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Abstract. Privacy-preserving record linkage (PPRL) is the process of
identifying records that refer to the same entities across different data-
bases without revealing any sensitive information about these entities.
A popular PPRL technique that is efficient and effective is Bloom filter
encoding. However, recent research has shown that Bloom filters are vul-
nerable to cryptanalysis attacks that aim to re-identify sensitive attribute
values encoded into Bloom filters. As counter-measures, hardening tech-
niques have been developed that modify the bit patterns in Bloom filters.
One recently proposed hardening technique is BLoom-and-flIP (BLIP),
which randomly flips bit values according to a differential privacy mech-
anism. However, while making Bloom filters more resilient to attacks,
applying BLIP can lower linkage quality. We propose and evaluate a
reference-based BLIP mechanism which ensures that Bloom filters for
similar encoded sensitive values are modified in a similar way, resulting
in improved linkage quality compared to standard BLIP hardening.
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1 Introduction

Many organizations collect millions of records about individuals (such as cus-
tomers, patients, or tax payers) in their databases which often need to be inte-
grated to facilitate effective data mining. Record linkage aims to link records in
different databases that refer to the same entity [5]. Privacy is an important as-
pect that needs to be considered when databases that contain sensitive personal
data, such as names and addresses, are linked across databases.

Privacy-preserving record linkage (PPRL) [20] techniques have been devel-
oped to match records between databases without revealing sensitive data. In
PPRL the values in a set of attributes common to all databases are encoded in
some form to ensure their privacy. Different categories of privacy techniques have
been developed for PPRL [20]. The first category are secure multi-party com-
putation (SMC) based techniques that perform matching of encrypted records.
While provably secure, SMC techniques generally have high computation costs.
The second category are perturbation based techniques which modify the actual
attribute values using an encoding technique, resulting in a trade-off between
linkage quality, scalability to linking large databases, and privacy [21].
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A widely used perturbation technique for PPRL is Bloom filter (BF) encod-
ing [3, 15]. As we discuss in detail in Sect. 3, a BF is a bit vector that encodes
values using a set of independent hash functions [15]. BF encoding is now being
used in several linkage applications in the health sector [4]. However, recent stud-
ies have shown that sets of BFs can be attacked with the aim of re-identifying
the sensitive attribute values encoded in them [6, 7, 12, 13]. Most attack meth-
ods exploit that frequent BFs or bit patterns correspond to frequent q-grams
(sub-strings of length q characters) in the sensitive values encoded in BFs.

To counteract such attack methods, hardening techniques have been devel-
oped to improve the security of BF based PPRL techniques [16, 19]. As we discuss
in detail in the next section, these hardening techniques further modify BFs to
reduce or eliminate any frequency information that could be exploited by attack
methods. One drawback of existing hardening techniques is however that they
have a trade-off between privacy and linkage quality, because modifications of
BF bit patterns will likely lead to an increase in falsely matched and missed
true matching record pairs. Certain hardening techniques have also shown to be
vulnerable to a frequency-based cryptanalysis attack [6].

One recently proposed hardening technique is BLoom-and-flIP (BLIP) [2,
16] which flips bit values at certain positions in a BF according to a differential
privacy mechanism [9]. In our evaluation we show that such random bit flipping
can lead to a considerable decrease in linkage quality. To overcome this weakness
of BLIP hardening, we propose to use reference values from a global database to
determine the bit positions to be flipped. The use of reference values ensures that
similar BFs are modified in the same way (thus maintaining high similarities)
while different BFs are modified differently (resulting in lower similarities). We
name our approach as RBBF for Reference based BLIP BF hardening.

In this paper we specifically contribute (1) a novel approach to select a suit-
able set of reference values from a publicly available large database; (2) an im-
proved BLIP hardening technique for BFs based on selected single and multiple
reference values; (3) an analysis of our approach in terms of complexity and
linkage quality; and (4) an experimental evaluation using a real-world database.

2 Related Work

Since the mid 1990s PPRL techniques have been developed to link sensitive data
without having to reveal any actual attribute values. PPRL has evolved from
simple exact matching of encrypted strings only to sophisticated approximate
matching of encoded values in large databases [20].

In 2009 Schnell et al. [15] proposed to use BF encoding for scalable PPRL
that also allowed approximate matching of records by calculating similarities
between BFs. Inspired by their approach various BF based PPRL techniques
have been developed since then [20]. Varying from two-party to multi-party
protocols, these techniques classify record pairs as matches and non-matches
based on the number of 1-bits their corresponding BFs have in common [15].
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Recently, several attacks on BF encodings for PPRL have been proposed
that aim to re-identify the attribute values encoded in BFs [6, 7, 12, 13]. Most of
these attacks are based on a frequency analysis of bit pattern distributions. To
overcome these attacks hardening methods can be applied on BFs [16, 18].

Salting is a hardening technique that can be used for PPRL [17] with the aim
to create different bit patterns for the same q-gram by adding an extra value to
each q-gram before it is encoded (such as the year of birth for a person). Therefore
two attribute values that have the same q-gram set but different salting values
(like different years of birth) will be mapped to different bit positions in a BF.

Balancing was proposed by Schnell and Borgs [16] as a hardening method to
generate uniform Hamming weight (number of 1-bits) distributions for BFs. To
generate a balanced BF, a BF is concatenated with the negated copy of itself,
such that the resulting BF will always have 50% of its bits set to 1. The bits in
the balanced BFs are then randomly permuted to improve privacy. XOR folding
is another hardening method proposed by the same authors [18], where a given
BF of length l is first divided into two segments of length l/2 and then the
bit-wise XOR operation is applied on these segments to generate a new BF.

However, both balanced and XOR folded BFs have been successfully at-
tacked. A recently proposed attack method [6] was able to correctly re-identify
some of the attribute values that have been encoded into hardened BFs because
the frequency distribution of BFs and their bit patterns does not change even
after balancing or XOR folding has been applied.

A novel hardening technique is ‘BLoom-and-flIP’ (BLIP) [1, 2, 16], which ran-
domly flips values in certain bit positions in BFs based on differential privacy
characteristics [9]. The approach is similar to the RAPPOR method [10] which
is being used to anonymously collect user responses during sensitive data col-
lections. As we detail in Sect. 3, one drawback of the original BLIP approach is
that the random bit flipping can lead to a significant loss of linkage quality.

In contrast to the original BLIP approach, we use reference values to improve
the quality of linked records. The idea of using reference values extracted from a
(publicly available) global database for PPRL was first investigated by Pang et
al. [14]. However, the use of reference values in the BF encoding and hardening
process has not been explored so far.

3 Background and Preliminaries

We now describe the building blocks required for our improved BLIP hardening
technique which we then discuss in detail in Sect. 4.

Bloom Filter Encoding for PPRL: Bloom filter (BF) encoding [3] is a
widely used perturbation techniques for PPRL [20]. A BF b is a bit vector of
length l initially set to 0-bits. In PPRL the string values from the records to be
compared in the linkage process are first converted into character q-grams which
are then encoded into a BF using a set of independent hash functions [15] by
setting corresponding bits to 1, as shown in Fig. 1.



4 Sirintra Vaiwsri, Thilina Ranbaduge, and Peter Christen

b2

1b 011 1 0 0 1 0 0 0 1 1 0 1

JA CKAC

JA AC CK KY

01 0 0 1 0 1 0 0 1 1 0 01

Number
of 1−bits:
x1

x2 = 6

= 7 c = 6

1b b2sim( , )
2 x 6

(7 6)+= 0.92

common 1−bits:
Number of

=

Fig. 1: Two example Bloom filters that are encoding the string value pair ‘JACKY’
and ‘JACK’ using two hash functions, with their Dice coefficient similarity calculation.

The similarity between two BFs b1 and b2 can be calculated using the Dice-
coefficient [5, 15]. First, the number 1-bits of each BF, x1 and x2, and the number
of 1-bits that occur in common at the same bit positions in both BFs, c, are
counted. The similarity is then calculated as: sim(b1,b2) = (2× c)/(x1 + x2).

BLoom-and-flIP (BLIP) Hardening: BLIP was originally proposed by
Alaggan et al. [2] as a non-interactive differentially private [9] approach to ran-
domize BFs in the context of privacy-preserving comparisons of user profiles in
social networks. BLIP randomly flips bits at certain positions in a BF based
on a user defined flip probability. We refer the reader to Alaggan et al. [2] for
details and a proof showing how BLIP fulfills non-interactive differential privacy.
Schnell and Borgs were the first to explore BLIP in the context of PPRL [16].

For a given bit flipping probability, f , following Alaggan et al. [2], a bit b[p]
in a BF b at position p is flipped according to Eq. (1) resulting in the value b′[p]
at position p in the new randomized BF b′.

b′[p] =

1 if b[p] = 0 with probability f,
0 if b[p] = 1 with probability f,
b[p] with probability 1− f.

(1)

The BLIP approach used by Schnell and Borgs [16] was based on the idea
proposed by Erlingsson et al. [10] as part of their RAPPOR technique which
allows anonymous collection of user statistics from software products such as
Web browsers. Again assuming a flip probability f , the new bit b′[p] at position
p in the new randomized BF b′ is flipped from b[p] according to Eq. (2):

b′[p] =

1 with probability 1
2f,

0 with probability 1
2f,

b[p] with probability 1− f.
(2)

If for example the flip probability is set to f = 0.05 for a BF of length
l = 1, 000 bits then 50 randomly selected bits will be flipped using the first
approach from Eq. (1) while 950 bits are unchanged. With the approach used
by Schnell and Borgs [16] in Eq. (2), however, bits will not be flipped according
to their original state, but rather 50 randomly selected bits will be set to 0 or
1 with equal probability. As a result, depending upon which BLIP approach is
used, the numbers of 1-bits in randomized BFs will likely differ.
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Fig. 2: Overview of reference value based BLIP Bloom Filter hardening.

If a BF has less than 50% 1-bits then applying Eq. (1) will mean it will have
more 1-bits after randomization that when applying Eq. (2). This can potentially
lead to lower linkage quality because more 1-bits can increase the similarities
between randomized BFs and thus leads to more false positive matches.

4 Protocol Description

As outlined in Fig. 2, in the first phase of our approach we select a set of suitable
reference values from a global database, and in the second phase we use these
reference values to determine how to apply BLIP when randomizing BFs.

4.1 Phase 1: Selecting Reference Values

We assume all database owners (DOs) [20] who aim to encode and harden their
sensitive databases have access to a publicly available global database G from
which they can extract a set of reference values R. Note that for phase 2 of our
approach, as described in Sect. 4.2, all DOs must use the same set of reference
values, R. Therefore this set R is either generated in the same way by all DOs,
or alternatively one DO generates R and distributes it to all other DOs.

As detailed in Algo. 1, the reference value selection process aims to find
string values that are all different to each other according to a given similarity
threshold. In other words no pair of selected reference values has an approximate
string similarity above a similarity threshold, st, according to the used similarity
function sim(). The first phase (Algo. 1) consists of the following steps:

1. The reference value set, R, is initialized and the first value, g, from the global
database, G, is added to the empty set R (line 1 to 4).

2. Using the similarity function sim(), we then compare all other values g ∈ G
with each previously selected reference value r ∈ R, and we keep track of
the maximum similarity, smax, between g and any r ∈ R (line 6 to 9).

3. If the maximum similarity smax between g and any r ∈ R is lower than
the threshold st, then g is different enough from all so far selected reference
values and is therefore added to R (lines 10 to 12). Steps 2 and 3 are repeated
until all global values g ∈ G have been processed.
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Algorithm 1: Selecting reference Values (Phase 1)

Input:
- G: Publicly available global data set - st: Similarity threshold
- sim(): Approximate string similarity function
Output:
- R: Reference value set

1: R = { } // Initialize the reference value set
2: for g ∈ G do: // Loop over all values in the global data set
3: if R == { } do: // Check if the reference set is empty
4: R = R ∪ {g} // Add the selected first global value to the reference set
5: else:
6: smax = 0 // Initialize the maximum similarity value
7: for r ∈ R do: // Loop over all so far selected reference values
8: s = sim(g, r) // Calculate similarity between the global value and the reference value
9: smax = max(smax, s) // Get the maximum similarity
10: if smax ≤ st do: // Check maximum similarity is less than the threshold
11: R = R ∪ {g} // Add global value to reference value set
12: return R

4.2 Phase 2: Reference Value based BLIP Bloom Filter Hardening

In the second phase of our approach each DO first encodes the records in its
own database V into BFs, where these BFs are then hardened using a reference
based BLIP approach, as detailed in Algo. 2. As described below, the BLIP based
randomization of BFs using reference values can employ one or more reference
values for a given record value v, where these reference values are the k most
similar values in R (from Algo. 1). The idea of RBBF is that two similar record
values, vi and vj , from V will likely have similar sets of reference values, rvi and
rvj , and when using these reference values as random seeds means that similar
BLIP based randomization will be applied for vi and vj .

We harden a basic BF bq for the q-gram set of a record value v for each of
the k reference values for v, and concatenate all hardened BFs into one final
BF bv for v that is of length k × l, where l is the length of the original BF
bq. A final random permutation of all BFs Bv (agreed by all DOs) ensures an
external attacker cannot identify the bit positions of an individual hardened BF
generated using a certain reference value (which is unknown to an attacker). The
second phase (Algo. 2) consists of the following steps:

1. In lines 1 and 2 the set of BLIP hardened BFs B is initialized first, as is a
list of permuted bit positions p that will be used to permute all generated
BFs in the same way. This list p basically contains all bit positions from 1
to k × l (the length of the final hardened BFs) randomly permuted.

2. The main loop (from line 3) iterates over all record values v ∈ V, where
in line 4 a value v is converted into its q-gram set q based on the set A of
attributes to be encoded into BFs, and length of q-grams q. These q-gram
sets are then encoded into a basic BF bq (line 5).

3. In line 6, the k most similar reference values to v are identified from the
reference values set R (as generated by Algo. 1) as the set rv.

4. We then initialize an empty BF bv for record value v (line 7), and loop over
the selected reference values r ∈ rv in line 8. We use each reference value r
as the random seed for a pseudo-random number generator (PRNG) in line
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Algorithm 2: Reference value based BLIP Bloom Filter (RBBF) hardening (Phase 2)

Input:
- V: Record value set - q: Q-gram length
- R: Reference value set - l: BF Length
- H: Hash function set - f : BLIP flip probability
- A: Attribute value set - bm: Blip method, either ala [2] or rap [10, 16]
- k: Number of reference values per BF - sim(): Approximate string similarity function
Output:
- B: Set of RBBF encoded values from V

1: B = { } // Initialize the set of RBBF encoded values
2: p = genBitPosPermList(l× k) // Generate a list of permuted bit positions
3: for v ∈ V do: // Loop over all records
4: q = genQgramSet(v,A, q) // Generate q-gram set for the record value v
5: bq = genBF (q,H, l) // Generate basic Bloom filter for q-gram set q
6: rv = getMostSimRefV alSet(R, v, sim, k) // Get the k reference values most similar to v
7: bv = [ ] // Initialize an empty Bloom filter for record v
8: for r ∈ rv do: // Loop over references values for record value v
9: setRandomGeneratorSeed(r) // Initialize the PRNG
10: if bm == ala then: // Apply Eq. 1
11: br = applyAlaBLIP (f,bq)
12: else: // Apply rap (RAPPOR) BLIP method, Eq. 2
13: br = applyRapBLIP (f,bq)
14: bv = concatenateBF (bv,br) // Append to final hardened Bloom filter for record v
15: bv = permuteBF (bv,p) // Permute the final Bloom filter for record v
16: B[v] = bv // Add RBBF hardened Bloom filter to the output set
17: return B

9, and then we apply the selected BLIP method (using one of Eq. (1) or (2))
and the flip probability, f (in lines 10 to 13).

5. The resulting BLIP hardened BF br is then appended (concatenated) to the
end of the record BF bv in line 14.

6. A final permutation of bv in line 15 ensures an attacker cannot identify the
individual BFs that were BLIP hardened with a certain reference value. The
BF bv is then inserted into the list of all BFs B for record v in line 16.

4.3 Complexity and Linkage Quality Analysis

We now analyze our approach in terms of its complexity and linkage quality.

Complexity: The computational complexity of Algo. 1 depends upon the
size of G as well as the similarity threshold st. If st is set to a high value then
more values in G are added into R. In the worst case, if st = 1.0 (assuming the
similarity function returns a normalized value 0 ≤ sim() ≤ 1) then all values in
G will be added into R leading to a complexity of Algo. 1 of O(|G|2).

The main loop in Algo. 2 iterates over all record values in V leading to a
complexity of O(|V|). Generating the q-gram set q and the basic BF bq in lines
4 and 5 are of complexity O(Q · |H|) where we assume Q is the average number
of q-grams in a value v ∈ V, and |H| is the number of hash functions used to
encode q-grams into BFs. Finding the k most similar reference values to a given
v ∈ V from R requires |R| similarity calculations. The BLIP randomization in
lines 8 to 14 for the selected k reference values has a complexity of O(k · l) where
l is the length of the original BF. Finally, the permutation of the concatenated
BF Bv also has a complexity of O(k ·l) as a loop over all bit positions is required.
Overall, the complexity of Algo. 2 is O(|V| · (Q · |H|+ |R|+ 2 · k · l).
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Linkage Quality: The two main parameters of our approach that will affect
the final linkage quality (besides the quality of the input data and the general
parameters used for BF encoding and BLIP randomization) are the similarity
threshold, st, in Algo. 1 and the number of reference values, k, in Algo. 2.

If a lower st is used then the set of reference values R will be smaller. Hence it
will be more likely that two dissimilar record values will have the same value(s)
in R and thus the same BLIP randomization will be applied on their BFs. This
potentially lowers the precision of linkage quality because it will lead to an in-
creased BF similarity if the same bit positions are flipped to 1-bits. A higher
st leads R to contain more values and thus a higher likelihood that dissimi-
lar record values will have different reference values leading to different BLIP
randomization. Therefore, a higher st should result in higher linkage quality.

When using more reference values, k, per record value then the linkage quality
will likely increase because there is a higher chance that similar record values
share the same reference value(s), leading to similar BLIP randomization. On
the other hand, when using less reference values it is more likely that dissimilar
record values share the same reference value(s) which can lower linkage quality.

5 Experimental Evaluation and Discussion

We evaluated our proposed RBBF hardening approach using the North Carolina
Voter Registration (NCVR) database (see: https://dl.ncsbe.gov), where we use
a subset of 224,073 records as the global database G from where we extracted
reference values. Using stratified sampling we identified 1,000 record pairs where
we had 100 pairs in each of the ten similarity intervals [0.0, 0.1), [0.1, 0.2), . . .,
[0.9, 1.0). We encoded different attribute combinations into BFs: (1) first name,
(2) first and last names, and (3) first, last, street and town names. We set the
similarity threshold in Algo. 1 to st = [0.4, 0.6, 0.8], and the number of reference
values in Algo. 2 to k = [1, 3]. We converted attribute values into q-grams using
q = 2 and encoded them into BFs of length l = 1,000 using different numbers of
hash functions, and set the BLIP flip probabilities f = [0.01, 0.05, 0.1].

We implemented all approaches using Python 2.7 and ran experiments on a
server with 2.4 GHz CPUs running Ubuntu 16.04. We compared RBBF with BFs
without any hardening (No-BLIP) and the two BLIP approaches by Alaggan et
al. [2] (BLIP-A), and Schnell and Borgs [16] (BLIP-S). We named RBBF based
on Eq. (1) and Eq. (2) as RBBF-A and RBBF-S, respectively.

In the evaluation we compared Dice similarities, as discussed in Sect. 3,
calculated between q-gram sets [5] with Dice similarities calculated between BFs.
As Fig. 3 shows, for a pair of records we assumed the q-gram Dice similarity sQ
to be the true similarity. For a given similarity threshold t we then classified the
corresponding BF pair with its Dice similarity, sB , as a true positive (TP) if both
sQ ≥ t and sB ≥ t, a false negative (FN) if sQ ≥ t and sB < t, a false positive
(FP) if sQ < t and sB ≥ t, and a true negative (TN) if sQ < t and sB < t. We
calculated precision as P = TP/(TP +FP ) and recall as R = TP/(TP +FN),
We do not present F-measure results given recent research [11].
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Table 1: Number of reference values generated
for different attribute combinations using differ-
ent values for the similarity threshold st.

Attribute combinations st = 0.4 st = 0.6 st = 0.8

First name (FN) 1,217 5,949 14,442
Last name (LN) 2,375 12,943 29,682
Street (ST) 5,084 43,268 119,601
Town names (TN) 280 583 720
FN and LN 4,391 40,725 154,952
FN, LN and ST 16,891 184,606 219,926
FN, LN and TN 2,441 51,793 180,513
FN, LN, ST, and TN 6,027 115,000 216,497

Table 2: Average run times (in seconds) for BLIP and RBBF for different attribute
combinations, numbers of reference values, k, and flip probabilities, f .

Attribute combinations
f = 0.01 f = 0.1

BLIP k = 1 k = 3 k = 6 BLIP k = 1 k = 3 k = 6

FN 0.159 0.163 0.482 0.968 0.165 0.169 0.511 1.007
FN and LN 0.316 0.322 0.945 1.867 0.321 0.328 0.980 1.954
FN, LN, ST, and TN 0.308 0.316 0.935 1.869 0.323 0.331 0.985 1.957

In Table 1 we show the number of reference values generated by Algo. 1 for
different attribute combinations and similarity threshold values, st. As can be
seen, higher values of st resulted in more reference values in R. Furthermore,
attributes (or combinations) with more unique values ended up with more ref-
erence values, which can lead to better linkage quality of RBBF hardened BFs.

However, the computational requirements of RBBF increase with more ref-
erence values, as we discussed in Sect. 4.3. Table 2 shows average run times for
BLIP (averaged for BLIP-A and BLIP-S) and RBBF. As can be seen, as ex-
pected an increase of k led to increased run times, as did longer encoded q-gram
sets. However the flip probability, f , did not seem to affect run times.

In Tables 3 to 5 we show precision and recall results (calculated as described
above) for three selected attribute combinations. Due to limited space we only
show results where the number of reference values is k = 3 and the reference
similarity value is st = 0.8 because these settings gave the best results for all
attribute combinations. We used a number of hash functions appropriate to the
length of the q-grams sets that needed to be encoded into BFs [8, 15].

As shown in Tables 3 to 5, and as expected, without hardening the BFs (No-
BLIP) Dice similarities were very close to the q-gram Dice similarities. While
this will result in good linkage quality the known vulnerability to cryptanalysis
attacks of not hardened BFs makes basic BF encoding not suitable for secure
PPRL. As can be seen from these results, standard BLIP (BLIP-A and BLIP-S)
led to very low precision and recall values of 0.0 with higher flip probabilities,
while even with higher flip probabilities our RBBF approach achieved results of
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Table 3: Precision and recall for attribute first name with 40 hash functions used for
Bloom filter encoding. The best results for each f and t setting are shown in bold.

Method
Flip

probability (f)
t = 0.7 t = 0.8 t = 0.9

Prec Reca Prec Reca Prec Reca

No-BLIP - 0.711 1.0 0.737 1.0 1.0 1.0

BLIP-A 0.01 0.891 1.0 0.953 0.976 1.0 0.65
BLIP-S 0.01 0.82 1.0 0.955 1.0 1.0 0.75

RBBF-A 0.01 0.886 1.0 0.883 0.964 1.0 0.725
RBBF-S 0.01 0.825 1.0 0.841 1.0 1.0 0.85

BLIP-A 0.05 1.0 0.284 1.0 0.167 0.0 0.0
BLIP-S 0.05 1.0 0.658 1.0 0.5 1.0 0.1

RBBF-A 0.05 0.959 0.39 0.778 0.25 1.0 0.325
RBBF-S 0.05 0.963 0.748 0.871 0.595 1.0 0.4

BLIP-A 0.1 1.0 0.013 0.0 0.0 0.0 0.0
BLIP-S 0.1 1.0 0.297 1.0 0.167 0.0 0.0

RBBF-A 0.1 0.889 0.152 0.728 0.226 1.0 0.3
RBBF-S 0.1 0.962 0.432 0.778 0.333 1.0 0.35

high precision while recall suffered for certain parameter settings and attribute
combinations. As more attributes were encoded into BFs both precision and
recall decreased especially with higher Dice similarity thresholds because the
BLIP and RBBF randomization mechanisms led to lower Dice similarities.

Overall the results shown in Tables 3 to 5 also indicate that the RAPPOR [10,
16] based BLIP hardening approach from Eq. (2) seemed to outperform the
approach proposed by Alaggan [2] from Eq. (1). Our proposed RBBF approach
outperformed both standard BLIP approaches with regard to linkage quality for
most parameter settings and attribute combinations.

In Table 6 we show re-identification results using a recently proposed fre-
quency-based cryptanalysis attack [6], showing exact one-to-one, one-to-many,
wrong and no re-identification percentages for the top 100 most frequent first
names. As can be seen from these results, RBBF slightly improved privacy com-
pared to not hardened BF encoding. Interestingly, the attack was still able to
correctly re-identify 100% of all first names in a one-to-many manner in BLIP.
This indicates that standard BLIP might not be as secure as originally hoped,
and further research is required to investigate these results.

6 Conclusion

We have presented and improved the BLoom-and-flIP (BLIP) hardening tech-
nique for Bloom filter encoding for privacy-preserving record linkage. Our ap-
proach selects reference values from a large publicly available database and uses
these values to modify the BLIP approach such that similar record values are
randomized in a similar way. Our results on a real voter database showed that
our approach is able to outperform standard BLIP approaches [2, 10, 15] while
ensuring the hardened Bloom filters are secure with regard to attacks. In future
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Table 4: Precision and recall for attributes first name and last name with 30 hash
functions used for Bloom filter encoding. Best results are shown in bold.

Method
Flip

probability (f)
t = 0.7 t = 0.8 t = 0.9

Prec Reca Prec Reca Prec Reca

No-BLIP - 0.61 1.0 0.719 1.0 0.189 1.0

BLIP-A 0.01 0.655 1.0 0.866 1.0 0.6 0.857
BLIP-S 0.01 0.636 1.0 0.804 1.0 0.368 1.0

RBBF-A 0.01 0.653 1.0 0.834 1.0 0.393 0.929
RBBF-S 0.01 0.634 1.0 0.794 1.0 0.275 1.0

BLIP-A 0.05 0.91 0.905 1.0 0.203 0.0 0.0
BLIP-S 0.05 0.753 0.995 0.979 0.748 0.0 0.0

RBBF-A 0.05 0.892 0.917 0.962 0.5 0.518 0.5
RBBF-S 0.05 0.733 0.998 0.94 0.89 0.383 0.5

BLIP-A 0.1 1.0 0.19 0.0 0.0 0.0 0.0
BLIP-S 0.1 0.909 0.896 1.0 0.203 0.0 0.0

RBBF-A 0.1 0.989 0.441 0.942 0.309 0.433 0.5
RBBF-S 0.1 0.885 0.934 0.911 0.537 0.35 0.5

work we aim to investigate linkage quality and privacy of RBBF on different
data sets, develop approaches to calculate the optimal flip probability for RBBF
to minimize the number of false positives while providing enough privacy, and
improve the privacy of RBBF to avoid re-identification by adding randomness
into the reference value selection process based on q-gram frequencies.
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