑘
used in the BF encoding. Based on a constraint satisfaction problem
solver, the attack aligns frequent q-grams with potentially matching
bit positions such that certain constraints are satisfied.

The second attack on BF encoding was proposed by Niedermeyer
et al. [24]. It exploits a weakness of the double hashing method
used in the original BF encoding method by Schnell et al. [30].
Using potential bit patterns that can encode a single q-gram (called
atoms) the attack can re-identify sensitive attribute values encoded
in BFs. Using 7,580 unique German last names the attack was able to
correctly re-identify the 934 most frequent last names. This attack
was then extended into a fully automated attack of several encoded
attributes by Kroll and Steinmetzer [18]. This extended attack was
able to re-identify 44% of encoded values from 100,000 BFs.

Amore recently proposed attack by Christen et al. [8] exploits the
weaknesses of the BF construction principle. By aligning frequent
BFs in an encoded database with frequent values in a plain-text
database, the attack identifies bit positions that can and cannot
encode certain q-grams. The attack was able to correctly re-identify
the most frequent first and last names in a large database.

A novel type of attack based on pattern mining exploits the
way frequent q-grams are hashed into BFs multiple times [36]. The
attack does neither require knowledge of the encoding settings
nor any frequent BFs in the encoded database, making this attack
more practical for real-world scenarios. Using maximal frequent
pattern-mining and a language model, the attack first identifies
q-grams hashed into BFs. Plain-text values are then re-identified
using those q-grams. The attack was able to exactly or partially
re-identify around 35,000 encoded values from 220,000 BFs [36].

A graph based dictionary attack on BF encoding was proposed
by Mitchell et al. [21]. The attack assumes that the adversary has
complete knowledge of all parameters used in the BF encoding pro-
cess, including the shared secret keys used in the hashing process.
Using a brute force method and a directed graph based technique
the attack re-identifies encoded plain-text values. The attack was
able to correctly re-identify 77% of the encoded values from nearly
470,000 BF encoded records in a US voter database.

Culnane et al. [9] have applied a graph based attack on a PPRL
method proposed by the UK Office for National Statistics which is
based on a keyed-hash message authentication code (HMAC) [29]
and similarity tables [25]. A directed similarity graph can be gen-
erated from these tables where nodes in the graph represent the
encoded records in the sensitive database, and edges represent the
similarities between these records. The problem of re-identifying
encoded values in the similarity graph is then solved as a sub-graph
isomorphism task. Using a plain-text graph, this attack was able to
re-identify up to 93% from over 390,000 encoded records.

3 GRAPH BASED PRIVACY ATTACK
We now describe the four main steps of our graph based privacy
attack, as illustrated in Fig. 1. We assume a linkage unit (LU) [35]
is employed to conduct the linkage of the encoded databases it
receives from the database owners. The LU can therefore build
a similarity graph from the record pairs it is comparing. We as-
sume the LU follows the honest-but-curious adversarial model [35],
where it is curious to learn about the sensitive information in these
encoded databases (the LU can be the adversary in our attack).
We also assume the LU does not collude with any of the database
owners, because this would allow a much easier attack following
the ideas of Mitchell et al. [21] we described above. Furthermore,
we assume the LU can guess the domain of the sensitive databases
depending on its knowledge about the database owners.

Existing attacks on PPRL also make similar assumptions about
the knowledge of an adversary [8, 18, 20, 24, 36]. Therefore, we
assume that the adversary has access to an encoded database E of
𝑛𝑒 = |E| records, which contains sensitive data of people encoded
using a PPRL method such as BF, TMH, or 2SH discussed above. We
also assume that the adversary has access to a plain-text database
P of 𝑛𝑝 = |P| records, that is from the same domain as E. As most
other PPRL attacks do, we assume the adversary does know or can
guess the quasi-identifying attributes that were encoded in E [32].

3.1 Generating Similarity Graphs
In the first step of the attack we generate two similarity graphs
using the two databases E and P. As can be seen from Fig. 1, the
main idea behind our attack is that given the two databases are
from the same domain then the two graphs will contain similar
neighbourhoods for nodes that represent the same value (plain-text
or encoded) across the two databases.

Consider a graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of nodes and 𝐸
is the set of edges connecting those nodes. In a PPRL context, 𝑉
corresponds to the set of unique values in a database and 𝐸 to the
similarities between those values. For a given pair of nodes 𝑣1 ∈ 𝑉

and 𝑣2 ∈ 𝑉 , its edge attribute is 𝑒1,2 = 𝑠𝑖𝑚(𝑣1, 𝑣2), where 𝑠𝑖𝑚() is
the function used to calculate the similarity between two nodes.
This can, for example, be the Dice or Jaccard similarity depending
on the encoding method used [27, 30, 34].

We denote the two similarity graphs generated from the two
databases E and P as𝐺𝑒 = (𝑉𝑒 , 𝐸𝑒) and𝐺𝑝 = (𝑉𝑝 , 𝐸𝑝). The encoded
similarity graph will contain |𝑉𝑒 | ≤ 𝑛𝑒 nodes and |𝐸𝑒 | ≤ 𝑛𝑒 (𝑛𝑒 −
1)/2 edges, whereas the plain-text similarity graph will contain
|𝑉𝑝 | ≤ 𝑛𝑝 nodes and |𝐸𝑝 | ≤ 𝑛𝑝 (𝑛𝑝 − 1)/2 edges.

In the plain-text database P, a node value is the unique set of
q-grams used from a record, while in the encoded database E a
node value is the unique set of random integers (2SH) or the unique
bit vector (BF or TMH) representing an encoded sensitive value.
There can be multiple records in P that have the same q-grams set,
and multiple records in E that have the same encoding. In such
scenarios we use a single node to represent all records with that q-
gram set or encoding, and we set the node frequency as the number
of records with that q-gram set or encoding. For example, if there
are 10 records with the same first and last name in P then they will
all have the same q-gram set, and a single node will represent all
these records where we set the node frequency to 10.

Table 1: The node, edge, and neighbourhood features we generate for each node in graphs 𝐺𝑒 and 𝐺𝑝 .

NodeFreq The number of records in P or E, respectively, that contain the value represented by a node 𝑣 ∈ 𝑉

NodeLen Length of q-gram set (plain-text graph), integer encoding set for 2SH, or number of 1-bits (Hamming weight) for BF and TMH
NodeDegr𝑠𝑚,𝑐𝑚 Number of edges connected to a node 𝑣 ∈ 𝑉 for given minimum similarity threshold 𝑠𝑚 and minimum connected component size 𝑐𝑚
EdgeMax Maximum similarity of the edges connected to a node 𝑣 ∈ 𝑉

EdgeMin𝑠𝑚,𝑐𝑚 Minimum similarity of the edges connected to a node 𝑣 ∈ 𝑉 , for given 𝑠𝑚 and 𝑐𝑚
EdgeAvr𝑠𝑚,𝑐𝑚 Arithmetic average of similarities of the edges connected to a node 𝑣 ∈ 𝑉 , for given 𝑠𝑚 and 𝑐𝑚
EdgeStdDev𝑠𝑚,𝑐𝑚 Standard deviation of similarities of the edges connected to a node 𝑣 ∈ 𝑉 , for given 𝑠𝑚 and 𝑐𝑚
EgonetDegr𝑠𝑚,𝑐𝑚 Degree of the induced subgraph for a node 𝑣 ∈ 𝑉 which includes 𝑣 and all of its direct neighbours, for given 𝑠𝑚 and 𝑐𝑚
EgonetDens𝑠𝑚,𝑐𝑚 Density of the induced subgraph for a node 𝑣 ∈ 𝑉 which includes 𝑣 and all of its direct neighbours, for given 𝑠𝑚 and 𝑐𝑚
BetwCentr𝑠𝑚,𝑐𝑚 Betweenness centrality, the ratio of the number of shortest paths that traverse through a node 𝑣 ∈ 𝑉 to all shortest paths, for given 𝑠𝑚 and 𝑐𝑚
DegrCentr𝑠𝑚,𝑐𝑚 Degree centrality, the ratio of the nodes connected to a node 𝑣 ∈ 𝑉 with regard to all nodes in the connected component, for given 𝑠𝑚 and 𝑐𝑚
OneHopHisto𝑠𝑚,𝑐𝑚 Degree distribution of the one-hop neighbour nodes of a node 𝑣 ∈ 𝑉 , for given 𝑠𝑚 and 𝑐𝑚
TwoHopHisto𝑠𝑚,𝑐𝑚 Degree distribution of the two-hop neighbour nodes of a node 𝑣 ∈ 𝑉 , for given 𝑠𝑚 and 𝑐𝑚

To limit the number of edges between nodes in the graphs we
generate, we use a minimum similarity threshold 𝑠𝑚 , with 0 ≤ 𝑠𝑚 ≤
1 (assuming 0 ≤ 𝑠𝑖𝑚(𝑣1, 𝑣2) ≤ 1), and only consider similarities
between nodes that are at least 𝑠𝑚 . Higher values of 𝑠𝑚 mean the
generated graphs will contain less edges.

3.2 Node Feature Generation
The second step of the attack generates features for each node in
𝑉𝑒 and in 𝑉𝑝 . These features, as listed in Table 1, represent the
characteristics of a given node based on its value and the edges
connecting it to neighbouring nodes. We only consider nodes that
are part of a connected component with a minimum size 𝑐𝑚 (based
on a minimum similarity threshold 𝑠𝑚 on the edges in a graph, as
discussed above), because otherwise the generated features would
not contain enough information to distinguish nodes. For example,
all nodes with no or only one edge connecting them to a single
neighbouring node will likely have the same feature values making
them indistinguishable in the graph matching step.

For each node in the two graphs we generate a feature vector,
where our attack is based on identifying highly similar feature vec-
tors to match pairs of plain-text and encoded values. The generated
feature vectors will differ for different minimum similarity thresh-
olds 𝑠𝑚 and minimum connected component sizes 𝑐𝑚 , because the
neighbourhoods of nodes will be different with different number
of edges connecting them. We discuss what values for 𝑠𝑚 and 𝑐𝑚
provided the best results in our experiments in Sect. 4. We generate
three types of features, as shown in Table 1 and described next.

3.2.1 Node Based Features. Each node in the similarity graphs 𝐺𝑒

and𝐺𝑝 has two attributes, its frequency and length. Node frequency
is howmany records in E or P, respectively, contain a certain q-gram
set or encoded values, as we discussed above. As a node’s length,
for the plain-text graph𝐺𝑝 we use the number of q-grams in a node
as its length, while for a node in 𝐺𝑒 we use the Hamming weight
(number of 1-bits) of the bit vectors for BF and TMH encoding, and
the length of the integer set generated for 2SH.

3.2.2 Edge Based Features. For a graph generated based on given
values of 𝑠𝑚 and 𝑐𝑚 , each node that is part of a connected compo-
nent of size at least 𝑐𝑚 will have one or more neighbouring nodes
it is connected to. We calculate edge features for each such node 𝑣𝑖
based on the set of its neighbouring nodes as 𝑁 (𝑣𝑖) = {𝑣 𝑗 | (𝑣𝑖 , 𝑣 𝑗) ∈
𝐸}, and the set of edges connecting each neighbour 𝑣 𝑗 ∈ 𝑁 (𝑣𝑖)
to 𝑣𝑖 as 𝐸 (𝑣𝑖) = {𝑒𝑖, 𝑗 |𝑣 𝑗 ∈ 𝑁 (𝑣𝑖)}. As listed in Table 1, these edge

features are the degree of the node 𝑣𝑖 , 𝑑 (𝑣𝑖) = |𝑁 (𝑣𝑖) |, and the min-
imum,𝑚𝑖𝑛(𝐸 (𝑣𝑖)), maximum,𝑚𝑎𝑥 (𝐸 (𝑣𝑖)), average, 𝑎𝑣𝑔(𝐸 (𝑣𝑖)) =
(∑ |𝐸 (𝑣𝑖) |

𝑗=1 𝑒𝑖, 𝑗)/|𝐸 (𝑣𝑖) |, and standard deviation, 𝑠𝑡𝑑 (𝐸 (𝑣𝑖)), of neigh-
bouring edges.

3.2.3 Structural Features. Under structural features we consider
all nodes that are part of a connected component, not just the direct
neighbours of a given node 𝑣𝑖 . We calculate egonet degree and
egonet density using the egonet of a node 𝑣𝑖 . For a given node
𝑣𝑖 ∈ 𝑉 , the egonet of that node is the subgraph 𝐺 ′ of 𝐺 where
𝑉 (𝐺 ′) ⊆ 𝑉 (𝐺) and 𝐸 (𝐺 ′) ⊆ 𝐸 (𝐺) which includes the node 𝑣𝑖 ,
all its direct neighbours, and all the edges between them [1]. We
also calculate centrality metrics such as betweenness centrality
and degree centrality [1]. These centrality metrics measure the
importance of a node in the graph based on the connectivity of that
node within the graph. We also consider the degree distribution
of a node’s one-hop and two-hop neighbourhoods. We calculate
neighbourhood node degree histograms based on a logarithmic
scale for each node [16] and use them as features.

At the end of the feature generation process each node in𝑉𝑒 and
in 𝑉𝑝 will have a vector f of features assigned to it where𝑚 = |f |
is the number of features considered. We denote the resulting two
feature matrices for databases E and P as F𝑒 and F𝑝 , respectively.

3.3 Node Matching
After generating the feature matrices F𝑒 and F𝑝 , we next match
nodes in the two graphs 𝐺𝑒 and 𝐺𝑝 to identify encoded values in
E that correspond to plain-text values in P. We now describe the
steps taken to perform node matching in an effective and efficient
manner. Given we are processing feature vectors in both F𝑒 and F𝑝
in the same way, to improve readability we refer to both as F.

Many graph matching and alignment algorithms have been de-
veloped in research domains ranging from bioinformatics to multi-
media information retrieval [11]. Such algorithms can be based on
graph kernels [17], node and edge embeddings [14], or hashing [15].
In our approach, as discussed below, we use a Cosine locality sensi-
tive hashing (LSH) based approach because it allows us to explicitly
set a trade-off between the performance of the attack (as the num-
ber of feature vectors to be compared) versus the probability of
comparing similar nodes [15].

3.3.1 Reducing Comparison Space using Locality Sensitive Hashing.
With 𝑛𝑒 nodes in the encoded graph𝐺𝑒 and 𝑛𝑝 nodes in the plain-
text graph 𝐺𝑝 , there can be a maximum of 𝑛𝑒 · 𝑛𝑝 pairs of feature

v1 1

v2

v3

v4

v5

v6

v7

v8

u

u

u

u

u

u

u

u

3

4

5

6

7

8

2

,

,1

,2 1

,3 3

,4 2

,4 3

,4 4

,5 5

,5 6

,6 5

,6 7

,7 8

,8 8

3

1 2v u()

Edges

()

()

()

()

()

()

()

()

()

()

v

()v

v

v

v

()v

v

v

v

v

v

v

u

u

u

u

u

u

u

u

u

u

u

u

0.81

0.7

0.9

1.0

0.87

0.94

1.22

1.5

0.76

1.03 0.33

0.25

1.0

0.33

0.25

0.2

0.33

0.33

0.5

0.5

0.5

0.33

0.5

1.04

0.96

0.79

1.17

0.97

0.98

0.96

0.95

0.91

0.78

0.99

0.89

0.92

0.87

1.09

0.99
0.87

1.0

0.7

0.81 0.9

0.99 0.89

0.94

0.87

0.92

0.78

0.91

0.95

Similarity DegreeCosine
confidence confidencesimilarity

Figure 2: An example bi-partite graph matching, where en-
coded nodes 𝑣𝑖 are connected to plain-text nodes𝑢𝑖 . For each
edge the calculated Cosine similarity, similarity confidence,
and degree confidence are shown, as discussed in Sect. 3.3.

vectors for which we would need to calculate their similarities.
This is not scalable for large databases. We therefore use LSH to
reduce the comparison space. Since the node feature vectors, f ,
are real-valued we use Cosine similarity based LSH [2], where 𝑑
randomly generated column vectors (hyperplanes) {c1, c2, ..., c𝑑 } ∈
R𝑚 are generated that follow a uniform stable distribution such as
a Gaussian distribution. We use these column vectors as the LSH
family of hash functions H to map the nodes into blocks using the
each node’s feature vector f ∈ F.

The mapping of node 𝑣𝑖 , ℎ𝑑 (𝑣𝑖), where ℎ() ∈ H , is based on the
sign of the dot product f (𝑣𝑖) · c𝑗 :

ℎ𝑑 (𝑣𝑖) =
{
0, if f (𝑣𝑖) · c𝑗 < 0
1, otherwise.

(1)

where f (𝑣𝑖) is the feature vector of the node 𝑣𝑖 and c𝑗 is a random
column vector 1 ≤ 𝑗 ≤ 𝑑 . Given there are 𝑑 such column vectors,
each feature vector f ∈ F of a node is therefore mapped to a binary
vector space H(𝑣𝑖) = {0, 1}𝑑 resulting in a bit vector of length 𝑑

assigned to each node. We next use Hamming LSH on these mapped
bit vectors to group the nodes in the two graphs 𝐺𝑒 and 𝐺𝑝 into
similar blocks. Using this method the attack reduces the quadratic
comparison space by removing likely non-matching nodes and
grouping potential matching nodes into the same blocks.

3.3.2 Bi-partite graph matching. After the LSH based blocking step,
the comparison of nodes across the two graphs will become a bi-
partite graph matching problem [1]. We compare pairs of encoded
and plain-text nodes from similar blocks using a defined similarity
metric, and then select pairs with a similarity higher than a user
defined threshold 𝑏𝑚 . Since node pairs are compared using their
respective feature vectors, we use Cosine similarity to calculate their
similarity. This results in a bi-partite graph𝐺𝑏 = (𝑉𝑏 ,𝑈𝑏 , 𝐸𝑏) where
𝑉𝑏 ⊆ 𝑉𝑒 and𝑈𝑏 ⊆ 𝑉𝑝 . It is not necessary to have |𝑉𝑏 | = |𝑈𝑏 |. There
can be multiple edges connecting one encoded node to multiple
plain-text nodes (and vise-versa) in 𝐺𝑏 , as shown in Fig. 2. Note

1

2

3

4

5

6

7

8

v

v

v

v

v

v

v

v

u1

u

u

u

u

u

u

u

7

8

6

5

4

3

2

1

2

3

4

5

6

7

8

v

v

v

v

v

v

v

v

u1

u

u

u

u

u

u

u

7

8

6

5

4

3

2

1

2

3

4

5

6

7

8

v

v

v

v

v

v

v

v

u1

u

u

u

u

u

u

u

7

8

6

5

4

3

2

Symmetric highest
match

0.61

Stable marriage
match

0.61

0.72

match
Maximum weight

0.72

0.61

0.83

0.68

0.72

0.40 0.40

0.83 0.830.330.33

0.470.68 0.470.68

Figure 3: An example solution of the bi-partite graphmatch-
ing problem from Fig. 2 using theweights𝑤𝑐𝑠 = 0.5,𝑤𝑠𝑐 = 0.3,
and 𝑤𝑑𝑐 = 0.2 for Cosine similarity, similarity confidence,
and degree confidence, respectively.

that from here onward we refer to a node in 𝑉𝑏 as 𝑣 and to a node
in𝑈𝑏 as 𝑢 to improve readability.

We select a set of edges, 𝐸𝑠 = {(𝑣,𝑢), 𝑣 ∈ 𝑉𝑏 , 𝑢 ∈ 𝑈𝑏 }, where 𝐸𝑠 ⊆
𝐸𝑏 , between encoded and plain-text nodes in such a way that for
every pair of edges 𝑒1, 𝑒2 ∈ 𝐸𝑠 , 𝑒1 and 𝑒2 do not share common nodes.
Formally ∃(𝑣,𝑢) ∈ 𝐸𝑠 ⇐⇒ ∀(𝑣 ′, 𝑢 ′) ∈ 𝐸𝑠 : (𝑣,𝑢) ≠ (𝑣 ′, 𝑢 ′); (𝑣 ′ ≠
𝑣) ∧ (𝑢 ′ ≠ 𝑢). Fig. 2 shows an example bi-partite matching problem
of two sets of nodes from 𝐺𝑒 and 𝐺𝑝 . We define three different
edge weights: (1) Cosine similarity, (2) similarity confidence, and (3)
degree confidence. These can be used when matching nodes in 𝐺𝑏 .
The Cosine similarity, 𝑐𝑠 (𝑣,𝑢), of a given edge is calculated as [15]
𝑐𝑠 (𝑣,𝑢) = f (𝑣) ·f (𝑢)

| |f (𝑣) | | · | |f (𝑢) | | , where f (𝑣) and f (𝑢) are the normalised
feature vectors calculated for the two nodes 𝑣 and 𝑢. The similarity
confidence, 𝑐𝑠 (𝑣,𝑢), measures the reliability of an edge value with
respect to all the other values of the edges connected to the nodes
𝑣 and 𝑢. The similarity confidence, 𝑠𝑐 (𝑣,𝑢), of a given edge can be
calculated as 𝑠𝑐 (𝑣,𝑢) = 𝑐𝑠 (𝑣,𝑢) ·(𝑝+𝑞−2)∑𝑝−1

𝑖=1 𝑐𝑠 (𝑣,𝑢𝑖)+
∑𝑞−1

𝑗=1 𝑐𝑠 (𝑣𝑗 ,𝑢)
, where 𝑐𝑠 (𝑣,𝑢) is

the Cosine similarity of the node pair (𝑣,𝑢), 𝑝 − 1 is the number of
other edges connected to the encoded node 𝑣 , and𝑞−1 is the number
of other edges connected to the plain-text node𝑢. Finally, the degree
confidence, 𝑑𝑐 (𝑣,𝑢) measures the reliability of an edge (𝑣,𝑢) with
respect to the number of other edges connected to the nodes 𝑣
and 𝑢. The degree confidence of a given edge can be calculated
as 𝑑𝑐 (𝑣,𝑢) = 1

𝑝+𝑞−1 , where 𝑝 is the degree of the encoded node 𝑣
and 𝑞 is the degree of the plain-text node 𝑢. In Fig. 2 we show the
calculation of these edge weights in the given bi-partite graph.

Using the above three weights defined for each edge in 𝐺𝐵 we
then aim to match encoded nodes with plain-text nodes. The three
types of weights can be combined in a weighted way, using𝑤𝑐𝑠 ,𝑤𝑠𝑐 ,
and𝑤𝑑𝑐 , where𝑤𝑐𝑠 +𝑤𝑠𝑐 +𝑤𝑑𝑐 = 1.0, based on their importance
in being able to identify the correct plain-text node for an encoded
node. Note that since the numerical values calculated by these three
weight types are not in the same range, we normalise them prior
to matching. We discuss the suitability of these three weight types
to correctly match nodes across the two graphs in Sect. 5.

The actual matching of nodes can be performed using different
methods. Franke et al. [12] proposed three methods of performing
one-to-one matching of nodes between a bi-partite graph.

The symmetric highest match (SHM) method finds, for each
node in both encoded and plain-text graphs, the edge that has the
highest weight. Here the edge weight can be a value calculated
using one of the above three weight types, or a weighted average
of the three weight types. For instance in Fig. 2 the encoded node
𝑣6 and the plain-text node 𝑢5 have three edges (𝑣6, 𝑢5), (𝑣6, 𝑢7),
and (𝑣5, 𝑢5). In Fig. 3, when we calculate the weighted edge values
we get (𝑣6, 𝑢5) = 0.68, (𝑣6, 𝑢7) = 0.22, and (𝑣5, 𝑢5) = 0.49. As can
be seen, since the highest match for both 𝑣6 and 𝑢5 is the edge
connecting these two nodes, it is selected while all the other edges
connected to those two nodes are discarded.

The stable marriage match (SMM) method solves the problem of
matching nodes by finding stable matches in the bi-partite graph
𝐺𝑏 . A matched edge is defined as stable if there are no other edges
connecting both nodes that have higher weight than the matched
edge. We use the Gale–Shapley algorithm [13] to solve this problem.
However, compared to the original algorithm [13], our specific case
of matching nodes from the encoded graph to the plain-text graph
requires two modifications. The original algorithm assumes that
each node from one side of the graph𝐺𝑏 has a complete preference
list including every node from the other side. As can be seen from
Fig. 2 this is not the case for our problem. The original algorithm
also assumes equal sized sets of nodes in both side of the graph
𝐺𝑏 . This might not be always true in our case because we use a
minimum connected component size threshold 𝑐𝑚 and LSH based
blocking to group similar nodes. We have modified the original
algorithm to accept these changes and identify the stable matches
across the bi-partite graph 𝐺𝑏 .

Finally, themaximumweightmatch (MWM)method corresponds
to the assignment problem in a bi-partite graph where the set of
edges 𝐸𝑠 is selected in such a way that the sum of the weights of
those edges are maximised. This assignment problem can be solved
using the Kuhn-Munkres algorithm (also known as the Hungarian
algorithm) [19] in polynomial time.

In Fig. 3 we show example graph matching results obtained
using the above discussed three matching techniques with weight
values𝑤𝑐𝑠 = 0.5,𝑤𝑠𝑐 = 0.3, and𝑤𝑑𝑐 = 0.2 for each edge weighting
technique. At the end of this matching step, no node in the resulting
set of edges, 𝐸𝑠 , will occur in more than one edge.

3.4 Plain-text Value Re-identification
Once nodes are matched across the encoded and plain-text graphs
in the bi-partite graph 𝐺𝑏 , the final step of our attack is to perform
plain-text value re-identification. Since the selected set of edges
𝐸𝑠 from the previous step only consists of one-to-one matches, we
can align the plain-text value associated with a node from𝐺𝑝 to its
corresponding encoded node in 𝐺𝑒 using the edges 𝐸𝑠 in 𝐺𝑏 .

First the attack sorts all the edges in (𝑣,𝑢) ∈ 𝐸𝑠 according to their
edge weights in descending order. Then we loop over each edge
and retrieve the corresponding encoded and plain-text values from
the databases E and P, respectively. We continue this process only
for the top 𝑡 pairs of nodes with the highest edge weights, where
𝑡 is a user defined value. With larger 𝑡 we will potentially match

0.0 0.2 0.4 0.6 0.8 1.0
Q-grams (Dice)

0.0

0.2

0.4

0.6

0.8

1.0

BF
en

co
di

ng
(D

ic
e)

FirstName, LastName, Street

0.0 0.2 0.4 0.6 0.8 1.0
Q-grams (Jaccard)

0.0

0.2

0.4

0.6

0.8

1.0

T
M

H
en

co
di

ng
(J

ac
ca

rd
)

FirstName, LastName, Street

0.0 0.2 0.4 0.6 0.8 1.0
Q-grams (Jaccard)

0.0

0.2

0.4

0.6

0.8

1.0

2S
H

en
co

di
ng

(J
ac

ca
rd

)

FirstName, LastName, Street

Figure 4: The relationship between encoded and plain-text
similarities using the encoding techniques BF (left), TMH
(center), and 2SH (right). The regressionmodels (black lines)
are build using the EURO database (as discussed in Sect. 4).

and re-identify incorrect values as their similarities become lower.
In this assignment process there can be one-to-many or many-to-
many matches of records as a node from either graph,𝐺𝑒 or𝐺𝑝 , can
represent more than one record (as discussed in Sect. 3.1), where
however all these records have the same value.

3.5 Adjusting Similarities
For our attack method to work accurately, it is important to have
similar neighbourhood structures for nodes representing the same
value across the two graphs. Assuming that the adversary can es-
timate the parameter values used in the encoding of values (even
if not all parameter values are set correctly), she can perform a
regression analysis using the plain-text database to determine the
relationship between the encoded and plain-text similarity distri-
butions. Some encoding parameters, such as BF length 𝑙 , can be
learned by analysing the encoded values themselves. Other pa-
rameters, such as the number of hash functions used, 𝑘 , can be
approximated by comparing the Hamming weight distribution of
BFs to the distribution of the number of q-grams in plain-text values.
By referring to previous publications and/or real-world applications
where encoding techniques are used for PPRL the likely used pa-
rameter settings can also be obtained. It is important to note that by
obtaining these parameters an adversary cannot simply reconstruct
the exact encodings (BF, THM, or 2SH) because the hash functions
and secret key used will not be known to the adversary.

In Fig. 4 we show three example regression models based on
the three encoding techniques. As can be seen, the relationships
between the encoded and plain-text similarities are approximately
linear with BF and TMH encoding, and slightly non-linear with
2SH encoding. However, BF similarities are significantly higher
than the corresponding plain-text q-gram set similarities due to
collisions. Using such regression models, the adversary can adjust
plain-text similarities such that they align with encoded similarities
when generating the plain-text graph𝐺𝑝 . Using this additional step
during the similarity graph generation of our attack, the accuracy
of the attack can be significantly increased because when encoded
and plain-text similarities are aligned the overall structure of the
two generated graphs, 𝐺𝑒 and 𝐺𝑝 , will be more similar. This leads
to the corresponding nodes in the encoded and plain-text graphs to
have highly similar neighbourhoods, and therefore highly similar
feature vectors. In Sect. 5 we discuss the accuracy improvements
we gained using this technique.

t = 10 t = 100 t = 500 t = 1000

20

40

60

80

100

A
cc

ur
ac

y
(%

)

BF / FirstName

without SimAdjust
with SimAdjust

t = 10 t = 100 t = 500 t = 1000

20

40

60

80

100

A
cc

ur
ac

y
(%

)

BF / FirstName, LastName

t = 10 t = 100 t = 500 t = 1000

20

40

60

80

100

A
cc

ur
ac

y
(%

)

TMH / FirstName

t = 10 t = 100 t = 500 t = 1000

20

40

60

80

100

A
cc

ur
ac

y
(%

)

TMH / FirstName, LastName

t = 10 t = 100 t = 500 t = 1000

20

40

60

80

100

A
cc

ur
ac

y
(%

)

2SH / FirstName

t = 10 t = 100 t = 500 t = 1000

20

40

60

80

100

A
cc

ur
ac

y
(%

)

2SH / FirstName, LastName

Figure 5: Accuracy results for re-identified plain-text values
on the TITANIC database, as discussed in Sect. 3.5.

t = 10 t = 100 t = 500 t = 1000

20

40

60

80

100

A
cc

ur
ac

y
(%

)

BF / FirstName, LastName

without SimAdjust
with SimAdjust

t = 10 t = 100 t = 500 t = 1000

20

40

60

80

100

A
cc

ur
ac

y
(%

)

BF / FirstName, LastName, Street

t = 10 t = 100 t = 500 t = 1000

20

40

60

80

100

A
cc

ur
ac

y
(%

)

TMH / FirstName, LastName

t = 10 t = 100 t = 500 t = 1000

20

40

60

80

100

A
cc

ur
ac

y
(%

)

TMH / FirstName, LastName, Street

t = 10 t = 100 t = 500 t = 1000

20

40

60

80

100

A
cc

ur
ac

y
(%

)

2SH / FirstName, LastName

t = 10 t = 100 t = 500 t = 1000

20

40

60

80

100

A
cc

ur
ac

y
(%

)

2SH / FirstName, LastName, Street

Figure 6: Accuracy results for re-identified plain-text values
on the EURO database, as discussed in Sect. 3.5.

4 EXPERIMENTAL EVALUATION
We conducted an experimental evaluation of our proposed graph
matching attack on PPRL encoding methods using two real-world
databases and one synthetic database. We measured the accuracy
of the attack under different parameter settings to investigate the
feasibility of our attack in real-world linkage situations.

Databases: The first database we used is the Titanic (TITANIC)
database1 [34] which contains the names of 1,317 passengers. We
extracted the 𝐹𝑖𝑟𝑠𝑡𝑁𝑎𝑚𝑒𝑠 and 𝐿𝑎𝑠𝑡𝑁𝑎𝑚𝑒𝑠 of the passengers sep-
arately into two attributes to be encoded. The second database is

1Available at: https://en.wikipedia.org/wiki/Passengers_of_the_RMS_Titanic

t = 10 t = 100 t = 500 t = 1000

20

40

60

80

100

A
cc

ur
ac

y
(%

)

BF / FirstName, LastName

without SimAdjust
with SimAdjust

t = 10 t = 100 t = 500 t = 1000

20

40

60

80

100

A
cc

ur
ac

y
(%

)

BF / FirstName, LastName, Street

t = 10 t = 100 t = 500 t = 1000

20

40

60

80

100

A
cc

ur
ac

y
(%

)

TMH / FirstName, LastName

t = 10 t = 100 t = 500 t = 1000

20

40

60

80

100

A
cc

ur
ac

y
(%

)

TMH / FirstName, LastName, Street

t = 10 t = 100 t = 500 t = 1000

20

40

60

80

100

A
cc

ur
ac

y
(%

)

2SH / FirstName, LastName

t = 10 t = 100 t = 500 t = 1000

20

40

60

80

100

A
cc

ur
ac

y
(%

)

2SH / FirstName, LastName, Street

Figure 7: Accuracy results for re-identified plain-text values
on the NCVR database, as discussed in Sect. 3.5.

a synthetic European census (EURO) database2 generated to rep-
resent real observations of the decennial census. This database
contains names and addresses of 25,343 people. The third database
was the North Carolina Voter Registration (NCVR) database3 where
we used two snapshots from February and April 2019, each contain-
ing 100,000 voter records with 100% overlap of voter identifiers. The
NCVR database also contains name and address details of voters.

For the TITANIC and EURO databases we used the same data-
base as both the encoded, E, and plain-text, P, databases, while
for the NCVR database we used the snapshot from April 2019 as
the encoded database E and the snapshot from February 2019 as
the plain-text database P. We used different combinations of the
attributes 𝐹𝑖𝑟𝑠𝑡𝑁𝑎𝑚𝑒 , 𝐿𝑎𝑠𝑡𝑁𝑎𝑚𝑒 , and 𝑆𝑡𝑟𝑒𝑒𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠 to generate
different instances of encoded databases using the three encoding
methods BF, TMH, and 2SH. These attributes are commonly used
in PPRL to link records across different databases [35].

Evaluation Criteria and Setup: To evaluate the quality of re-
identification of plain-text values from encoded values we analysed
the accuracy of the top one-to-one 𝑡 re-identifications (when sorted
according to the edge weight between encoded and plain-text nodes,
as discussed in Sect. 3.4) where 𝑡 = [10, 100, 500, 1000]. We then
calculated the percentage of correct re-identifications from these
top 𝑡 identified values as the accuracy we report. We also discuss
the usability of the edge weighting and bi-partite graph matching
approaches to accurately match plain-text nodes from P to encoded
nodes from E, as described in Sect. 3.3.

Following earlier work [30, 35], for BF encoding we used the
parameter settings: 𝑞 = 2, 𝑙 = 1000, and 𝑘 = [10, 15, 20]. BFs
were encoded using both the CLK and RBF approaches [10, 31].
Following [34], for TMH encoding we used 𝑐 = 8 look-up tables per
min-hash signature, where in each look-up table bit keys of length
𝑘 = 8 were used to refer to 64 bit random bit strings. Using the
2Available at: https://ec.europa.eu/eurostat/cros/content/job-training_en
3Available at: https://dl.ncsbe.gov/?prefix=data

https://en.wikipedia.org/wiki/Passengers_of_the_RMS_Titanic
https://ec.europa.eu/eurostat/cros/content/job-training_en
https://dl.ncsbe.gov/?prefix=data

Table 2: Percentages of accurate re-identifications using different bi-partite graph matching and edge weighting methods, as
discussed in Sec. 3.3.2, for the EURO database with respect to all 25,343 potential matches. Percentages are shown without
and with similarity adjustments applied. In the all-three edge weighting method we used the weights𝑤𝑐𝑠 = 0.6,𝑤𝑠𝑐 = 0.3, and
𝑤𝑑𝑐 = 0.1 for Cosine similarity, similarity confidence, and degree confidence, respectively.

Attribute Combination Encoding
Method

Graph matching method Graph edge weighting method
SHM SMM MWM 𝑐𝑠 (𝑣,𝑢) 𝑠𝑐 (𝑣,𝑢) 𝑑𝑐 (𝑣,𝑢) all-three

𝐹𝑖𝑟𝑠𝑡𝑁𝑎𝑚𝑒 , 𝐿𝑎𝑠𝑡𝑁𝑎𝑚𝑒

BF 16.9 / 32.0 21.1 / 34.0 14.8 / 32.4 19.0 / 39.4 21.5 / 39.8 8.5 / 12.2 21.5 / 39.8
TMH 40.7 / 41.4 47.1 / 47.8 35.6 / 36.7 51.9 / 53.3 52.7 / 54.0 5.9 / 5.5 54.0 / 55.1
2SH 20.6 / 43.4 25.5 / 49.7 16.8 / 40.6 24.7 / 56.7 27.3 / 57.8 4.6 / 5.0 27.2 / 58.8

𝐹𝑖𝑟𝑠𝑡𝑁𝑎𝑚𝑒 , 𝐿𝑎𝑠𝑡𝑁𝑎𝑚𝑒 ,
𝑆𝑡𝑟𝑒𝑒𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠

BF 7.6 / 57.0 12.5 / 62.5 5.1 / 60.1 8.2 / 66.3 10.0 / 66.9 5.5 / 38.8 10.0 / 67.3
TMH 23.2 / 24.0 31.3 / 31.7 19.4 / 17.1 30.9 / 31.1 32.0 / 30.3 2.7 / 2.2 32.9 / 33.4
2SH 0.4 / 16.1 0.8 / 22.0 0.2 / 11.6 0.3 / 19.6 0.4 / 21.6 0.6 / 2.5 0.4 / 22.5

obtained min-hash signatures, bit arrays of length 𝑙 = 1000 were
generated for each encoded value [34]. For 2SH encoding, we used
the parameter settings:𝑞 = 2, 𝑙 = 1000, and𝑘 = [10, 15, 20] [27]. The
accuracy results discussed below for each database were averaged
over all these parameter settings. We set 𝑠𝑚 = [0.2, 0.3, 0.4] for
the minimum similarity threshold and 𝑐𝑚 = [5, 10, 50, 100] for
the minimum connected component size threshold. Furthermore,
we set 𝑏𝑚 = [0.8, 0.9] as the minimum similarity threshold when
generating the bi-partite graph as discussed in Sect. 3.3.2. For the
alignment of similarities between encoded and plain-text databases
we used polynomial regression [23] and built regression models
using a sample size of 5,000 edge (similarity) pairs from the plain-
text graph. These parameter values provided accurate results in a
series of set-up experiments.

We implemented the proposed graph matching attack method
using Python 2.7 and all experiments were run on a server with 64-
bit Xeon 2.1 GHz 16-Core CPU, 512 GBytes of memory and running
Ubuntu 18.04. To facilitate repeatability the prototype programs
are available from: https://dmm.anu.edu.au/pprlattack/.

5 RESULTS AND DISCUSSION
In Fig. 5 we show accuracy results for the TITANIC database with
two different attribute combinations and both without and with
similarity adjustments (as discussed in Sect. 3.5). As can be seen,
the attack was able to re-identify encoded sensitive values with
more than 80% accuracy with all three encoding techniques. With
2SH encoding the accuracy of re-identifications without similarity
adjustment drops because of the similarity differences as well as
the slightly non-linear relationship between encoded and plain-text
similarities (as shown in Fig. 4).

Figures 6 and 7 illustrate re-identification accuracy results for the
EURO and NCVR databases, respectively. As can be seen, with two
attribute combinations our attack achieves high re-identification
accuracy for all three encoding techniques. However, the results
without similarity adjustment drop when more attributes are en-
coded because with more attributes the neighbourhoods of dissimi-
lar nodes (which corresponds to non-matching values) across the
two graphs 𝐺𝑒 and 𝐺𝑝 become less distinct as they get connected
by more edges. This can be seen in the results for both BF and 2SH
encoding. Out of the three encoding techniques, TMH gave the best
results, both with and without similarity adjustments. This is be-
cause the similarities between TMH encodings are highly similar to
the corresponding plain-text q-gram set similarities (as can be seen

Table 3: Runtime results (in minutes) for different steps of
our proposed graph attack (averaged over all other parame-
ter settings).

Database Encoding
Method

Graph Feat. Node Plain-text
Gen. Gen. Match. Re-ident.

EURO
BF 7.11 449.36 30.0 < 1

TMH 5.75 364.46 148.34 < 1
2SH 23.78 514.75 201.2 < 1

NCVR
BF 12.25 774.21 85.26 < 1

TMH 11.21 419.54 116.43 < 1
2SH 34.67 647.88 86.69 < 1

in the center plot of Fig. 4). This results in encoded and plain-text
graphs, 𝐺𝑒 and 𝐺𝑝 , with highly similar node neighbourhoods. BF
encoding provided slightly better re-identification accuracy both
with and without similarity adjustments because of the linear re-
lationship between encoded and plain-text similarities (as shown
in the left plot in Fig. 4). The worst re-identification results are ob-
tained for 2SH encoding with three attribute combination. Overall,
our attack achieved better re-identification accuracy with similarity
adjustment compared to without similarity adjustment.

In Table 2 we show the percentages of accurate one-to-one re-
identifications (averaged over all other parameter settings) for the
three different bi-partite graph matching techniques, SHM, SMM,
and MWM, and the three different bi-partite graph edge weighting
approaches, 𝑐𝑠 (), 𝑠𝑐 (), and𝑑𝑐 (). Overall, the SMMmatchingmethod
performed relatively better compared to other two matching meth-
ods, where SHMperformed slightly better thanMWM. Furthermore,
the experiments with MWM matching consistently took consider-
ably longer time compared to the SHM and SMM. From the three
edge weighting approaches, 𝑐𝑠 () and 𝑠𝑐 () performed better than
𝑑𝑐 () in almost all experiments, where the 𝑠𝑐 () approach performed
slightly better than 𝑐𝑠 (). However, in general the weighted use of
all three approaches (all-three) provided better results compared to
using a single approach. Similar results were obtained for the other
two databases (TITANIC and NCVR). These results are excluded
from the paper due to space constraints.

There are two main limitations to our proposed graph matching
attack: First, if the differences between the encoded and plain-text
similarities are high and if the relationship between those similari-
ties is not linear, then it will be difficult to obtain accurate results.
Second, the more attributes are encoded the lower the accuracy

https://dmm.anu.edu.au/pprlattack/

of re-identification. This is because of the differences in similar-
ity values across the two graphs as well as having similar graph
neighbourhoods for dissimilar nodes.

In Table 3 we show the runtimes of our attack. As can be seen,
feature generation is the most time consuming step while the plain-
text re-identification step took only seconds to complete.

These experimental results of our proposed graph matching
attack illustrate the limitations of encoding techniques such as
BF, TMH, and 2SH, when used with certain parameter settings.
Even though the TMH and 2SH encoding methods are proposed to
overcome the privacy vulnerabilities of BF encoding, they are still
vulnerable to privacy attacks, especially when only one or two at-
tributes are encoded. With proper similarity adjustments, attribute
values encoded using these methods can still be re-identified even
when more than two attributes were encoded. Furthermore, our
attack will work on any other encoding technique which calculates
approximate similarities between record pairs.

Given the popularity of perturbation based encoding techniques
to be used in real-world PPRL applications [3, 6, 26, 28, 30], it is
important to carefully consider and evaluate the privacy implica-
tions of such techniques before using them in practical applications.
Database owners can use our attack to evaluate the privacy guaran-
tees of encoding techniques and the parameter settings they plan
to use. Moreover, our attack has emphasised the need of further
research into developing more advanced privacy techniques to be
used in PPRL, where such techniques still need to be scalable to
large databases and provide high linkage quality.

6 CONCLUSION AND FUTUREWORK
We have presented a novel graph matching attack on privacy-
preserving record linkage (PPRL) that, unlike earlier attack methods
for PPRL, can be applied on any PPRL method that calculates simi-
larities between encoded values. Our attack re-identifies sensitive
values in an encoded database from a known plain-text database
by using graph matching. We successfully applied our attack on
three encoding methods, popular Bloom filters [6, 10, 26, 28, 30],
tabulation min-hashing [34] and two-step hashing [27]. Given the
increasing demand for such perturbation based encoding methods
in real-world PPRL applications it is essential to investigate the
privacy limitations of such methods.

As future work, we plan to improve the attack in three ways: (1)
investigate supervised and unsupervised machine learning methods
to conduct the alignment between encoded and plain-text similari-
ties without having knowledge of the encoding parameters used;
(2) explore how our attack works with privacy improvements such
as hardening techniques proposed on perturbation based encoding
methods [31–33], and (3) compare the accuracy and efficiency of
our attack with other privacy attacks proposed for PPRL.

REFERENCES
[1] Charu Aggarwal and Haixun Wang. 2010. Managing and Mining Graph Data.

Advances in Database Systems, Vol. 40. Springer.
[2] Alexandr Andoni and Piotr Indyk. 2008. Near-Optimal Hashing Algorithms for

Approximate Nearest Neighbor in High Dimensions. Commun. ACM 51 (2008).
[3] Manfred Antoni and Rainer Schnell. 2017. The past, present and future of the

German Record Linkage Center. Journal of Economics and Statistics 239, 2 (2017).
[4] Burton H. Bloom. 1970. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM 13, 7 (1970), 422–426.
[5] Adrian Bondy and Uppaluri Murty. 2011. Graph Theory. Springer, London.

[6] James H Boyd, Sean M Randall, and Anna M Ferrante. 2015. Application of
Privacy-Preserving Techniques in Operational Record Linkage Centres. In Medi-
cal Data Privacy Handbook. Springer, 267–287.

[7] Peter Christen. 2012. Data matching – Concepts and techniques for record linkage,
entity resolution, and duplicate detection. Springer.

[8] Peter Christen, Thilina Ranbaduge, Dinusha Vatsalan, and Rainer Schnell. 2019.
Precise and Fast Cryptanalysis for Bloom Filter Based Privacy-Preserving Record
Linkage. IEEE TKDE 31, 11 (2019), 2164–2177.

[9] Chris Culnane, Benjamin Rubinstein, and Vanessa Teague. 2017. Vulnerabilities
in the use of similarity tables in combination with pseudonymisation to preserve
data privacy in the UK Office for National Statistics’ Privacy-Preserving Record
Linkage. arXiv Preprint (2017).

[10] Elizabeth Durham, Murat Kantarcioglu, Yuan Xue, Csaba Toth, Mehmet Kuzu,
and Bradley Malin. 2014. Composite Bloom filters for secure record linkage. IEEE
TKDE 26, 12 (2014), 2956–2968.

[11] Frank Emmert-Streib, Matthias Dehmer, and Yongtang Shi. 2016. Fifty years
of graph matching, network alignment and network comparison. Information
Sciences 346 (2016), 180–197.

[12] Martin Franke, Ziad Sehili, Marcel Gladbach, and Erhard Rahm. 2018. Post-
processing Methods for High Quality Privacy-Preserving Record Linkage. In
DPM/CBT@ESORICS. Springer, Cham, 263–278.

[13] David Gale and Lloyd Shapley. 1962. College Admissions and the Stability of
Marriage. The American Mathematical Monthly 69, 1 (1962), 9–15.

[14] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable Feature Learning for
Networks. In KDD. ACM, New York, NY, USA, 855–864.

[15] Mark Heimann, Wei Lee, Shengjie Pan, Kuan-Yu Chen, and Danai Koutra. 2018.
HashAlign: Hash-Based Alignment of Multiple Graphs. In PAKDD. Melbourne.

[16] Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. 2018. REGAL: Rep-
resentation Learning-Based Graph Alignment. In CIKM. ACM, Torino, 117–126.

[17] Nils M. Kriege, Fredrik D. Johansson, and Christopher Morris. 2019. A Survey on
Graph Kernels. Applied Network Science 5 (2019), 6.

[18] Martin Kroll and Simone Steinmetzer. 2015. Who Is 1011011111...1110110010?
Automated cryptanalysis of Bloom filter encryptions of databases with several
personal identifiers. In BIOSTEC. Springer, Lisbon, 341–356.

[19] HaroldW Kuhn. 1955. The Hungarian method for the assignment problem. Naval
Research Logistics Quarterly 2, 1-2 (1955), 83–97.

[20] Mehmet Kuzu, Murat Kantarcioglu, Elizabeth Durham, and Bradley Malin. 2011.
A constraint satisfaction cryptanalysis of Bloom filters in private record linkage.
In PET. Springer, Waterloo, 226–245.

[21] WilliamMitchell, Rinku Dewri, Ramakrishna Thurimella, and Max Roschke. 2017.
A graph traversal attack on Bloom filter-based medical data aggregation. IJBDI
4, 4 (2017), 217–226.

[22] Michael Mitzenmacher and Eli Upfal. 2005. Probability and computing: Random-
ized algorithms and probabilistic analysis. Cambridge University Press.

[23] Douglas Montgomery, Elizabeth Peck, and Geoffrey Vining. 2012. Introduction to
Linear Regression Analysis (5 ed.). Wiley.

[24] Frank Niedermeyer, Simone Steinmetzer, Martin Kroll, and Rainer Schnell. 2014.
Cryptanalysis of basic Bloom filters used for privacy preserving record linkage.
JPC 6, 2 (2014), 59–79.

[25] Office for National Statistics UK. 2013. Beyond 2011 Matching Anonymous Data.
Methods and Policies Report M9.

[26] Robespierre Pita, Clícia Pinto, Samila Sena, Rosemeire Fiaccone, Leila Amorim,
Sandra Reis, Mauricio Barreto, Spiros Denaxas, and Marcos Ennes Barreto. 2018.
On the accuracy and scalability of probabilistic data linkage over the Brazilian
114 million cohort. IEEE JBHI 22, 2 (2018), 346–353.

[27] Thilina Ranbaduge, Peter Christen, and Rainer Schnell. 2020. Secure and Accurate
Two-sep Hash Encoding for Privacy-Preserving Record Linkage. In PAKDD.
Springer, Singapore, 139–151.

[28] Sean Randall, Anna Ferrante, James Boyd, Jacqueline Bauer, and James Semmens.
2014. Privacy-preserving record linkage on large real world datasets. JBI 50
(2014), 205–212.

[29] Bruce Schneier. 1996. Applied cryptography: Protocols, algorithms, and source code
in C (2 ed.). John Wiley and Sons, Inc., New York.

[30] Rainer Schnell, Tobias Bachteler, and Jorg Reiher. 2009. Privacy-preserving record
linkage using Bloom filters. BMC Med Inform Decis Mak 9, 41 (2009).

[31] Rainer Schnell, Tobias Bachteler, and Jörg Reiher. 2011. A Novel Error-Tolerant
Anonymous Linking Code. SSRN Electronic Journal (01 2011).

[32] Rainer Schnell and Christian Borgs. 2016. Randomized response and balanced
Bloom filters for privacy preserving record linkage. In ICDMW DINA. Barcelona.

[33] Rainer Schnell and Christian Borgs. 2016. XOR-Folding for Bloom Filter-based
Encryptions for Privacy-preserving Record Linkage. SSRN (2016).

[34] Duncan L Smith. 2017. Secure pseudonymisation for privacy-preserving proba-
bilistic record linkage. J. Inf. Secur. Appl. 34 (2017), 271–279.

[35] Dinusha Vatsalan, Peter Christen, and Vassilios Verykios. 2013. A taxonomy of
privacy-preserving record linkage techniques. Elsevier IS 38, 6 (2013), 946–969.

[36] Anushka Vidanage, Thilina Ranbaduge, Peter Christen, and Rainer Schnell. 2019.
Efficient Pattern Mining Based Cryptanalysis for Privacy-Preserving Record
Linkage. In IEEE ICDE. IEEE, Macau, 1698–1701.

	Abstract
	1 Introduction
	2 Background
	2.1 Encoding Methods
	2.2 Privacy Attacks on PPRL

	3 Graph based Privacy Attack
	3.1 Generating Similarity Graphs
	3.2 Node Feature Generation
	3.3 Node Matching
	3.4 Plain-text Value Re-identification
	3.5 Adjusting Similarities

	4 Experimental Evaluation
	5 Results and Discussion
	6 Conclusion and Future Work
	References

