
Encryption-based sub-string matching for privacy-preserving record linkage

Sirintra Vaiwsria,∗, Thilina Ranbadugeb, Peter Christenc

aFaculty of Industrial Technology and Management, King Mongkut’s University of Technology North Bangkok, , Prachinburi, 25230, Thailand
bData61, Canberra, 2600, ACT, Australia

cSchool of Computing, The Australian National University, Canberra, 2600, ACT, Australia

Abstract

Accurate and secure string matching in record linkage is increasingly important in application domains such as bioinformatics,
healthcare, and crime detection. Most existing privacy-preserving string matching techniques provide an overall similarity between
a pair of strings. As a result, these techniques cannot identify the longest common sub-string between the strings in a pair leading
to lower linkage quality, while existing techniques that can identify the longest common sub-string from a pair of strings have long
runtimes. While blocking techniques that can be used in the record linkage pipeline improve the time complexity, each string is
generally inserted into several blocks making it vulnerable to frequency based attacks. In this paper, we propose two encryption-
based approaches to improve the effectiveness and efficiency of string matching in record linkage. Our approaches compare strings
based on their lengths of sub-strings. In the first approach, we encrypt the sub-string lengths into individual ciphertexts and compare
a pair of ciphertexts based on the corresponding sub-string. In the second approach, we encrypt multiple lengths of sub-strings into
a single ciphertext that allows efficient comparison of ciphertexts. We evaluate our approaches on real-world datasets and validate
the accuracy, complexity, and privacy compared to four baselines, showing that our approaches outperform all baselines in terms of
complexity and privacy while providing higher linkage quality than a standard privacy-preserving record linkage technique.

Keywords:
Privacy-preserving record linkage, String matching, Homomorphic encryption.

1. Introduction

Various application domains collect large amounts of data.
These data often need to be integrated between databases to
facilitate efficient data analysis [1]. Record linkage (RL)
aims to link records that refer to the same entities in different
databases [2]. However, such data to be linked often contain
sensitive information about individuals such as patients, tax-
payers, or customers [1].

Privacy-preserving record linkage (PPRL) aims to link
records without the need to share sensitive information between
organisations [3, 4]. PPRL techniques generally encode values
of records to be linked before sending them from the organisa-
tions that own data to the organisation that conducts the link-
age [4]. Only limited information about the record pairs classi-
fied as matches is being revealed at the end of a PPRL protocol,
where no organisation can learn the sensitive values of these
records [2]. However, secure string matching that considers the
information of position or the order of characters in strings is
required for applications such as the linking of financial data,
individual identification numbers, and telephone numbers.

A widely used PPRL technique is Bloom filter (BF) encod-
ing [5]. A BF is a bit vector that encodes a set of sub-strings

∗Corresponding Author
Email addresses: sirintra.v@itm.kmutnb.ac.th (Sirintra Vaiwsri),

thilina.ranbaduge@data61.csiro.au (Thilina Ranbaduge),
peter.christen@anu.edu.au (Peter Christen)

of length q (called q-grams) in an attribute value by using a set
of hash functions to set the bit position in a BF to 1. A pair
of BFs can be compared by using set-based similarity functions
such as the Dice-coefficient [1]. BF encoding has several draw-
backs, including (1) a loss of positional information of q-grams
in attribute values, (2) they return only an overall similarity be-
tween a pair of encoded strings, and (3) BFs are susceptible to
privacy attacks [6, 7].

Secure multi-party computation (SMC) [8, 9] based PPRL
techniques encrypt sensitive values and exchange them between
organisations, where each organisation that participates in a
protocol could not learn any sensitive information from each
other. However, existing SMC based techniques cannot pro-
vide a high quality of linkage for data of low quality, and they
consume long runtimes and computation costs.

Blocking techniques (such as q-gram based blocking [1]) are
commonly used in a PPRL pipeline. These techniques aim to
reduce the comparison space by grouping similar records into
blocks and comparing only records in the same blocks [1]. As
string matching often has long runtimes, blocking techniques
can be used to speed up the runtime of the strings comparison
process [2, 10].

Existing techniques such as BF encodings [5] cause lower
linkage quality because of the loss of positional information
and overall similarity calculation, while SMC based PPRL tech-
niques often require high resources (especially runtimes) but
cannot provide a high quality linkage, especially data with er-

Preprint submitted to Journal of Information Security and Applications January 25, 2024

rors, such as missing values, variations, etc. Accurate and se-
cure string matching was proposed by Vaiwsri et al. [11], how-
ever, their approach has long runtimes in the comparison pro-
cess. Although blocking techniques have been used in various
PPRL techniques to address the problem on long runtimes by
reducing the number of required record comparisons, it is possi-
ble that similar strings will be added into different blocks which
results in these similar strings not being compared, thus lower
linkage quality.

In this paper, we propose two encryption-based PPRL ap-
proaches to provide high linkage quality and use lower run-
times of string matching between databases. Our proposed ap-
proaches are based on the lengths of sub-strings that correspond
to the sub-strings of strings to be compared. In the first ap-
proach, named one-to-one, we encrypt the length of a sub-string
into one ciphertext and encode this length into hash values of
1− or 0−encodings [12] which will be used for comparison. In
the second approach, named many-to-one, we encrypt multi-
ple lengths of sub-strings into a single ciphertext [13] for com-
parison [14]. In both approaches, the ciphertexts are sent to
a semi-trusted third party for conducting the comparison. We
then identify the lengths of the longest common sub-string of
string pairs based on these ciphertexts. We analyse our ap-
proaches in terms of linkage quality, complexity, and privacy,
and evaluate them using real-world datasets.

Based on our evaluation results, our one-to-one approach is
more suitable where high accuracy is required (such as financial
service and healthcare applications), while our many-to-one ap-
proach is more suitable for linking large databases that require
fast, high linkage quality, and high degrees of privacy such as
bioinformatics and crime detection applications.

2. Related Work

As we reviewed the literature related to string matching and
secure string matching in the context of privacy-preserving
record linkage (PPRL), the string matching is increasingly im-
portant in many domains. Ukkonen [15] showed that suffix
trees can be used efficiently for string matching. Wang and
Li [16] used a suffix tree to find similar sub-strings between
groups of sub-strings. Wang et al. [17] proposed a string match-
ing protocol based on suffix trees and edit distance constraints.
Yu et al. [18] proposed an approach to search similar strings
based on an index tree. However, string matching based on
trees can result in high memory and time consumption.

Kim et al. [19] proposed an approximate string query ap-
proach based on sub-sequences and q-grams of sub-sequences
that occur in both a string and a query string. However, this ap-
proach cannot provide accurate string matching because false
positives can occur depending upon the lengths of strings, sub-
sequences, and q-grams. Mahdi et al. [20] proposed secure
sub-string searching and set-maximal searching techniques for
genome data. The authors created a generalised suffix tree of
data and encrypt each vertex using the Counter mode of Ad-
vanced Encryption Standard (AES-CTR) [21]. Although the
experimental results show that the proposed techniques have
high quality in searching string values in genome data, the

search patterns can be inferred or learned by an attacker. Fur-
ther, their proposed algorithm consumes high memory and run-
time due to the use of generalised suffix trees.

In PPRL, BF encoding [5] is considered as a standard tech-
nique to link records [2]. BF encoding [5] is adapted for nu-
merical values by Vatsalan and Christen [22] and Karapiperis
et al. [23], where a binary vector [5] is generated based on a list
that contains a number to be encoded and its neighbouring val-
ues [22] or its range of values [23]. Wu et al. [24] proposed two
PPRL techniques based on differential privacy [25] and BF en-
coding [5] to consider privacy, fairness, and cost in PPRL. The
experimental results show that these techniques outperform the
standard differential privacy [26] in terms of privacy, fairness,
and cost of the linkage protocol.

Xue et al. [27] proposed a sequential record linkage tech-
nique based on BF encoding, Laplace mechanism, and ma-
chine learning algorithms such as K-nearest Neighbour (KNN)
and Support Vector Machine (SVM). The experimental results
show that the proposed technique provides better linkage qual-
ity compared to the RAPPOR [28] technique. However, the
results depend upon the fine-tuning of parameters to provide
the best privacy protection. Recently, Yao et al. [29] proposed
a PPRL technique based on BF and Siamese Neural Networks
(SNN). They first encode records that are to be linked into BFs.
Then the authors apply blocking on these BFs. The database
owners send the corresponding BFs of the same blocking keys
to a trusted third party who then compares BFs using the SNN
technique. The main aim of their SNN-PPRL technique is clas-
sify encoded record pairs as matches and non-matches using BF
similarities.

Secure multi-party computation (SMC) based techniques,
such as homomorphic encryption, were proposed for sharing
sensitive information between organisations [8, 9]. Essex [30]
proposed a secure approximate string matching protocol based
on the Damgård-Geisler-Krøigaard (DGK) homomorphic en-
cryption [31] method, a private set intersection cardinality of
encryptions of the occurrence (0 or 1) of q-grams in a string,
and the list of all possible q-grams. However, this approach can
result in false matches, and high runtimes and memory usage.
Saha et al. [32] proposed techniques to address the problems
of secure pattern matching (SPM) with wildcards. The first
problem is SPM with repetitive wildcards. They address this
problem by using symmetric homomorphic encryption based
on ring learning with errors (ring-LWE). The second problem
is the SPM with compound wildcards. They address this prob-
lem by using double-query with symmetric homomorphic en-
cryption based on ring learning with errors (ring-LWE). Fur-
thermore, they improved the computational time by proposing
a packing method which allows for grouping all sub-patterns
into a single polynomial which is being used for encryption.

Mullaymeri and Karakasidis [33] proposed a PPRL approach
for approximate string matching based on a reference dataset
and Fuzzy Vault [34] which is a cryptographic scheme that al-
lows the decryption of a string if the decryption key is very
similar to the encryption key. In order to encrypt and decrypt
strings, the authors convert strings to polynomial coefficients
and add noises for privacy protection where these noises do not

2

belong to the polynomial curve. However, to provide high link-
age quality, the reference dataset must be very similar to the
databases to be linked. Recently, Stammler et al. [35] proposed
a PPRL technique using the EpiLink algorithm [36] and ABY
framework [37] for secure two-party computation. The tech-
nique provides high privacy protection, however, it can reveal a
number of records in the databases being linked. While dummy
records can be added to improve the degree of privacy, it can
result in increased computational complexity.

Nakagawa et al. [38] proposed a secure sub-string search ap-
proach for genome data based on the FM-index [39]. The FM-
index is a compressed sub-string based on the Burrows-Wheeler
transform [40] which is a popular technique used in the ge-
nomics domain. The proposed approach provides the longest
prefix matches and the longest maximal exact match. The ex-
perimental results show that the proposed approach provides an
efficient search time. However, the approach consumes a long
time in data preparation. Vaiwsri et al. [11] recently proposed
two approaches for secure and accurate string matching. The
authors first generate a list of q-grams of a string to be linked. In
the first approach, the authors conduct a hash encoding for each
q-gram in the generated list and randomly shift these hashes. In
the second approach, the authors generate a bit array of q-grams
in the generated list, then pad this bit array with random bits.
The authors also proposed a comparison mechanism which can
compare string pairs more efficiently.

Most of the approaches discussed above cannot provide high
linkage quality because they only allow for overall similarity
calculations [5]. Some techniques also reveal the lengths of
strings [11, 16, 17, 18], and some consume long runtimes even
if blocking techniques are applied [11]. In our approaches, we
aim to address the problem of high time complexity, while pro-
viding high linkage quality string matching between databases
without any of the parties that participate in a protocol having
to reveal their sensitive information.

3. Preliminaries

In this section, we describe two fundamental concepts that
we use for encrypting and comparing the lengths of sub-strings
in our proposed approaches.

3.1. 1- and 0-Encodings based Comparison

Lin and Tzeng [12] proposed an approach to compare en-
crypted integer numbers based on the sets of their special 1−
and 0−encodings, where each encoding is a binary string, b.
The two database owners (DOs) that participate in the protocol
decide who will generate the set 1− or 0−encodings and make
an agreement on the length of a binary string, l, to be used for
generating encodings.

Each DO first converts its integer number into a binary string,
b, of length l as b = p1 p2 · · · pl, where each pi is a binary value
at each position i, 1 ≤ i ≤ l, in b. The DO then uses b to
iteratively generate a special encoding where 1−encodings are
inserted into a set e1

x and 0−encodings are inserted into a set e0
y .

Each e1 ∈ e1
x and e0 ∈ e0

y is generated using Eq. (1) and Eq. (2),
respectively.

e1 = p1 p2 · · · pi if pi = 1, (1)

e0 = p1 p2 · · · pi ← pi = 1 if pi = 0, (2)

where← is the assignment. The position i is first initialised to
i = l and it is decreased by one position for each iteration until
i = 1. Therefore, a DO needs l iterations to generate a set of
encodings. The two generated sets e1

x and e0
y are then used to

conduct a comparison as:

comp(x, y) =

 1 : x > y if e1
x ∩ e0

y , ∅ (3a)

0 : x ≤ y if e1
x ∩ e0

y = ∅ (3b)

For example, the first DO has x = 9 and the set e1
x =

{“1001”, “1”} generated using Eq. (1). The second DO has
y = 8 and the set e0

y = {“1001”, “101”, “11”} generated us-
ing Eq. (2). These two sets have a common encoding which is
“1001” (e1

x ∩ e0
y , ∅). Therefore, the comparison result (fol-

lowing Eq. (3a) returns 1 which means x > y (9 > 8). We
use these special 1− and 0−encodings and the comparison in
Eq. (3a) [12] in our first approach, as we describe in detail in
Section 5.

3.2. Packing based Comparison

Cheon et al. [13] proposed a homomorphic encryption
scheme, called Cheon-Kim-Kim-Song (CKKS), that supports
arithmetic operations, such as addition, subtraction, and mul-
tiplication, to be conducted over ciphertexts. The authors also
proposed a packing method that encrypts a list of multiple dec-
imal numbers into a single ciphertext.

Recently, Cheon et al. [14] proposed an approach to find the
minimum value between two ciphertexts that can result in er-
rors within a 2−α bound, where α is the precision of a ciphertext.
Their comparison function is based on the polynomial composi-
tion function (◦), z = f (z) ◦ g(z) = f (g(z)), where z is initialised
as z = E(x)−E(y), where E(x) is the encryption of a list of dec-
imal numbers x from the first DO, and E(y) is the encryption
of a list of decimal numbers y from the second DO. The au-
thors suggested optimal polynomial functions g() and f () that
result in a maximum of 2−4 errors, where these functions can
be written as [14]:

g(z) =
46623

210 z9 −
113492

210 z7 +
97015

210 z5 −
34974

210 z3 +
5850
210 z, (4)

f (z) =
35
128

z9 −
180
128

z7 +
378
128

z5 −
420
128

z3 +
315
128

z. (5)

The calculated z is then used to find a minimum value be-
tween ciphertexts E(x) and E(y) as:

min(E(x), E(y)) =
E(x) + E(y)

2
−

(
E(x) − E(y)

2
× z

)
. (6)

As a result, the two lists (packs) of decimal numbers can be
compared by using a single comparison. We use the packing
method [13] and the calculations in Eq. (4) to Eq. (6) [14] in
our second approach, as we describe in detail in Section 6.

3

Table 1: Common notation used in our approaches.

D,DA,DB Database, database A, and database B G Publicly available global database
B Inverted index of blocks R List of references
T Data to be encrypted E Encrypted database
M An inverted index of compared results q,q A length of q-gram and a list of q-grams
v, x, y String value, string value in DA, and string value in DB s Sub-string value
r, rid A reference value and reference identifier bkv A blocking key value
t Threshold for generating blocking key and reference values st Similarity threshold
qm Minimum number of q-grams for generating bkv and reference values m Minimum length of the LCS
b Binary string l Length of a binary string
d Number of decimal places lc Number of the longest common characters
lv, ls, ls

v Length of a string, sub-string, and a sub-string in a string ls
v List of ls

v values
ns

v Integer form of ls
v lcs Length of the longest common sub-string

e, e, eid Encoding, list of encodings, and list of encoding identifiers sid, sid Sub-string identifier and a set of sid
E A ciphertext min Minimum value in a pair of ls

v or ciphertexts
H, h List of hash values and a hash value sv Secret salt value
hid A hash value of reference identifier rid pid,pid A pair of identifiers and a list of identifier pairs.
|...| Size or number of values in a database or list

4. Protocol Overview

In our approaches, we use notation as listed in Table 1. Our
approaches involve three parties, the two DOs and a linkage unit
(LU), where we assume all participants can follow the honest-
but-curious [41] or malicious [42] model. The DOs want to find
matches between pairs of sensitive strings in their databases,
DA and DB, based on the lengths of the longest common sub-
strings (LCS) of string pairs. The DOs do not communicate
with each other except to agree on the parameters to be used
in the protocol, and they do not want to reveal any sensitive
information to any other parties, such as the positions of sub-
strings occurring in strings, the frequencies of sub-strings, and
the string values in their databases. Therefore, the DOs encrypt
their sensitive values and send these encryptions to the LU to
conduct the comparison.

To make all pairs of strings with different lengths be clas-
sified based on a single similarity threshold, st, we normalise
the length of the LCS, lcs, between the string pair (x, y), where
x ∈ DA and y ∈ DB, into the range [0...1]. The pair (x, y) is
classified as a match if the lcs between strings is lcs ≥ st. The
lcs of the pair (x, y) is calculated as:

lcs(x, y) =
lc

max(lx, ly)
= min

(
lc
lx
,

lc
ly

)
, (7)

where lx is the length of the string x, ly is the length of the
string y, and lc is the number of the longest common characters
between strings x and y.

However, if the DOs send the (encrypted) lengths of their
strings, lx and ly (as used in Eq. (7)), or the (encrypted) string
values x and y (as used in other PPRL approaches [5, 11]) to
the LU for comparison, then the LU can use frequency based
attacks [6, 43, 44, 45] to re-identify string values x and y of the
two DOs. Therefore, in our approaches, the DOs send the (en-
crypted) lengths of sub-strings in strings, ls

v, in their databases
to the LU, where each ls

v is calculated as:

ls
v =

ls

lv
, (8)

2. Strings 2. Strings

5. Compared results 5. Compared results

3. Data

B
Database

2. Strings

Selection
LCS

2. Strings

3. Data

Data encryption

encryption

encryption

Data encryption

encryption

encryption

Matching funtions

comparison

comparison

One−to−one

Many−to−one 1. One−to−one

2. Many−to−one

One−to−one

Many−to−one

Data
preparation

Data
preparation

1. Parameters agreement

Database
Global

Linkage
Unit

Encryptions
4.

Encryptions
4.

Database
A

LCS
Selection

Figure 1: Overview protocol of our approaches. The rounded boxes are the
DOs’ databases, the global database, and the LU. The steps conducted by the
DOs are shown in the dashed rectangles, where data preparation and LCS se-
lection are common steps of our two approaches. The shaded box shows data
encryption, which can be one-to-one or many-to-one. The two matching func-
tions for comparing the ciphertext sent by the DOs are shown in the box under
the LU.

where lv is the length of the string value v and ls is a length of a
sub-string, s, that occurs in v.

Therefore, each string value v has a list of ls
v values, ls

v, where
each ls

v corresponds to each sub-string s in v, such that ls
v ∈

ls
v =̂ s ∈ v, where =̂ means corresponds to. Hence, the lcs of the

string pair (x, y) in Eq. (7) can be written as:

lcs(x, y) = ∀lcx∈ lcx, lcy∈ lcy max(min(lcx, l
c
y)), (9)

where lcx and lcy correspond to the length of a common sub-string
c in the set of all common sub-strings c, such that (lcx ≡ lcy) =̂ c,
between strings x and y. The DOs send each of their ls

v values
(ls

x =̂ ls
v of x and ls

y =̂ ls
v of y) to the LU to find min(ls

x, l
s
y). The LU

then sends the minimum length value back to the DOs which
can then be used to identify the lcs of the pair (x, y) by finding
the highest value (max() in Eq. (9)).

As we illustrate in Fig. 1, the DOs first agree on the parameter
settings to be used in the protocol. These parameters are the

4

Sub−strings ma,ar,ry,ym,mi,il,ll,le,er da,ar,ry,ym,mi,il,ll,le,er,rs ar,ry,ym,mi,il,ll,le

10 x 0.7 − 2 + 1 = 6 11 x 0.7 − 2 + 1 = 7 − 2 + 1 = 58 x 0.7

lv
sbkv, / reference

0.7

0.8

0.9

1.0

0.7

0.8

0.9

0.7

0.8

0.7

lsx

maarryymmiil

maarryymmiilll

maarryymmiilllle

maarryymmiillleer

arryymmiilll

arryymmiilllle

arryymmiilllleer

ryymmiilllleer

ymmiilllleer

bkv

ryymmiilllle

arryymmiilllleer

arryymmiilllleerrs

ryymmiilllleer

ryymmiilllleerrs

ymmiilllleerrs

arryymmiilllle

daarryymmiilllleerrs

daarryymmiilllleer

daarryymmiilllle

daarryymmiilll

reference (r)

0.75

0.88

1.0

0.75

0.88

0.75

lsybkv

arryymmiil

arryymmiilll

arryymmiilllle

ryymmiilll

ryymmiilllle

ymmiilllle

First and last names

reference (r)

Comparison

min

daarryymmiilll

daarryymmiilllle

daarryymmiillllee

daarryymmiilllleerr

arryymmiilllle

arryymmiilllleer

arryymmiilllleerrs

ryymmiilllleer

ryymmiilllleerrs

ymmiilllleerrs

,lsx lsy

dary millers ary mille

0.8

Γ

Γ

Γ

Γ

Γ

Γ

Γ

Γ

Γ

0.8,1.0

Γ,Γ

Γ,Γ

Γ,Γ

Γ,Γ

Γ,Γ

0.8,Γ

Γ,Γ

Γ,Γ

0.9,Γ

mary miller

G

q m

(b)D(a)
A DB

Figure 2: Example of sub-strings and their comparison results of first and last name strings. (a) shows bkv and ls
v generated from strings in DA and DB, and reference

r values are extracted from the string values in G, where these bkv and r values are generated by using value q = 2 and t = 0.7. (b) shows comparison results of
these strings, where st = 0.8. Bold shows bkv values that are common with r values and the blue bold shows the sub-string that is the longest common sub-string
(lcs). Γ is a random value in the range [t ... st].

length of q-grams q, the minimum length of the LCS m where
m ≤ q, the similarity threshold st, the threshold t for generating
blocking key values where 0 < t < st, global database G which
needs to be from the same domain as the databases to be linked,
the agreement on which DO has to generate a set of 1- or 0-
encodings, the number of decimal places d, the length l of the
binary string of the number 10d, the keyed hash function [2]
such as HMAC(), and the secret salt value sv.

Next, the DOs individually generate lists of sub-strings for
each of their strings, where each sub-string (q-grams) is of
length q. The DOs then use their lists of q-grams to gener-
ate blocks, where each blocking key value, bkv, represents a
sub-string occurring in the strings in their databases. There-
fore, if the DOs have the same bkv, then they have common
sub-string(s), thus, the LU will be able to compare ls

v values
that correspond to the common sub-string(s). However, the fre-
quencies of bkvs can reveal the frequencies of sub-strings in
the DOs’ databases, DA and DB, to the LU. Therefore, each
DO uses the agreed global database, G, to generate a list of
references [46], R, to hide the frequencies of sub-strings in its
database where this R must be the same for the two DOs.

If the bkv of a block of a DO is the same as r ∈ R (D ∩ R ,
∅), then the DO finds the maximum value of ls

v in its block.
For any r ∈ R that is not common to any bkvs (D ∩ R = ∅),
each DO generates a random ls

v value. We describe the steps
of the block and reference generation process in Section 4.1.
Fig. 2(a) shows example references generated from a string in
G and example bkvs of DA and DB, and Fig. 2(b) shows the
corresponding comparison results.

Once the DO generated all ls
v values for its database, in our

first approach (one-to-one) each ls
v in the inverted index is en-

crypted into a ciphertext, while in our second approach (many-
to-one) all ls

v values are encrypted into a single ciphertext. The
DO then sends its ciphertext(s) to the LU to find the minimum
(encrypted) ls

v values between databases and return them to the
DO. Finally, the DO can find the normalised LCS, lcs, for each
string pair and check if it should be classified as a match, as we
describe in Section 7.

As can be seen in Fig. 2, the pair of strings (x =

“mary miller”, y = “ary mille”) correspond to the same ref-
erence r = arryymmiilllle, where the string x ∈ DA is common
with three references but the string y ∈ DB is common with
one reference. Therefore, the ls

x, that corresponds to bkv in DA

that is common with r but not common with the bkv in DB, is
compared with a random value ls

y, t ≤ ls
y < st. This means that

the pair that contains a random ls
y value will not be classified

as a match because the comparison returns a minimum ls
v value

which is ls
v < st. Hence, the lcs (following Eq. (7)) between x

and y is 0.8 which is the correct result because the LCS of these
strings is “ary mille” with the sub-string length of 8. We show
an example of comparison in Fig. 2(b), where Γ is a random ls

v
value.

Our approaches imply that the string comparison using the
ls
v and reference values can provide high linkage quality and

the privacy of PPRL using our approaches can be improved
because the DOs do not send their (encrypted) strings to the
LU. Furthermore, using the reference values to represent sub-
strings can reduce the computational complexity in the compar-
ison process because no positional information is required.

4.1. Data Preparation

In this step of our protocol, each DO first generates blocks of
sub-strings in its database. Algorithm 1 outlines the block gen-
eration process by a DO. In line 1, each DO first initialises an
inverted index B to be used for storing all blocks of its database
D. In line 2, the DO initialises a set of sub-string identifiers,
sid, to be used to ensure that all sub-strings in D have unique
identifiers. The DO then loops over each string value v ∈ D in
line 3. For each v, in lines 4 and 5 the DO checks if the length
lv = |v| is at least the agreed minimum length, m.

In line 6, the DO generates the list of q-grams, q, of v
based on the agreed length of q-gram, q, by using the func-
tion genQgramList(). In line 7, the DO then uses the function
calNumQgram() to calculate the minimum number of q-grams,
qm, to be used for generating a bkv where the qm is calculated

5

Algorithm 1: Block generation process by a DO

Input:
- D: Database - m: Minimum length of the LCS
- q: Length of q-gram - t: Threshold
Output:
- B: Blocks of lengths of sub-strings in strings (ls

v)
1: B← {} // Initialise an inverted index
2: sid← {} // Initialise a set of identifiers
3: for v ∈ D do: // Loop over strings in a database
4: lv ← |v| // Get the length of the string value
5: if lv ≥ m do: // Check the length lv is at least m
6: q← genQgramList(v, q) // Generate q-gram list q
7: qm ← calNumQgram(lv, t, q) // Calculate number for a bkv
8: bkv← genBKV(q, qm) // Generate list of bkv
9: for (bkv, ls) ∈ bkv do: // Loop over values in the list bkv
10: ls

v ← calLenS ubstr(ls, lv) // Calculate the length ls
v

11: sid ← genS ubstrID(sid) // Generate unique identifier sid
12: sid.add(sid) // Add the sid into the set
13: if bkv < B do: // Check if bkv not exists in B
14: B[bkv]← {(sid, ls

v)} // Insert a pair into B as a set
15: else: // If bkv exists in B
16: B[bkv].add(sid, ls

v) // Add a pair under the key bkv
17: return B

as:
qm = ⌈lv × t⌉ − q + 1, (10)

where ⌈...⌉ denotes rounding to the next upper integer and
t is the agreed threshold. In line 8, the DO uses qm,q, and
the function genBKV() to generate a list bkv that contains
pairs of (bkv, ls), where each bkv represents a sub-string in
the corresponding string, and ls is the length of the sub-string
that corresponds to the bkv. For example, as we show in
Fig. 2(a), let us assume the DOs agreed on t = 0.7 and
q = 2. A DO has DA with the string v = “mary miller”,
lv = 10, and q = [ma, ar, ry, ym,mi, il, ll, le, er]. Therefore,
qm = ⌈10 × 0.7⌉ − 2 + 1 = 6. As a result, the list bkv =
[(maarryymmiil, 7), (maarryymmiilll, 8), ..., (ymmiilllleer, 7)]
will be returned from the function genBKV().

In line 9 of Algorithm 1, the DO loops over each pair (bkv, ls)
in the list bkv. For each pair, in line 10, the DO uses the func-
tion calLenS ubstr() to calculate ls

v by using Eq. (8). We show
an example of ls

v of strings in DA and DB as ls
x and ls

y, respec-
tively, in Fig. 2(a). In lines 11 and 12, the DO uses the func-
tion genS ubstrID() to generate a unique sub-string identifier,
sid, that is not available in the set of identifiers sid, such that
sid < sid. In line 13, the DO checks if the generated bkv does
not exist in the inverted index B, it then inserts the bkv as a key
into B and inserts the pair (sid, ls

v) into a set under the key bkv of
B in line 14. If the bkv already exists in B, the DO adds the pair
(sid, ls

v) into the set under the corresponding key bkv in lines 15
and 16. The DO repeats steps in lines 3 to 16 for every v ∈ D.

Next, the DO generates a list of references, R, to hide the fre-
quencies of sub-strings in the DO’s database from the LU and
allows the LU to find common sub-strings between databases.
The DO conducts a similar process as the block generation pro-
cess in Algorithm 1. For each v in the agreed global database,
G, the DO checks if lv is at least m. The DO then generates
q for v and calculates qm (following Eq. (10)). After that, the
DO uses q and qm to generate reference values. These reference

Algorithm 2: Data generation process by a DO

Input:
- B: Blocks of ls

v values - t: Threshold
- R: List of references - st: Similarity threshold

Output:
- T: Database to be encrypted

1: T← {} // Initialise an inverted index
2: for r ∈ R do: // Loop over references in R
3: if r ∈ B do: // Check if r exists in B
4: (sid, ls

v)← getMaxLS V(B[r]) // Get maximum ls
v and its sid

5: else: // If r not exists in B
6: (sid, ls

v)← genRand(t, st) // Generate fake sid and random ls
v

7: T[r]← (sid, ls
v) // Insert a pair into T

8: T← genProbRand(T) // Equally random and actual ls
v

9: return T

values are generated in the same way as the function genBKV()
in Algorithm 1 in line 8, where the length of sub-string ls will
be ignored. The DO then inserts the generated reference values
into R.

Once the DO has generated B and R, it generates the database
to be encrypted. In Algorithm 2 in line 1, the DO initialises an
inverted index T. The DO loops over r ∈ R in line 2, and
checks if r ∈ B, then the DO uses the function getMaxLS V() to
select a pair (sid, ls

v), where the ls
v is the maximum value in the

block B[r] in lines 3 and 4. If r < B, the DO uses the function
genRand() to generate a pair of fake sid and random ls

v, where
the random ls

v must be t ≤ ls
v < st to ensure the random ls

v
will not be classified as matches in lines 5 and 6. The DO then
inserts (sid, ls

v) into T under the key r in line 7, and repeats steps
in lines 2 to 7 until |T| = |R|.

As we use the threshold t to calculate qm in Eq. (10), no actual
ls
v ∈ B will be less than t. In line 8, the DO uses the function

genProbRand() to ensure the numbers of actual ls
v (in the range

[t ... st]) and random ls
v in T are equal. As the DOs agreed to use

G which is in the same domain as their databases for generating
R, the number of actual ls

v with t ≤ ls
v < st of each database

should be more than the number of random ls
v in T. Therefore,

the function genProbRand() makes the numbers of random and
actual ls

v (in the range [t ... st]) to be equal by replacing some
actual ls

v with random ls
v. The total number of actual ls

v that needs
to be replaced with random ls

v is calculated as:

nr = nt − ⌈(nn + nt)/2⌉, (11)

where nt is the total number of actual ls
v value in the range

[t ... st] and nn is the total number of random ls
v in T.

We use t and lv to calculate qm in Eq. (10) because these t
and lv values help to reduce the number of bkv and reference
values to be generated (especially for long string values such as
the concatenation of attribute values first name, last name, and
street address) by ignoring the corresponding bkv and reference
values of sub-strings that are too short and their ls

v < t. By
using t and the function genProbRand(), there will be equal
numbers of actual and random ls

v values in T that are not being
classified as matches which increases uncertainty and makes it
more difficult for an adversary to identify the frequencies of

6

arryymmiilllle 0.8

arryymmiilllleer

ryymmiilllleer 0.8

references

0.9

arryymmiilllle

arryymmiilllleer

ryymmiilllleer

references lsy
1.0

0.75

0.75

s
xn

80

90

80

{"101101", "1011","101","1"}

{"101", "1"}

{"101", "1"}

e1

100

75

75

sn y

{"10011", "101", "11"}

{"10011", "101", "11"}

{"1100101", "110011", "1101", "111"}

e0
One−to−One

(b)

l
s
x

[0.8, 0.9, 0.8]

l
s
y

[1.0, 0.75, 0.75]
Many−to−One

(c)

<

Comparison results

= {"101"} 7580 > 75

= {} 8080 100e e

= {"101"} 90 > 75 75e e

ee

1

1

1

0

0

0

[0.8,0,75,0.75]

Comparison result

mary miller ary mille

D
(a)

BDA

lsx

Figure 3: An example of ls
v corresponding to references generated in Fig. 2(a) and their comparison results using our one-to-one and many-to-one approaches.

Example ls
v values are shown in (a), where the random ls

v are shown in italic and the actual common sub-strings between DA and DB is shown in blue (both DA
and DB have the same sub-string). The one-to-one approach is shown in (b), where ns

v and their encodings of DA and DB are shown in yellow boxes while the
comparison results are shown in the white box. The many-to-one approach is shown in (c), where the list of ls

v of DA and DB are shown in pink boxes while the
comparison result is shown in the white box. The selected lcs of the two approaches are marked with red squares in the white boxes.

sub-strings, thus, more difficult to re-identify the original string
values in a database. We will discuss the privacy analysis in
Section 8.3.

5. One-to-One Approach

Our one-to-one approach is based on one length of sub-string
in a string (numerical value), ls

v, encrypted into one ciphertext
using the special 1- and 0-encodings [12] (as we have described
in Section 3.1).

5.1. One-to-One Encryption
We apply the special 1- and 0-encodings [12] to generate

the list of hash encodings for each ls
v value. These 1- and 0-

encodings will allow the LU to conduct a comparison between
two encoded values in a pair. However, the comparison func-
tion in Eq. (3a) returns either 1 (x > y) or 0 (x ≤ y), that the DOs
will unable to select the length of the LCS. Therefore, we use
homomorphic encryption functions to encrypt ls

v into a cipher-
text. The DOs then send their lists of hashes and ciphertexts
to the LU. Hence, the LU can conduct the comparison using
these lists, and return ciphertexts that correspond to the mini-
mum ls

v values of pairs to the DOs. The DOs can then decrypt
the ciphertexts and select the length of the LCS of string pairs.

Algorithm 3 outlines the one-to-one encryption by a DO. In
line 1, each DO initialises the inverted index E to be sent to
the LU. In line 2, the DO then loops over T generated in Algo-
rithm 2 and uses the function genRe f ID() to generate an iden-
tifier rid for each reference value r in line 3, where r is used as
a seed to a pseudo-random number generator (PRNG) [2]. As
a result, the two DOs will generate the same rid for the same
r. In line 4, the DO converts the ls

v to an integer value, ns
v, by

using the function convert(). This function first rounds the ls
v

value into the agreed d decimal places resulting in l′sv and then
converts it to ns

v by calculating:

ns
v = l′sv × 10d. (12)

Algorithm 3: One-to-One encryption process by a DO

Input:
- T: Data to be encrypted - d: Number of decimal places
- l: Length of binary string - HMAC(): Keyed hash function
- enc: Agreement of encodings

Output:
- E: Inverted index of encryptions

1: E← {} // Initialise an inverted index
2: for (r, (sid, ls

v)) ∈ T do: // Loop over data in T
3: rid ← genRe f ID(r) // Generate reference identifier
4: ns

v ← convert(ls
v, d) // Convert ls

v to an integer ns
v

5: E ← encrypt(ns
v) // Encrypt the integer ns

v into a ciphertext
6: b← genBinary(ns

v, l) // Generate binary string of ns
v

7: if enc = 1 do: // Check if the DO must do 1-encoding
8: e1 ← genOneEnc(b) // Generate a set of special 1-encodings
9: H← genHashList(e1, r, HMAC()) // Generate list of hashes
10: else: // If the DO must do 0-encoding
11: e0 ← genZeroEnc(b) // Generate a set of special 0-encodings
12: H← genHashList(e0, r, HMAC()) // Generate list of hashes
13: eid ← encrypt(sid) // Encrypt the identifier of sub-string sid
14: hid ← encrypt(rid) // Encrypt the identifier of reference rid
15: E[hid]← (eid, E,H) // Insert tuple into E[hid]
16: return E
Function genHashList(e, r, HMAC()):

17: H← [] // Initialise a list of hashes
18: for e ∈ e do: // Loop over encodings in e
19: h← HMAC(e, r) // Hash encodes the encoding
20: H.append(h) // Add hash value into the list H
21: return H

The number of decimal places d is used to ensure the two
DOs will generate their ns

v in the same range [0 ... 10d]. Fig. 3(a)
and (b) show the examples of ls

v and their corresponding ns
v val-

ues, respectively, where the ls
v of x is ls

x and ls
v of y is ls

y. In line 5,
the DO then encrypts ns

v into a ciphertext E by using the func-
tion encrypt(). In this approach, we need to convert the ls

v to ns
v

because we will generate a binary string of ns
v for the special 1-

and 0-encodings [12], as we describe next. Therefore, integer
values are more suitable for this purpose.

7

Algorithm 4: One-to-One comparison by the LU

Input:
- E1: Inverted index of encryptions from the first DO
- E2: Inverted index of encryptions from the second DO

Output:
- M: Inverted index of compared results

1: M← {} // Initialise an inverted index
2: EC ← E1 ∩ E2 // Find common identifiers
3: for hid ∈ EC do: // Loop over common identifiers
4: (eid1, E1,H1)← E1[hid] // Get values from the first DO
5: (eid2, E2,H2)← E2[hid] // Get values from the second DO
6: if H1 ∩H2 = ∅ do: // Check if common hashes not exist
7: min← E1 // Select E1 as a minimum value
8: else: // If common hashes exist
9: min← E2 // Select E2 as a minimum value
10: M[(eid1, eid2)]← min // Insert compared result to M
11: return M

In line 6, the DO converts ns
v to a binary string b of length

l by using the function genBinary(). Then, in lines 7 to 12,
if the DO has agreed to do the 1-encoding, it uses the func-
tion genOneEnc() to encode b into a set of 1-encodings, e1,
where each e1 ∈ e1 is generated following Eq. (1). If the
DO has agreed to do the 0-encoding, the DO uses the function
genZeroEnc() to encode b into a set of 0-encodings, e0, where
each e0 ∈ e0 is generated following Eq. (2). Figure 3(b) illus-
trates the sets e1 and e0 generated for DA and DB from Fig. 3(a),
respectively. The DO then uses the function genHashList() to
generate a list of hash values, H, for its set of encodings e (e1

or e0).
The function genHashList(), in lines 17 to 21, first initialises

the list of hash values, H, in line 17, and then loops over e ∈ e
in line 18. In line 19, the function HMAC() is used to encode e
to a hash value, h. In the function HMAC(), e is first concate-
nated with the reference value r into a single string e′. This r is
used as a salting value [47] because it is possible that different
binary strings corresponding to different references can be en-
coded into the same (1- or 0-) encodings, and therefore using r
as a salting value can reduce the frequency distribution of each
encoding e. Thus, it is more difficult for an adversary to anal-
yse the frequencies of ns

v. The string e′ is then hash encoded by
a one-way hash function (we use SHA256 [48]), resulting in a
hash value h. This hash value h is then added to the list H in
line 20. The steps in lines 18 to 20 are repeated until every e ∈ e
has been hashed. Finally, the list of hash values H is returned
in line 21.

Back to the main program, where in lines 13 and 14 the DO
encrypts sid into a ciphertext eid and encrypts rid into a cipher-
text hid by using the function encrypt(). The DO then inserts
eid, the ciphertext E, and the list H into the inverted index E
under the key hid in line 15. The DO repeats steps in lines 2 to
15 until every r ∈ T has been encrypted. Finally, in line 16, the
DO sends its E to the LU.

5.2. One-to-One Comparison

The LU receives the inverted indexes E1 and E2 from the two
DOs. As we outline in Algorithm 4, the LU first initialises the

Algorithm 5: Many-to-One encryption process by a DO

Input:
- T: Data to be encrypted - sv: Secret salt value
Output:
- eid: List of encrypted identifiers - E: Ciphertext

1: eid← [] // Initialise the list of identifiers
2: ls

v ← [] // Initialise the list of ls
v

3: T′ ← sort(T) // Sort T based on reference values
4: for (r, (sid, ls

v)) ∈ T′ do: // Loop over data in T′
5: eid ← encrypt(sid) // Encrypt the identifier sid
6: eid.append(eid) // Add eid to the list eid
7: ls

v.append(ls
v) // Add ls

v to the list ls
v

8: eid, ls
v ← permute(eid, ls

v, sv) // Permute the lists eid and ls
v

9: E ← packEncrypt(ls
v) // Encrypt the list ls

v into a ciphertext
10: return eid, E

inverted index of compared results, M, in line 1. The LU finds
common identifiers EC between E1 and E2 in line 2 and loops
over them in line 3. For each hid ∈ EC , the LU extracts the
corresponding identifiers (eid1 and eid2), ciphertexts (E1 and
E2), and the lists of hash values (H1 and H2) from E1 and E2 in
lines 4 and 5.

In lines 6 to 9, the LU finds common hash values between
H1 and H2 based on Eq. (3a). If there are any common hashes,
the LU selects the ciphertext E2 as the minimum value min. If
there is no common hash, the LU selects the ciphertext E1 as the
minimum value min. We show the example of the comparison
results of unencrypted 1- and 0-encodings in Fig. 3(b) in the
white box. The LU generates a pair of identifiers (eid1, eid2),
and inserts min into the inverted index M using (eid1, eid2) as a
key in line 10. The LU repeats the steps in lines 3 to 10 until all
ciphertexts corresponding to all hid ∈ EC have been compared.
Finally, the LU returns M to the DOs in line 11.

6. Many-to-One Approach

Our PPRL approach based on multiple ls
v values encrypted

into one ciphertext uses the packing method proposed by Cheon
et al. [13] and compares the ciphertexts using Eq. (4) to
Eq. (6) [14], as we described in Section 3.2.

6.1. Many-to-One Encryption
The packing method allows multiple decimal numbers to be

encrypted into a single ciphertext [13]. Therefore, we can en-
crypt the ls

v values without converting them to integer numbers
as needed in our one-to-one approach. Algorithm 5 outlines
the many-to-one encryption by a DO. In lines 1 and 2, the DO
initialises the list of identifiers, eid, and list of ls

v values, ls
v, re-

spectively. The DO then sorts T based on reference values (keys
of T) in alphabetical order, resulting in the inverted index T′ in
line 3. This sorting step ensures that the DOs will insert their
ls
v values that correspond to the same sub-strings in the same

order, and therefore the LU will compare ciphertexts and return
correct results to the DOs.

In line 4, the DO loops over reference value r and (sid, ls
v)

in T′. The DO then encrypts the sid into a ciphertext eid by
using the function encrypt() in line 5. The DO inserts the eid

8

Algorithm 6: Many-to-One comparison by the LU

Input:
- eid1, E1: List of encrypted identifiers and Ciphertext from the first DO
- eid2, E2: List of encrypted identifiers and Ciphertext from the second DO

Output:
- pid: List of pairs of identifiers min: Compared result

1: pid← [] // Initialise a list of identifier pairs
2: n = |eid1 | = |eid2 | // Initialise a length of identifiers where |eid1| = |T|
3: for i = 1 to n do: // Loop over index in the list
4: eid1 ← eid1[i] // Get an encrypted identifier from eid1
5: eid2 ← eid2[i] // Get an encrypted identifier from eid2
6: pid ← (eid1, eid2) // Generate pair of identifiers
7: pid.append(pid) // Add the pair of identifiers to the list
8: min← compareCip(E1, E2) // Compare ciphertexts
9: return pid,min

into the list eid and inserts the ls
v into the list ls

v in lines 6 and
7, respectively. The DO repeats the steps in lines 4 to 7 until
|eid| = |T′|. An example of generating ls

v is shown in Fig. 3(c),
where these ls

v lists (ls
x and ls

y) are generated from DA and DB

in Fig. 3(a). In line 8, the DO permutes the lists eid and ls
v

by using the agreed secret salt value sv as a seed to hide the
original positions of values in these lists, while an eid and its
corresponding ls

v in these lists still refer to the same sub-string.
The DO encrypts the permuted list ls

v into a ciphertext E by
using the function packEncrypt() [13] in line 9. Finally, in line
10, the DO sends the list eid and the ciphertext E to the LU for
comparison.

6.2. Many-to-One Comparison

The LU receives the lists of identifiers (eid1 and eid2) and
ciphertexts (E1 and E2) from the two DOs. As we outline in
Algorithm 6, the LU first initialises the list of pairs of identifiers
pid in line 1 and the length of a list of identifiers n in line 2.
The LU then loops over the indexes in line 3. In lines 4 and
5, for each index i in the lists eid1 and eid2, the LU extracts
the encrypted identifiers eid1 and eid2, respectively. The LU
then generates a pair of identifiers, pid, in line 6, and inserts
this pair into the list pid in line 7. The LU repeats the steps in
lines 3 to 7 until |pid| = n. In line 8, the LU uses the function
compareCip() to find min [14], where this function conducts a
comparison following Eq. (4) to Eq. (6). Finally, the LU returns
pid and min to the DOs in line 8. We show an example of the
comparison results of unencrypted values in the white box in
Fig. 3(c).

7. Longest Common Sub-string Selection

In the last step of our approaches, each DO selects the (nor-
malised) length of the LCS, lcs, based on the results they re-
ceived from the LU. If the DOs follow the one-to-one approach,
they decrypt each ciphertext in M to an integer ns

v, and then con-
vert it to ls

v by calculating ls
v = ns

v/10d.
If the DOs follow the many-to-one approach, they decrypt

a ciphertext E to multiple ls
v values. Each DO then extracts

each pair of identifiers and selects the string identifier from its

database that corresponds to its eid in the pair. Once the DO
has all ls

v values for each of its strings, the DO finds the highest
ls
v value for the string which is the length of the LCS, lcs, be-

tween the pair of strings. Finally, the DO only keeps the string
pairs that have an lcs ≥ st and their corresponding length of
(common) sub-string of at least m as matches.

8. Analysis

In this section, we analyse our proposed approaches in terms
of linkage quality, time complexity, and privacy.

8.1. Linkage Quality Analysis

The global database, G, is the major factor to determine the
linkage quality of our approaches. This is because the sub-
strings in G must be in the same domain as the databases DA

and DB to ensure common sub-strings of the two DOs will be
compared. If there are sub-strings in DA and DB that are not in
G, then some common sub-strings of the DOs will not be com-
pared because they have no reference values. Therefore, this
can result in more false non-matches (missed matches) which
leads to lower recall.

The sorting of reference values and the same permutation of
the lists eid and ls

v are important in our many-to-one approach
because they ensure that the DOs will insert their ls

v values in
the same order. Without using the sorted list of references and
the same permutations, the two ls

v values that correspond to dif-
ferent sub-strings will be compared. As a result, the linkage
process can result in false matches and false non-matches.

Our approaches use homomorphic encryption [13, 49] for en-
crypting the ls

v and ns
v values. However, by using homomorphic

encryption [13, 49], there can be errors (noise) which lead to
lower linkage quality. These errors can be caused by noise ad-
dition to improve security, the encryption/decryption process,
more addition or multiplication operations needed to be con-
ducted over ciphertexts, or even rounding of numerical values
before conducting the encryption process [13]. When using the
comparison method suggested by Cheon et al. [14], errors can
occur when conducting multiple arithmetic operations over ci-
phertexts, where these errors often occur when two ciphertexts
are the encryption of very close (or the same) numerical val-
ues [14]. Therefore, in our approaches, if errors are not between
0.0 and 1.0 (errors are large or negative numbers [50]), the DOs
can select their ls

v values as the minimum values because such
errors imply that the values of the two DOs are very close or the
same. For errors that are between 0.0 and 1.0, which can also
occur in homomorphic encryption, such errors can lead to false
matches and false non-matches.

8.2. Complexity Analysis

To generate blocks B, each DO requires a complexity of
O(|D|) for extracting string values and generating the list q for
each string, where |D| is the number of strings in D. For each
q, the DO requires O(|q|) time complexity for generating the
list bkv, and for each bkv the DO then requires O(|bkv|) time

9

complexity to calculate the ls
v values that correspond to the sub-

strings of all bkv in the list bkv. Therefore, overall the block
generation process requires a complexity of O(|D| × |q| × |bkv|),
where we assume |q| is the average length of the q-gram lists of
strings in D, and |bkv| is the average number of bkv of D.

To generate the list of references R, each DO requires O(|G|)
complexity for extracting string values from G and generating a
list q. Similar to the block generation process, each DO requires
O(|q|) time complexity to generate reference values and insert
them into R. Overall, the DO requires a maximum O(|G| × |q|)
complexity for generating R. To generate the inverted index, T,
the DO requires O(|R|) complexity to loop over R and O(|B|) for
checking if r ∈ R exists in B. If r ∈ B, the DO requires O(|B[r]|)
to find the maximum ls

v in the block B[r]. The DO inserts values
into T for which it requires a time complexity of O(|T|) to find
the number nr of actual ls

v that needs to be replaced with random
ls
v, and requires O(nr) complexity for the replacing value step.

Overall, the DO requires O(|R| × |B| × n + |T| + nr), where we
assume n is the average number of elements of all B[r] in B to
generate T, and ensure actual and random ls

v are equal.
In the one-to-one encryption process, each DO first loops

over T, and therefore it requires O(|T|) complexity. The DO
then generates 1- or 0-encodings and hash encodes the gener-
ated encodings into hash values which requires O(|e|), where
e is the set of 1- or 0-encodings. Therefore, for the one-to-
one encryption process, each DO requires a time complexity
of O(|T| × |e|), where we assume |e| is the average number of
elements of all e. In the one-to-one comparison step, the LU
requires O(|EC |) complexity for finding the common identifiers
between E1 and E2, where |EC | = |T| because the two DOs gen-
erated their inverted indexes based on T. The LU then loops
over hid ∈ EC which again requires O(|EC |) complexity. For a
pair of lists of hash values under each key hid, the LU requires
a time complexity of O(|H|) to find common hash values, where
we assume |H| = |H1| = |H2|. Overall, the LU requires a time
complexity of O(|EC | + |EC | × |H|).

In the many-to-one encryption process, each DO first sorts
T based on keys, resulting in the sorted inverted index T′. In
this step, the DO requires the worst time complexity of O(|T|2),
while the best time complexity is O(|T| log |T|). The DO re-
quires O(|T′|) complexity to loop over T′ to generate the lists
eid and ls

v. The DO then requires O(|eid|) and O(|ls
v|) for per-

muting these lists, where |eid| = |ls
v|. Overall the DO has the

worst-case complexity of O(|T|2 + |T′| + |eid| + |ls
v|). In the

many-to-one comparison step, the LU receives eid1 and eid2,
and ciphertexts E1 and E2 from the two DOs. Overall, the LU
requires a complexity of O(|eid|) which is needed for generat-
ing pairs of identifiers, where |eid| = |eid1| = |eid2| = |T|. The
LU only requires O(1) for conducting a comparison between
ciphertexts E1 and E2.

8.3. Privacy Analysis

We assume the DOs do not collude with the LU and assume
the LU to be a semi-honest adversary who is interested in learn-
ing the string values of DOs. The DOs first agree on parame-
ter settings which allows them to learn the parameters that are

used in a protocol, but they cannot learn any sensitive infor-
mation about the strings in each other’s databases. The DOs
individually conduct blocking of their databases, and therefore
they cannot learn any information from each other’s databases
in this step. The DOs then generate their lists R based on the
agreed global database G. This allows the DOs to know the
reference values in R.

As we use the list of references R and the ls
v (both actual and

random) values, no sensitive information will be revealed to
the LU. We assume the worst-case where the LU uses any key
attacks, such as the attack proposed by Li and Micciancio [51]
which successfully identifies the private key used in CKKS [13]
(where we use their packing method in our many-to-one ap-
proach). Even though the security of the homomorphic encryp-
tion scheme we used in our many-to-one approach can be com-
promised with such attacks, it is still uncertain for the LU to
correctly analyse the frequencies of sub-strings and re-identify
the string values of the DOs. This is because (1) each ls

v can
exist (the DO sends its actual ls

v) or not (the DO sends random
ls
v) to the LU, (2) the LU does not know the lengths of the DO’s

strings, and therefore it cannot calculate and learn the lengths
of sub-strings of the DO, and (3) the LU does not know the sub-
string values and lengths of sub-strings or lengths of strings of
the DO, and therefore it is difficult to analyse the original string
values.

In the one-to-one approach, the LU receives inverted indexes
from the DOs. The LU then finds common identifiers between
these inverted indexes which allow the LU to learn the length
of R (|R| = |T|), but it does not allow the LU to learn any sen-
sitive information of the DOs’ databases because all identifiers
are in common as the DOs generated them based on the same R
(keys in T). The LU learns which lists of hashes have common
hash values, but it cannot learn the original values encoded in
them. Furthermore, the DOs use the function HMAC(), where
the reference values are used as secret values, and therefore it
prevents the LU from conducting dictionary attacks success-
fully. The LU can count the number of lists of hashes, and ex-
tract references from G and then conduct a comparison with the
ciphertext it received from the DOs. However, these do not al-
low it to conduct any frequency analysis correctly because each
inverted index of a DO contains equal numbers of actual and
random ls

v.
For the many-to-one approach, the LU receives the lists eid1

and eid2, and ciphertexts E1 and E2 from the two DOs. Simi-
lar to the one-to-one approach, although the LU can count the
number of identifiers, which equals |R|, the LU cannot learn the
number of sub-strings (that corresponded to the actual ls

v val-
ues) of the DOs because the LU does not know which eid is the
identifier of an actual or a random ls

v.
The LU returns the compared results to the DOs. Each DO

decrypts the ciphertexts and selects the normalised lengths of
the LCS, lcs, of string pairs. The DO can learn the length of
the LCS between a string in its database and the other database,
but it cannot learn the position where the LCS occurs. The DO
can count the number of its common sub-strings by excluding
a number of its random ls

v values. However, the DO cannot
learn the frequencies of sub-strings in the other database be-

10

cause the DO does not know which sub-strings of the other DO
correspond to the actual or random ls

v. The DO can learn some
string lengths of the other DO from the compared results re-
turned from the LU. As a DO knows the reference value that
the ls

v corresponds to, it can learn the length of the sub-string,
ls, of the other DO. If the ls

v returned from the LU is the number
of the other DO, then the DO can calculate the length of the
string of the other DO as ls/ls

v.
For example, let us assume the DOA knows that the common

sub-string is “ary mille” with ls = 8 and the ls
v returned from

the LU is 0.8 where this ls
v = 0.8 is the ls

v from DOB while the
DOA has ls

v = 1.0. DOA calculates 8/0.8 = 10. Therefore, DOA
learns that the length of the string of the other DO (DOB) is 10
and this string contains the sub-string “ary mille”. DOA can use
any publicly available database and the calculated number as
described in the example above to analyse the possible string of
DOB. However, it would be time consuming to do this analysis
because there are many words or sequences of numbers that
contain the same sub-strings.

The list R and random ls
v with equal frequencies to the ac-

tual ls
v in the range [t ... st] also make it more difficult for each

DO to correctly re-identify the original sub-strings and strings
in the database of the other DO. For example, assume DOA and
DOB agreed on the similarity threshold st = 0.8. Let us assume
there are two common reference values r1 = maarryymmiil and
r2 = ryymmiilllleer. We assume DOA has the sub-strings corre-
sponding to both r1 and r2, where its sub-string corresponding
to r1 is with ls

v = 0.7 but DOA replaces this ls
v with the random

ls
v = 0.75, and DOA has the sub-string corresponding to r2 with

ls
v = 0.8. We assume DOB does not have any of the sub-string

that correspond to these references then it adds random ls
v = 0.7

for r1 and ls
v = 0.75 for r2. The LU conducts the comparison

and returns ls
v = 0.7 for r1 and ls

v = 0.75 for r2 to the DOs. DOB
cannot learn if the DOA does or does not have a sub-string that
corresponds to r1 and r2 in the database because it can be:

1. DOA does not have both r1 and r2, therefore, it adds ran-
dom ls

v values.
2. DOA has both r1 and r2 but their corresponding ls

v values
are higher than the values of DOB, therefore, the LU re-
turns the ls

v values of DOB.
3. DOA has either r1 or r2, while one of their corresponding ls

v
values is random and one is higher than the value of DOB.

4. DOA has both r1 and r2 where their corresponding ls
v values

equal the values of DOB.
5. DOA has both r1 and r2 but it replaces one of the ls

v values
with a random ls

v value while the other ls
v value equals the

value of DOB.
6. DOA has both r1 and r2 but it replaces one of the ls

v values
with a random ls

v value while the other ls
v value is higher

than the value of DOB.

9. Experimental Evaluation

We evaluated the linkage quality, time complexity, and pri-
vacy of our approaches compared to Bloom filter (BF) encod-
ing [5], the shifted hash encoded q-gram [11] (named Shift-
edHash), bit array based approach [11] (named BitArray),

and Damgård-Geisler-Krøigaard homomorphic encryption as
proposed by Essex [30] (named DGK). We compare our ap-
proaches with these baselines because BF encoding is con-
sidered as a standard PPRL technique, while ShiftedHash and
BitArray provide accurate linkage results, and DGK is a recent
homomorphic encryption based string matching technique.

9.1. Datasets and Parameter Settings

We employed datasets that are commonly used in PPRL from
two data sources [6, 11, 52]. First, we used 100K, 500K, and
1M real-world string records from the North Carolina Voter
Registration1 (NCVR) [6, 11, 52], where K is 1,000 and M is a
million. We extracted these datasets from the snapshot of 2011,
2016, and 2019, where we used the snapshot of 2011 and 2019
as the first and second datasets in a pair, and used the snapshot
of 2016 as the global dataset. Second, we used datasets from
the European census database2 (Euro) [6, 52]. We used 25,343
records of Census data which is a fictional dataset that repre-
sents some observations from a decennial Census as the first
dataset. We used 24,614 records of Customer Information Sys-
tem (CIS) data which is a fictional observation from a CIS that
combines administrative data from the tax and benefit systems
as the second dataset. For the global dataset, we used 26,625
records of Personal data which is the data underlying the Cen-
sus and CIS data. For each of the NCVR and Euro datasets,
we extracted attribute first names (FN), first and last names (FN
and LN), and first, last, and street address names (FN, LN, and
SA) to evaluate our approaches and the baselines.

To be comparable, we follow the parameter settings of the
baselines [11] where we generated q-grams using q = 3 and
used m = q for all datasets. We set the threshold t = 0.7 for
generating blocking key and reference values and used similar-
ity thresholds st = [0.8, 0.9, 1.0] for classifying a string pair as
a match. In the one-to-one approach, we set d = 2 for con-
verting ls

v to ns
v. We used the one-way hash function H() =

SHA256 [48] for the HMAC() function to generate hashes of 1-
and 0-encodings [12], where we let the first DO to generate 1-
encodings and the second DO to generate 0-encodings. We then
used the Paillier [49] cryptosystem to generate a ciphertext of
each ns

v. In the many-to-one approach, we used the secret salt
value sv = 45 for permuting the lists of identifiers and ls

v values.
For the baselines, we employed the same parameter settings

as our approaches. For BF encoding [5], we used a BF length
of l = 1,000 bits, the optimal number of hash functions [53]
(calculated as (l/n) × ln(2), where l is a BF length and n is the
number of elements being encoded [54]) and random hashing
to improve the degree of privacy as suggested by Schnell and
Borgs [55], and set the individual secret salt value sA = 65 and
sB = 56 for generating random bit arrays for the two DOs in
the BitArray approach [11]. For the DGK approach [30], we
used keys of size 1,024 bits as used in the original approach,
and we adapted their approach for a three-party protocol rather

1http://dl.ncsbe.gov/
2https://cros-legacy.ec.europa.eu/content/job-training_

en

11

http://dl.ncsbe.gov/
https://cros-legacy.ec.europa.eu/content/job-training_en
https://cros-legacy.ec.europa.eu/content/job-training_en

Table 2: Precision and recall for different datasets and approaches. DGK provides the worst precision or recall results, where the actual results of 0 are around
0.005. ShiftedHash and BitArray approaches provide the best results, where all precision and recall are 1.0.

Dataset Approach
NCVR 100K NCVR 500K NCVR 1M Euro

st = 0.8 st = 0.9 st = 1.0 st = 0.8 st = 0.9 st = 1.0 st = 0.8 st = 0.9 st = 1.0 st = 0.8 st = 0.9 st = 1.0
prec reca prec reca prec reca prec reca prec reca prec reca prec reca prec reca prec reca prec reca prec reca prec reca

FN

One-to-One 1.0 1.0 1.0 0.95 1.0 0.95 1.0 1.0 1.0 0.95 1.0 0.95 1.0 1.0 1.0 0.95 1.0 0.95 1.0 1.0 1.0 0.98 1.0 0.98
Many-to-One 1.0 1.0 1.0 0.96 1.0 0.96 1.0 1.0 1.0 0.95 1.0 0.95 1.0 1.0 1.0 0.95 1.0 0.95 1.0 1.0 1.0 0.98 1.0 0.98
ShiftedHash 1.0

BitArray 1.0
BF 0.56 1.0 0.81 1.0 1.0 1.0 0.46 1.0 0.73 1.0 1.0 1.0 0.42 1.0 0.69 1.0 1.0 1.0 0.68 1.0 0.89 1.0 1.0 1.0

DGK 0.39 1.0 0.29 0.58 0.31 0.56 0.3 1.0 0.2 0.56 0.21 0.52 0.27 1.0 0.17 0.55 0.18 0.5 0.47 1.0 0.40 0.73 0.41 1.0

FN and LN

One-to-One 1.0 1.0 1.0 1.0 1.0 0.99 1.0 1.0 1.0 0.99 1.0 0.99 1.0 1.0 1.0 0.99 1.0 0.99 1.0 1.0 1.0 0.99 1.0 0.99
Many-to-One 1.0 1.0 1.0 1.0 1.0 0.99 1.0 1.0 1.0 0.99 1.0 0.99 1.0 1.0 1.0 0.99 1.0 0.98 1.0 1.0 1.0 0.99 1.0 0.99
ShiftedHash 1.0

BitArray 1.0
BF 0.53 1.0 0.95 1.0 1.0 1.0 0.44 1.0 0.88 1.0 1.0 1.0 0.62 1.0 0.89 1.0 1.0 1.0 0.47 1.0 0.86 1.0 1.0 1.0

DGK 0.43 1.0 0.17 0 0.83 0 0.36 1.0 0.21 0 0.7 0 0.53 1.0 0.28 0 0.75 0 0.34 1.0 0.41 0.02 0.72 0.01

FN, LN, and SA

One-to-One 1.0
Many-to-One 1.0
ShiftedHash 1.0

BitArray 1.0
BF 0.62 1.0 0.91 1.0 1.0 1.0 0.64 1.0 0.92 1.0 1.0 1.0 0.64 1.0 0.92 1.0 1.0 1.0 0.53 1.0 0.75 1.0 1.0 1.0

DGK 0.61 1.0 0 0 0 0 0.63 1.0 0 0 0 0 0.62 1.0 0 0 0 0 0.51 1.0 0 0 0 0

Table 3: F-measure (F∗) for different datasets and approaches. DGK provides the worst results, where the lowest F∗ is 0.01. ShiftedHash and BitArray approaches
provide the best results which all are 1.0.

Dataset Approach NCVR 100K NCVR 500K NCVR 1M Euro
st = 0.8 st = 0.9 st = 1.0 st = 0.8 st = 0.9 st = 1.0 st = 0.8 st = 0.9 st = 1.0 st = 0.8 st = 0.9 st = 1.0

FN

One-to-One 1.0 0.97 0.97 1.0 0.97 0.97 1.0 0.97 0.97 1.0 0.99 0.99
Many-to-One 1.0 0.98 0.98 1.0 0.97 0.97 1.0 0.97 0.97 1.0 0.99 0.99
ShiftedHash 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

BitArray 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
BF 0.72 0.90 1.0 0.63 0.84 1.0 0.60 0.82 1.0 0.81 0.94 1.0

DGK 0.56 0.39 0.40 0.46 0.30 0.30 0.43 0.26 0.26 0.64 0.52 0.58

FN and LN

One-to-One 1.0 1.0 0.99 1.0 0.99 0.99 1.0 0.99 0.99 1.0 0.99 0.99
Many-to-One 1.0 1.0 0.99 1.0 0.99 0.99 1.0 0.99 0.99 1.0 0.99 0.99
ShiftedHash 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

BitArray 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
BF 0.69 0.97 1.0 0.61 0.94 1.0 0.77 0.94 1.0 0.64 0.92 1.0

DGK 0.60 0.01 0.01 0.53 0.01 0.01 0.69 0.01 0.01 0.51 0.04 0.02

FN, LN, and SA

One-to-One 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Many-to-One 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ShiftedHash 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

BitArray 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
BF 0.77 0.95 1.0 0.78 0.96 1.0 0.78 0.96 1.0 0.69 0.86 1.0

DGK 0.76 0.01 0.01 0.77 0.01 0.01 0.77 0.01 0.01 0.68 0 0

than a two-party protocol as proposed by Essex [30]. This is
to make it comparable with our approaches and the other three
baselines.

We implemented our approaches using Python and ran exper-
iments on a server with 2.4 GHz CPUs running Ubuntu 18.04.

9.2. Linkage Quality Results
As we described in Section 8.1, ciphertexts can contain er-

rors (noise). Our many-to-one approach results in errors rang-
ing from 0 to 0.92% for NCVR datasets and 0 to 0.15% for Euro
datasets. These errors are calculated by checking the decrypted
lcs if it is a large or negative number. For the linkage quality
evaluation, we used precision, recall, and F-measure [1, 56].
We also evaluate the percentage of linkage quality improve-
ment of our approaches compared to the BF. To facilitate fair
comparison, we compared the normalised length of the LCS of
plaintext string pairs, L, calculated using Eq. (7), with the se-
lected normalised length of the LCS, lcs, of the corresponding
encrypted ls

v based on Eq. (9) for our approaches.

For the ShiftedHash and BitArray approaches, we compared
the L of plaintext string pairs with their corresponding lcs cal-
culated based on the calculations in [11]. For BF encoding [5]
and DGK [30], we compared the Dice-coefficient of q-gram sets
and of their corresponding BFs and DGK encryptions. We cal-
culated L and Dice-coefficient simq

D between plaintext values
of a pair, and use them as the true similarity. For a given st, we
classified the corresponding encrypted pair with its lcs (simb

D
for BF encoding and DGK encryptions) as:

• A true positive if L ≥ st and lcs ≥ st.

• A false positive if L < st and lcs ≥ st.

• A true negative if L < st and lcs < st.

• A false negative if L ≥ st and lcs < st.

We then used these classified values to calculate precision, re-
call, and F-measure (F∗), where the F∗ is then used to calculate

12

Table 4: Percentage of improvement of our approaches over BF approach, where the positive values represent our approaches have higher linkage quality than the
BF while the negative values represent the BF has higher linkage quality than our approaches.

Dataset Approach NCVR 100K NCVR 500K NCVR 1M Euro
st = 0.8 st = 0.9 st = 1.0 st = 0.8 st = 0.9 st = 1.0 st = 0.8 st = 0.9 st = 1.0 st = 0.8 st = 0.9 st = 1.0

FN One-to-One VS BF 38.89% 7.78% -3.0% 58.73% 15.48% -3.0% 66.67% 18.29% -3.0% 23.46% 5.32% -1.0%
Many-to-One VS BF 38.89% 8.89% -2.0% 58.73% 15.48 -3.0% 66.67% 18.29% -3.0% 23.46% 5.32% -1.0%

FN and LN One-to-One VS BF 44.92% 3.09% -1.0% 63.93% 5.32% -1.0% 29.87% 5.32% -1.0% 56.25% 7.61% -1.0%
Many-to-One VS BF 44.92% 3.09% -1.0% 63.93% 5.32% -1.0% 29.87% 5.32% -1.0% 56.25% 7.61% -1.0%

FN, LN, and SA One-to-One VS BF 29.87% 5.26% 0.0% 28.21% 4.17% 0.0% 28.21% 4.17% 0.0% 44.93% 16.28 0.0%
Many-to-One VS BF 29.87% 5.26% 0.0% 28.21% 4.17% 0.0% 28.21% 4.17% 0.0% 44.93% 16.28 0.0%

Table 5: Numbers of references / blocks and comparisons, where the four baselines have the same numbers of blocks and comparisons because they are generated
from the same datasets and use the same calculation (following Eq. (10)) for generating bkv. Our one-to-one and many-to-one approaches have the same number of
reference values, while the numbers of comparisons for our many-to-one approach are all 1. Ref. and Comp. stand for reference and comparison, respectively.

Dataset NCVR 100K NCVR 500K NCVR 1M Euro
One-to-One Baselines One-to-One Baselines One-to-One Baselines One-to-One Baselines

Ref. Comp. Block Comp. Ref. Comp. Block Comp. Ref. Comp. Block Comp. Ref. Comp. Block Comp.

FN 32K 32K 32K 61K 91K 91K 91K 258K 140K 140K 140K 473K 6.9K 6.9K 6.8K 4.8K
FN and LN 927K 927K 927K 701K 4M 4M 4M 4M 7M 7M 7M 10M 175K 175K 171K 53K
FN, LN, and SA 4M 4M 4M 2M 19M 19M 19M 8M 39M 39M 39M 16M 175K 175K 781K 48K

the percentage of improvement comparing our approaches and
the BF as the BF is considered as a standard PPRL.

We provide the precision and recall values for different
datasets in Table 2, while providing the F∗ in Table 3. The
percentage of improvement of our approaches over the BF is
shown in Table 4. We limited the number of comparisons for
baselines to 1 million sub-string pairs because the total num-
ber of comparisons is very large, as we show in Table 5, and
because the baselines use high runtimes for conducting com-
parisons, especially the BitArray and DGK approaches, as we
illustrate in Fig. 4 and discuss in the next section.

In our approaches, errors in ciphertexts can cause lower re-
call, and the common sub-strings of the two DOs with no ref-
erence values can also cause lower recall because those sub-
strings were not compared. However, as can be seen in Ta-
bles 2 and 3, our approaches provide high linkage quality be-
cause there are a small number of errors with ranging from 0
to 0.92% for NCVR datasets and 0 to 0.15% for Euro datasets.
Our approaches provide precisions of 1.0 for the evaluations
on both NCVR and Euro datasets while providing recall rang-
ing from 0.95 to 1.0 for NCVR datasets and ranging from 0.98
to 1.0 for Euro datasets. Our approaches provide the F∗ rang-
ing from 0.97 to 1.0 for the NCVR datasets and provide the F∗

ranging from 0.99 to 1.0 for the Euro datasets.
Overall, the ShiftedHash and BitArray approaches provide

the highest precision and recall values. This is because these
approaches encode the strings that are to be compared based on
the lists of q-grams (sub-strings) generated from these strings.
This allows these approaches to use positional information of
the q-grams in their comparison processes. As a result, these
approaches can provide high linkage quality.

The DGK approach [30] provides the lowest precision, re-
call, and F∗ values. This is because the Dice-coefficient of the
encryptions is calculated based on the cardinality, while some
of them are the encryptions of not common q-grams between
datasets, but are common in the two lists of all possible q-

grams. The BF encoding [5] provides low precision values and
thus low F∗ because it results in many false positives which are
likely caused by hash collisions in BFs [2, 5].

Given BF encoding is considered as a standard PPRL tech-
nique, we compared the percentages of improvement of our ap-
proaches over BF encoding by calculating ((F∗ − F∗BF)/F∗BF) ×
100, where F∗ refers to the F-measure results obtained with our
method and F∗ is the F-measure of BF encoding. As can be
seen in Table 4, overall our approaches provide higher linkage
quality compared to BF encoding, where on a few occasions
our approaches provide lower linkage quality than BFs (shown
as negative percentage values). In other words, in most cases
our PPRL approaches improve the linkage quality and provide
higher linkage quality over a commonly used standard BF en-
coding PPRL technique.

9.3. Time Complexity Results

Table 5 shows the number of references, the number of
blocks, and the number of comparisons of our approaches and
the baselines. The baselines have the same numbers of blocks
and comparisons because they are generated from the same
datasets and use the same calculation (following Eq. (10)) for
generating bkv.

As expected, our two approaches have the same number of
references. Our one-to-one approach has the number of com-
parisons equal to the number of references. This is because
the DOs select the maximum ls

v value that corresponds to each
reference value and then encrypt all selected ls

v values before
sending them to the LU. For our many-to-one approach, the
number of comparisons is 1 because all ls

v values of each DO
are inserted into one list before being encrypted into a single
ciphertext. The number of comparisons of the baselines de-
pends upon the common blocks (bkv) between the databases to
be linked and the number of strings in these common blocks.
Therefore, the number of comparisons can be higher or lower
than the number of blocks.

13

FN FN and LN FN, LN, SA10−4

10−2

100

102

104

106

108

1010

1012

Ti
m

e
(M

illi
(e

co
nd

()

Run)ime of proce((e(by a DO

One-to-One Many-to-One ShiftedHash BitArray BF DGK

FN FN and LN FN, LN, SA10−4
10−2
100
102
104
106
108
1010
1012

Ti
m
e
(M
illi
se
co
nd
s)

Runtime of rocesses by a DO

FN FN and LN FN, LN, SA
10−2
100
102
104
106
108
1010
1012

Ti
m
e
(M
illi
se
co
nd
s)

Runtime of rocesses by a DO

FN FN and LN FN, LN, SA
10−2
100
102
104
106
108
1010
1012

Ti
m
e
(M
illi
se
co
nd
s)

Runtime of rocesses by a DO

FN FN and LN FN, LN, SA
10−2
100
102
104
106
108
1010
1012

Ti
m
e
(M
illi
se
co
nd
s)

Runtime of rocesses by a DO

FN FN and LN FN, LN, SA10−4
10−2
100
102
104
106
108
1010
1012

Ti
m
e
(M
illi
se
co
nd
s)

Runtime of rocesses by a DO

FN FN and LN FN, LN, SA
10−2
100
102
104
106
108
1010
1012

Ti
m
e
(M
illi
se
co
nd
s)

Runtime of rocesses by a DO

FN FN and LN FN, LN, SA
10−2
100
102
104
106
108
1010
1012

Ti
m
e
(M
illi
se
co
nd
s)

Runtime of rocesses by a DO

FN FN and LN FN, LN, SA
10−2
100
102
104
106
108
1010
1012

Ti
m
e
(M
illi
se
co
nd
s)

Runtime of rocesses by a DO

FN FN and LN FN, LN, SA
10−2
100
102
104
106
108
1010
1012

Ti
m
e
(M
illi
se
co
nd
s)

Runtime of com arison by the LU

FN FN and LN FN, LN, SA
10−2
100
102
104
106
108
1010
1012

Ti
m
e
(M
illi
se
co
nd
s)

Runtime of com arison by the LU

FN FN and LN FN, LN, SA
10−2
100
102
104
106
108
1010
1012

Ti
m
e
(M
illi
se
co
nd
s)

Runtime of com arison by the LU

FN FN and LN FN, LN, SA
10−2
100
102
104
106
108
1010
1012

Ti
m
e
(M
illi
se
co
nd
s)

Runtime of com arison by the LU

Figure 4: Runtimes for the preparation (top), the encryption (middle), and comparison (bottom) processes by a DO and the LU of our approaches and the baselines.
Runtimes per sub-string, 100K, 500K, and 1M are shown from left to right.

FN FN and LN FN, LN, SA10−4

10−2

100

102

104

106

108

1010

1012

Ti
m

e
(M

illi
(e

co
nd

()

Run)ime of proce((e(by a DO

One-to-One Many-to-One ShiftedHash BitArray BF DGK

FN FN and LN FN, LN, SA
10−2
100
102
104
106
108
1010
1012

Ti
m
e
(M
illi
se
co
nd
s)

Runtime of rocesses by a DO

FN FN and LN FN, LN, SA
10−2
100
102
104
106
108
1010
1012

Ti
m
e
(M
illi
se
co
nd
s)

Runtime of rocesses by a DO

FN FN and LN FN, LN, SA
10−2
100
102
104
106
108
1010
1012

Ti
m
e
(M
illi
se
co
nd
s)

Runtime of com arison by the LU

Figure 5: Runtimes for the preparation (left), encryption (middle), and comparison (right) processes by a DO and the LU of our approaches and the baselines on the
Euro dataset.

We show the runtimes of the processes by a DO and a LU for
the NCVR and Euro datasets in Fig. 4 and Fig. 5, respectively.
As can be seen, the DGK approach uses the longest runtimes in
data preparation processed by a DO for both NCVR and Euro
datasets. This is because the DGK approach needs to generate a
list of all possible q-grams and then map these q-grams with the
q-grams (sub-strings) to be linked. The ShiftedHash approach
is the fastest while the DGK is the slowest encryption approach.
This is because the ShiftedHash requires only O(|q|), where |q|
is the length of a list of q-grams, while the DGK approach has
longer runtimes because it encrypt each q-gram that occurs in
each string to be linked.

Overall, the runtimes for the baselines are depended upon
the number of blocks and strings to be encoded in these blocks.
The runtimes for our one-to-one approach are depended upon
the number of reference values. The runtime required for com-
parison by our many-to-one approach does not affected by the

number of reference value selection because it encrypts multi-
ple values in a single step.

As can be seen from the comparison by the LU in Fig. 4
and Fig. 5, the DGK approach provides the slowest compar-
ison. In contrast to BF encoding, ShiftedHash, and BitArray
approaches, our approaches achieved the fastest runtime when
comparing string pairs for both NCVR and Euro datasets, where
our one-to-one approach is the fastest.

9.4. Privacy Results

As used with previous PPRL approaches, we evaluated pri-
vacy by using relative information gain (RIG) [57] and disclo-
sure risks (DR) [56], where the RIG measures the difficulty
of inferring the original plaintexts in a database based on the
information about encrypted values, and the DR refers to the
likelihood of correct re-identification of the original plaintexts.

14

Table 6: Privacy measures for different datasets and approaches. The best and worst results are shown in bold and italic, respectively. DRmx,DRmn,DRmd , and DRmk
are maximum, mean, median, and marketer disclosure risks, respectively. ShiftedHash [11], BitArray [11], and BF encoding [5] provide the same results.

Dataset Approach NCVR 100K NCVR 500K NCVR 1M Euro
RIG DRmx DRmn DRmd DRmk RIG DRmx DRmn DRmd DRmk RIG DRmx DRmn DRmd DRmk RIG DRmx DRmn DRmd DRmk

FN

One-to-One 1.0
Many-to-One 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
ShiftedHash 0.86 1.0 0.06 0.33 0.0 0.87 1.0 0.06 0.33 0.0 0.87 1.0 0.05 0.17 0.0 0.84 1.0 0.08 0.33 0.01

BitArray 0.86 1.0 0.06 0.33 0.0 0.87 1.0 0.06 0.33 0.0 0.87 1.0 0.05 0.17 0.0 0.84 1.0 0.08 0.33 0.01
BF 0.86 1.0 0.06 0.33 0.0 0.87 1.0 0.06 0.33 0.0 0.87 1.0 0.05 0.17 0.0 0.85 1.0 0.08 0.33 0.01

DGK 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

FN and LN

One-to-One 1.0
Many-to-One 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
ShiftedHash 0.82 0.33 0.0 0.10 0.0 0.84 0.33 0.0 0.10 0.0 0.85 0.33 0.0 0.10 0.0 0.81 1.0 0.01 0.1 0.0

BitArray 0.82 0.33 0.0 0.10 0.0 0.84 0.33 0.0 0.10 0.0 0.85 0.33 0.0 0.10 0.0 0.81 1.0 0.01 0.1 0.0
BF 0.82 0.33 0.0 0.10 0.0 0.84 0.33 0.0 0.10 0.0 0.85 0.33 0.0 0.10 0.0 0.81 1.0 0.01 0.1 0.0

DGK 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

FN, LN, and SA

One-to-One 1.0
Many-to-One 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
ShiftedHash 0.75 0.07 0.0 0.03 0.0 0.78 0.10 0.0 0.03 0.0 0.79 0.10 0.0 0.03 0.0 0.74 0.1 0.0 0.0 0.0

BitArray 0.75 0.07 0.0 0.03 0.0 0.78 0.10 0.0 0.03 0.0 0.79 0.10 0.0 0.03 0.0 0.74 0.1 0.0 0.0 0.0
BF 0.75 0.07 0.0 0.03 0.0 0.78 0.10 0.0 0.03 0.0 0.79 0.10 0.0 0.03 0.0 0.74 0.1 0.0 0.03 0.0

DGK 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

Lower RIG and DR values indicate an approach could provide
stronger privacy protection.

We assume the worst-case scenario where an adversary uses
the same parameter settings, global database, and the same
database to be encrypted as a DO. We illustrate the results of
our approaches compared to the baselines for different datasets
in Table 6, where we show the evaluation results of the lists of
hashes for our one-to-one approach and the results of cipher-
texts for our many-to-one approach.

As can be seen, for both NCVR and Euro datasets our ap-
proaches provide the same results where our one-to-one ap-
proach provides the weakest privacy protection because of the
relationship between a reference value and the list of hash val-
ues is a one-to-one relationship. Therefore, due to the direct
relationship between the reference values and the list of hash
values, it is highly likely that an adversary will be able to in-
fer plaintext values due to less uncertainty. This one-to-one ap-
proach provides high values of RIG and DR because we assume
the adversary uses the same databases (global database and the
database to be encrypted) and parameter settings as a DO. If
the similarity between the attacking database and the plaintext
database is low, then the RIG and DR values will be lower de-
pending upon how many strings in the adversary’s database and
DO’s database are in common. However, it is possible that
the adversary might still be able to infer some plaintext values
based on common strings.

On the other hand, our many-to-one approach and the
DGK [30] approach provide the strongest privacy protection.
This is because this approach encrypts multiple values into a
single ciphertext, while in the DGK approach the same string
value is encrypted into different ciphertexts using homomorphic
encryption. The RIG value is 1.0 for these approaches because
for database D, given encryptions E, H(D|E) [56] results in 0.0,
and therefore the RIG becomes 1.0. However, as can be seen
from different DR measures of these approaches, they provide
0.0 in all occasions which implies that there is no risk of dis-
closure for these approaches. In a case where an adversary can

correctly guess the private key and is able to decrypt the cipher-
text(s) [51], there is still a high uncertainty for the adversary to
re-identify the plaintext values as we described in Section 8.3.

As we assume an adversary uses the same parameters and
database as a DO, for BF encoding [5], the adversary can gen-
erate the same BFs as an encoded database of the DO. For the
ShiftedHash [11] approach, although the list of hash values has
been shifted, an adversary can rotate the list until it finds the
same list of hash values as the list of the DO. Similarly for
the BitArray [11] approach, as an adversary uses the same pa-
rameters and database as the DO,it knows the q-gram bit array.
Therefore, the adversary can find the bit array of a string before
it has been padded with random bits.

10. Conclusion

We proposed two encryption based privacy-preserving string
matching approaches that allow fast comparison and provide
high linkage quality. Our one-to-one approach encrypts each
length of a sub-string in a string into a ciphertext, while our
many-to-one approach encrypts multiple lengths of sub-strings
in strings into a single ciphertext.

Our experimental evaluation has shown that our approaches
result in high linkage quality. Our one-to-one approach pro-
vides the fastest comparison results, while our many-to-one
and the DGK [30] approaches provide the strongest privacy
protection. Our evaluation results show that the one-to-one is
more suitable where high accuracy is required such as finan-
cial service applications. This is because the CKKS as we used
in our many-to-one can introduce some errors. However, we
recommend using our many-to-one approach for linking large
databases that require fast, high linkage quality, and high de-
grees of privacy such as bioinformatics, healthcare, and crime
detection applications. As future work, we aim to improve our
approaches to provide more accurate linkage results by reduc-
ing errors that occur in ciphertexts. We also aim to improve the
time complexity of data preparation and improve the degree of

15

privacy in the agreement of parameter settings and extend our
approaches to scenarios where DOs collude with the LU.

References

[1] P. Christen, Data Matching – Concepts and Techniques for Record Link-
age, Entity Resolution, and Duplicate Detection, Springer, Heidelberg,
2012.

[2] P. Christen, T. Ranbaduge, R. Schnell, Linking Sensitive Data: Meth-
ods and Techniques for Practical Privacy-Preserving Information Sharing,
Springer, 2020.

[3] A. Gkoulalas-Divanis, D. Vatsalan, D. Karapiperis, M. Kantarcioglu,
Modern privacy-preserving record linkage techniques: An overview,
IEEE Transactions on Information Forensics and Security 16 (2021)
4966–4987.

[4] D. Vatsalan, P. Christen, V. Verykios, A taxonomy of privacy-preserving
record linkage techniques, Information Systems 38 (6) (2013) 946–969.

[5] R. Schnell, T. Bachteler, R. J., Privacy-preserving record linkage using
Bloom filters, BMC Med Inform Decis Mak 9 (1) (2009) 1–11.

[6] A. Vidanage, P. Christen, T. Ranbaduge, R. Schnell, A vulnerability as-
sessment framework for privacy-preserving record linkage, ACM Trans-
actions on Privacy and Security (2023).

[7] A. Vidanage, T. Ranbaduge, P. Christen, R. Schnell, A taxonomy of at-
tacks on privacy-preserving record linkage, Journal of Privacy and Confi-
dentiality 12 (1) (2022).

[8] O. Goldreich, Secure multi-party computation, Tech. rep., Department
of Computer Science and Applied Mathematics, Weizmann Institute of
Science, Israel (2002).

[9] D. Vatsalan, Z. Sehili, P. Christen, E. Rahm, Privacy-preserving record
linkage for Big data: Current approaches and research challenges, in:
Handbook of Big Data Technologies, Springer, 2017, pp. 851–895.

[10] D. Karapiperis, A. Gkoulalas-Divanis, V. S. Verykios, Efficient record
linkage in data streams, in: IEEE International Conference on Big Data,
IEEE, 2020, pp. 523–532.

[11] S. Vaiwsri, T. Ranbaduge, P. Christen, Accurate and efficient privacy-
preserving string matching, International Journal of Data Science and An-
alytics (2022) 1–25.

[12] H.-Y. Lin, W.-G. Tzeng, An efficient solution to the millionaires’ prob-
lem based on homomorphic encryption, in: International Conference on
Applied Cryptography and Network Security, Springer, 2005.

[13] J. H. Cheon, A. Kim, M. Kim, Y. Song, Homomorphic encryption for
arithmetic of approximate numbers, in: International Conference on
the Theory and Application of Cryptology and Information Security,
Springer, 2017, pp. 409–437.

[14] J. H. Cheon, D. Kim, D. Kim, Efficient homomorphic comparison meth-
ods with optimal complexity, in: International Conference on the Theory
and Application of Cryptology and Information Security, Springer, 2020,
pp. 221–256.

[15] E. Ukkonen, Approximate string-matching over suffix trees, in: Annual
Symposium on Combinatorial Pattern Matching, Springer, 1993, pp. 228–
242.

[16] J. Wang, R. Li, A new cluster merging algorithm of suffix tree clustering,
Springer US, Boston, MA, 2007, pp. 197–203.

[17] J. Wang, X. Yang, B. Wang, C. Liu, An adaptive approach of approximate
substring matching, in: International Conference on Database Systems for
Advanced Applications, Springer, 2016, pp. 501–516. doi:10.1007/

978-3-319-32025-0_31.
[18] M. Yu, C. Chai, G. Yu, A tree-based indexing approach for diverse textual

similarity search, IEEE Access 9 (2020) 8866–8876.
[19] M.-S. Kim, K.-Y. Whang, J.-G. Lee, n-Gram/2L-approximation: a two-

level n-gram inverted index structure for approximate string matching,
Computer Systems Science and Engineering 22 (6) (2007) 365.

[20] M. S. R. Mahdi, M. M. Al Aziz, N. Mohammed, X. Jiang, Privacy-
preserving string search on encrypted genomic data using a generalized
suffix tree, Informatics in Medicine Unlocked 23 (2021) 100525.

[21] C. Paar, J. Pelzl, Understanding cryptography: a textbook for students
and practitioners, Springer Science & Business Media, 2009.

[22] D. Vatsalan, P. Christen, Privacy-preserving matching of similar patients,
Journal of Biomedical Informatics 59 (2016) 285–298.

[23] D. Karapiperis, A. Gkoulalas-Divanis, V. S. Verykios, Distance-aware

encoding of numerical values for privacy-preserving record linkage, in:
IEEE International Conference on Data Engineering, 2017, pp. 135–138.

[24] N. Wu, D. Vatsalan, S. Verma, M. A. Kaafar, Fairness and cost con-
strained privacy-aware record linkage, IEEE Transactions on Information
Forensics and Security 17 (2022) 2644–2656.

[25] C. Dwork, Differential privacy, International Colloquium on Automata,
Languages and Programming (2006) 1–12.

[26] M. Kuzu, M. Kantarcioglu, A. Inan, E. Bertino, E. Durham, B. Malin,
Efficient privacy-aware record integration, in: Proceedings of the 16th
International Conference on Extending Database Technology, 2013, pp.
167–178.

[27] W. Xue, D. Vatsalan, W. Hu, A. Seneviratne, Sequence data matching and
beyond: New privacy-preserving primitives based on bloom filters, IEEE
Transactions on Information Forensics and Security 15 (2020) 2973–
2987.

[28] Ú. Erlingsson, V. Pihur, A. Korolova, Rappor: Randomized aggregatable
privacy-preserving ordinal response, in: Proceedings of the 2014 ACM
SIGSAC conference on computer and communications security, 2014, pp.
1054–1067.

[29] S. Yao, Y. Ren, D. Wang, Y. Wang, W. Yin, L. Yuan, Snn-pprl: A se-
cure record matching scheme based on siamese neural network, Journal
of Information Security and Applications 76 (2023) 103529.

[30] A. Essex, Secure approximate string matching for privacy-preserving
record linkage, IEEE Transactions on Information Forensics and Secu-
rity 14 (10) (2019) 2623–2632.

[31] I. Damgård, M. Geisler, M. Krøigaard, Efficient and secure comparison
for on-line auctions, in: Australasian conference on information security
and privacy, Springer, 2007, pp. 416–430.

[32] T. K. Saha, D. Rathee, T. Koshiba, Efficient protocols for private wild-
cards pattern matching, Journal of Information Security and Applications
55 (2020) 102609.

[33] X. Mullaymeri, A. Karakasidis, Using fuzzy vaults for privacy preserving
record linkage., in: DOLAP, 2021, pp. 101–110.

[34] A. Juels, M. Sudan, A fuzzy vault scheme, Designs, Codes and Cryptog-
raphy 38 (2006) 237–257.

[35] S. Stammler, T. Kussel, P. Schoppmann, F. Stampe, G. Tremper,
S. Katzenbeisser, K. Hamacher, M. Lablans, Mainzelliste secureepilinker
(mainsel): privacy-preserving record linkage using secure multi-party
computation, Bioinformatics 38 (6) (2022) 1657–1668.

[36] P. Contiero, A. Tittarelli, G. Tagliabue, A. Maghini, S. Fabiano, P. Crosig-
nani, R. Tessandori, The epilink record linkage software, Methods of In-
formation in Medicine 44 (01) (2005) 66–71.

[37] D. Demmler, T. Schneider, M. Zohner, Aby-a framework for efficient
mixed-protocol secure two-party computation., in: NDSS, 2015.

[38] Y. Nakagawa, S. Ohata, K. Shimizu, Efficient privacy-preserving
variable-length substring match for genome sequence, Algorithms for
Molecular Biology 17 (1) (2022) 1–22.

[39] P. Ferragina, G. Manzini, Opportunistic data structures with applications,
in: Proceedings 41st annual symposium on foundations of computer sci-
ence, IEEE, 2000, pp. 390–398.

[40] R. Durbin, Efficient haplotype matching and storage using the positional
burrows–wheeler transform (pbwt), Bioinformatics 30 (9) (2014) 1266–
1272.

[41] R. Hall, S. E. Fienberg, Privacy-preserving record linkage, in: Interna-
tional Conference on Privacy in Statistical Databases, Springer, 2010, pp.
269–283. doi:10.1007/978-3-642-15838-4_24.

[42] Y. Lindell, B. Pinkas, Secure multiparty computation for privacy-
preserving data mining (2008).

[43] P. Christen, R. Schnell, D. Vatsalan, T. Ranbaduge, Efficient cryptanalysis
of Bloom filters for privacy-preserving record linkage, in: Pacific-Asia
Conference on Knowledge Discovery and Data Mining, 2017, pp. 628–
640.

[44] P. Christen, T. Ranbaduge, D. Vatsalan, R. Schnell, Precise and fast crypt-
analysis for bloom filter based privacy-preserving record linkage, IEEE
Transactions on Knowledge and Data Engineering 31 (11) (2018) 2164–
2177.

[45] A. Vidanage, T. Ranbaduge, P. Christen, R. Schnell, Efficient pattern min-
ing based cryptanalysis for privacy-preserving record linkage, in: Inter-
national Conference on Data Engineering, IEEE, 2019, pp. 1698–1701.

[46] A. Karakasidis, V. S. Verykios, Reference table based k-anonymous pri-
vate blocking, in: Proceedings of the 27th Annual ACM Symposium on
Applied Computing, 2012, pp. 859–864.

16

https://doi.org/10.1007/978-3-319-32025-0_31
https://doi.org/10.1007/978-3-319-32025-0_31
https://doi.org/10.1007/978-3-642-15838-4_24

[47] F. Niedermeyer, S. Steinmetzer, M. Kroll, R. Schnell, Cryptanalysis of
basic Bloom filters used for privacy-preserving record linkage, German
Record Linkage Center, Working Paper Series, No. WP-GRLC-2014-04
(2014).

[48] B. Schneier, et al., Applied cryptography-protocols, algorithms, and
source code in c (1996).

[49] P. Paillier, Public-key cryptosystems based on composite degree residuos-
ity classes, in: International Conference on the Theory and Applications
of Cryptographic Techniques, Springer, 1999.

[50] J. H. Cheon, D. Kim, D. Kim, H. H. Lee, K. Lee, Numerical method for
comparison on homomorphically encrypted numbers, in: International
Conference on the Theory and Application of Cryptology and Information
Security, Springer, 2019, pp. 415–445.

[51] B. Li, D. Micciancio, On the security of homomorphic encryption on ap-
proximate numbers, in: Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Springer, 2021, pp. 648–
677.

[52] T. Ranbaduge, R. Schnell, Securing bloom filters for privacy-preserving
record linkage, in: Proceedings of the 29th ACM International Confer-
ence on Information & Knowledge Management, 2020, pp. 2185–2188.

[53] M. Mitzenmacher, E. Upfal, Probability and computing: Randomization
and probabilistic techniques in algorithms and data analysis, CUP, 2005.

[54] M. Mitzenmacher, E. Upfal, Probability and computing: Randomization
and probabilistic techniques in algorithms and data analysis, Cambridge
university press, 2017.

[55] R. Schnell, C. Borgs, Randomized response and balanced Bloom filters
for privacy-preserving record linkage, in: IEEE 16th International Con-
ference on Data Mining Workshops, IEEE, 2016, pp. 218–224.

[56] D. Vatsalan, P. Christen, C. M. O’Keefe, V. S. Verykios, An evaluation
framework for privacy-preserving record linkage, Journal of Privacy and
Confidentiality 6 (1) (2014).

[57] A. Karakasidis, V. S. Verykios, P. Christen, Fake injection strategies
for private phonetic matching, in: Data Privacy Management and Au-
tonomous Spontaneus Security, Springer, 2011, pp. 9–24.

17

