Accurate Synthetic Generation of
Realistic Personal Information

Agus Pudjijono and Peter Christen*

Department of Computer Science, The Australian National University,
Canberra ACT 0200, Australia
peter.christen@anu.edu.au

Abstract. A large proportion of the massive amounts of data that are
being collected by many organisations today is about people, and often
contains identifying information like names, addresses, dates of birth, or
social security numbers. Privacy and confidentiality are of great concern
when such data is being processed and analysed, and when there is a
need to share such data between organisations or make it publicly avail-
able. The research area of data linkage is especially suffering from a lack
of publicly available real-world data sets, as experimental evaluations
and comparisons are difficult to conduct without real data. In order to
overcome this problem, we have developed a data generator that allows
flexible creation of synthetic data with realistic characteristics, such as
frequency distributions and error probabilities. Our data generator sig-
nificantly improves similar earlier approaches, and allows the creation of
data containing records for individuals, households and families.

Keywords: Artificially created data, data matching, data linkage, pri-
vacy, data mining pre-processing.

1 Introduction

Today, massive amounts of data are being collected by many organisations in
both the private and public sectors. A large proportion of this data is about
people, such as employees, customers, patients, tax payers, or travellers. Nor-
mally, personal identifying information (like gender, names, addresses, dates of
birth, telephone, social security or driver’s license numbers) is stored in such
databases together with application specific information (such as employment
details, customer orders, medical details, tax payments, or travel details).

When such databases are being analysed and mined within an organisation,
then normally, depending upon the desired mining outcomes, only parts of the
personal information is used in an analysis (for example age, postcode of resi-
dence, or gender). In these cases, privacy and confidentiality are generally not of
great concern, as the data is being mined within an organisation and the results
of an analysis are also used within the organisation.

* Corresponding author

However, when data is being shared between organisations, privacy and con-
fidentiality become of paramount importance, because personal identifiers are
commonly required to link records between different organisations [4]. The ob-
jective of such linkages is to match and aggregate all records that refer to the
same entity. Because real-world data is often dirty [13] (i.e. contains errors and
variations, is out-of-date or even missing) and commonly no unique entity iden-
tifiers are available, sophisticated approximate matching algorithms are required
that use the available personal identifiers for linking [6,9, 21].

The field of data linkage (also called record linkage, entity resolution or data
matching) has in the past decade been recognised as an important and challeng-
ing problem, and has attracted interest from the data mining, machine learning,
information retrieval and database communities. A variety of novel linkage al-
gorithms have recently been developed [6,9, 21], addressing the major technical
challenges of matching accuracy and scalability to very large databases. Another
major challenge for the data linkage research community is the lack of publicly
available real-world test data sets that allow comparisons of newly developed
algorithms and techniques. This lack is mainly due to privacy concerns, because
organisations simply cannot publish data sets that, for example, contain per-
sonal details of their customers or patients. As a result, data linkage researchers
have to use publicly available data sets [2], or use their own, confidential, data
which prevents other researchers from repeating experimental studies.

An alternative approach, which is the topic of this paper, is to use synthet-
ically generated data. While this approach has it own challenges, as discussed
below, it has several advantages. First, a user can control the size (number of
records) and quality (error characteristics) of the generated data sets. Second,
such data can be published, and thus allows other researchers to repeat ex-
periments and compare algorithms. Third, the generator program itself can be
made available to other researchers, allowing them to generate data sets that
are specifically tailored to their use, for example to their country or application
domain. Finally, because it is known which of the generated records match with
each other and which do not, it is possible to calculate matching rates [6].

Synthetically generated data that contains personal information is not just
useful for data linkage research. Any application where data containing personal
details is required for research purposes can benefit from synthetically generated
data, because such data removes privacy and confidentiality concerns. Examples
include research into privacy-preserving data sharing [4], publishing and mining,
statistical micro-data confidentiality, or replacing real identifying information
with randomly generated values in order to allow publication of data sets.

The challenges when generating synthetic data are that it is not easy to
create data with characteristics that are similar to real-world data. The frequency
and error distributions of values have to follow real-world distributions, and
dependencies between attributes have to be modelled accurately. Our work in
this paper describes a data generator with such characteristics. It is a significant
improvement over earlier data generators [1,2,12], which created data in much
simpler and less realistic ways.

G/;;téirgltjifn Frequency Typographic Phonetic OCR
Tables Error Functions Error Rules Error Rules

Rules
W Duplicate
Generate Records

AN

Generate

Original Original Duplicate
Records Records Records
—
(EITTEE Parameters
Family and chﬁ_:}le;ztsd Family and
Heusahakl Attributes Mol Household
Parameters > Records "| Records

Fig. 1. Overview of the data generation process.

In the following section we describe our approach to synthetic data generation
of personal information in detail, and in Section 3 we evaluate our data generator
and show that the created data has realistic characteristics. An overview of work
that is related to our research is then given in Section 4, and we conclude the
paper in Section 5 with an outlook to possible future work.

2 Synthetic Data Generation

As illustrated in Fig. 1, the data generator works in two steps. First, a user
specified number of original records is created using look-up tables with real
values and their frequencies and dependencies, or based on specific attribute
generation rules [2]. In the second step, randomly selected original records are
modified and stored as duplicate records. Alternatively, family and household
data can be generated based on various parameter settings. Each record is given
a unique identifier that facilitates matching of the original records with their
duplicates, allowing to calculate matching rates [6].

2.1 Original Record Generation

The original records are randomly created using frequency look-up tables for
name (like given- and surname) and address attributes (such as street number,
name and type, suburb name, postcode, and state name). Such frequency tables
can, for example, be extracted from telephone directories or other data sources
as user has access to. For date, telephone and social security number attributes,
a user can specify generation rules that, for example, determine the range of
dates (such as start and end birth dates), or the number of digits in a telephone
number. In the following, we describe the two major novel features of our data
generator [20]: attribute dependencies and family and household data.

Attribute Dependencies A dependency occurs if the values in one attribute
depend upon the values in one or more other attributes. Examples include: given
names depend on the gender and the cultural background of a person, surnames

ACT : Acton;5, Ainslie;10, Amaroo;7, Belconnen;12
NSW : Albanvale;3, Albert Park;6, Alberton;4, Albion Park;9
QLD : Allansford;1, Allendale;11, Allestree;4

Fig. 2. Sample from a combined dependency—frequency look-up table with Australian
state names on the left, and suburb names and their frequencies on the right.

depend on the cultural background, suburb names depend on the state they are
located in, and postcodes depend on both the suburb and state they are located
in. These dependencies are based on look-up tables, such as the one shown in
Fig. 2, that can be extracted from many publicly available data sources.

When generating the original records, the key attributes (i.e. attributes that
others depend on) are generated first, and according to a selected key attribute
value, one of the corresponding dependent attribute values is randomly selected
according to their given frequency. For example, using the values from Fig. 2, if
the state ‘QLD’ has been selected, the suburb name ‘Allansford’ would be se-
lected with likelihood 6.25%, ‘Allendale’ with likelihood 68.75%, and ‘Allestree’
with likelihood 25%, as these are their given relative frequencies.

As attribute dependencies will only create true attribute combinations (for
example existing postcode, suburb and state triplets), with a certain (user spec-
ified) likelihood the dependency is not followed. Instead, a value is randomly
selected from the overall look-up table of the dependent attribute. For example,
if the state ‘NSW’ has been selected, then, with a certain likelihood, the ‘ACT”’
suburb ‘Ainslie’ might be selected, rather than one of the given ‘NSW’ suburbs.

Generating Family and Household Data Family data is generated as-
suming that all members of a family have the same surname. The records for a
family are generated as follows. First, an original record is randomly selected.
Depending upon its age and gender value, it is assigned a family role: husband if
male and age is over 18 (this age can be changed by the user), wife if female and
age is over 18, son if male and age is below 18, and daughter if female and age is
below 18. The next step is to randomly select how many other records are to be
generated for this family, and their age and gender distributions. These records
are then generated by keeping the surname value from the first family member
record, but randomly selecting given name, gender and date of birth values.

The value of address attributes are generally kept the same for all members
of a family, however, depending upon the age value of son and daughter records,
a new address will be created with a certain likelihood, assuming the child is old
enough and has moved somewhere else. When generating family data, a large
number of parameters needs to be set by the user [20], including the probability
of assigning a record to a specific family role, the distribution of age gaps, and
the probability of parents having a certain number of children.

Household data is generated similarly, with the main difference being that all
records generated in a household have the same address, and that all age values
are above 18 (again, the user can modify this minimum age). Thus, households

Printed Handwritten Memory cc (ph)

sub, ins, del
attr swap, repl

/

cc (ph) < /
sub, ins, del <t
attr swap, repl

cc (ty)
sub, ins, del, trans
> attr swap, repl

)
i

cc (ph,ty)

sub, ins, del, trans
wc split, merge
attr swap, repl

cc (ph and or ty)
sub, ins, del, trans
attr swap, repl

cc (ph)
sub, ins, del .
Speech recognition

cc (ocr)
sub, ins, del
wc split, merge

Abbreviations:

cc : character change
wc : word change
subs : substitution
ins : insertion

del : deletion
trans : transpose
repl : replace

ty : typographic
ph : phonetic

attr : attribute

Fig. 3. Model of data sources and possible errors introduced during data entry.

are made of a group of people with different names, and correspond to shared
houses as well as unmarried couples. Similar to family data, a large number
of parameters needs to be set by the user, for example the distribution of the
number of people in a household, and their age and gender distributions.

2.2 Error Modelling and Record Modification

As illustrated in Fig. 3, data can be entered in many different formats and
through a variety of channels, with each having its own error characteristics.
For example, handwritten forms that are scanned and processed using optical
character recognition (OCR) software will likely contain substitutions between

)

similar looking characters, such as ‘7’ and ‘I’, or groups of characters, like ‘rn
and ‘m’. On the other hand, phonetic errors, like the name variations ‘dickson’
and ‘dizon’, are introduced when information is being dictated and entered us-
ing speech recognition, or typed manually. Typing itself introduces certain errors
more likely than others. Depending upon keyboard layout, mistyping neighbour-
ing keyboard keys, such as ‘a’ and ‘s’, can occur. Often, depending upon the
data entry channel, a combination of error types can be introduced.

Our data generator allows the specification of typographic, phonetic and
OCR errors. For each error type, the user can set parameters of how likely they
occur when the duplicate records are being generated. For example, setting the
likelihood of typographic and phonetic errors to 0 will result in duplicate records
that only contain OCR errors.

Typographic Errors Typographic errors at character level (insertion, dele-
tion, or substitution of a character; transposition of two adjacent characters) are
implemented as functions that apply the corresponding modification to a given
input string with a certain likelihood (as set by the user), and return the modi-
fied string. Following real-world studies of error distributions, the position of a
modification is randomly selected such that a modification is more likely intro-
duced in the middle or towards the end of a string, because the initial characters
of a name are more likely to be correct than later ones [19].

Optical Character Recognition (OCR) Errors OCR modifications are
based on rules that consider shape similarity among characters. We currently
have a set of around fifty such rules, for example ‘6’ and ‘S’, ‘6’ and ‘G’, or
‘w” and ‘vv’. These rules represent the most likely OCR variations that might
occur. When duplicate records are being generated, depending upon the input
string value and user specified parameter settings, one or more possible OCR
modifications will be randomly selected and applied to the input string, and the
modified string will be inserted into the duplicate record.

Like phonetic rules (as discussed below), OCR modifications can occur as
a single character variation (substitution or deletion), or as a combination of
modifications (for example a substitution and deletion, or a deletion and in-
sertion). Different from phonetic rules, however, is that OCR modifications are
independent of the position and can occur anywhere in a string.

Phonetic Errors These kinds of errors are usually more complex than simple
typographic or OCR errors, as they often include changes of character groups.
The basic idea behind our approach in modelling phonetic errors is to employ the
encoding rules that are used in phonetic encoding methods, such as Phoniz [10]
and Double-Metaphone [17]. In encoding methods, these rules are used to group
similar sounding names together, while we use them to modify a name in order
to get a similar sounding variation of it. We have developed around 350 such
rules, each made of the following seven components.

1. Position The position within the input string where the original string
pattern (see below) can occur. The four possible values are: ALL (a pat-
tern can occur anywhere), START (a pattern must occur at the beginning),
MIDDLE (a pattern must occur in the middle, but it cannot occur at the
beginning or end), and END (a pattern must occur at the end).

2. Original pattern This is the string (made of one or more characters) that
will be replaced with the substitute string pattern if the rule is applied.

3. Substitute pattern This is the string (made of zero or more characters)
that will replace the original string pattern if the rule is applied.

4. Precondition A condition that must occur before the original string pat-
tern in order for this rule to become applicable. A precondition can for
example be that the character immediately before the original pattern is a
vowel (‘V7), a consonant (‘C’), or a more complex expression [20].

5. Postcondition Similarly, a condition that must occur after the original
string pattern in order for this rule to become applicable.

6. Pattern existence condition This condition requires that a certain given
string pattern does (‘y’ flag) or does not (‘n’ flag) occur in the input string.

7. Start existence condition Similarly, this condition requires that the input
string starts with a certain string pattern (‘y’ flag) or not (‘n’ flag).

The last four components of a rule (its conditions) can be set to ‘None’ if they
are not required for a rule. In the following we give some illustrative examples.

— ALL, h, @, None, None, None, None
mustapha — mustapa
In this rule there are no conditions, so any occurrence of the character ‘4’ is
being removed (replaced with an empty string — denoted with a ‘@’).

— END, le, ile, C, None, None, None
bramble — brambile
The precondition in this rule is ‘C’, which means the character before the
original pattern must be a consonant (any character other than ‘a’, ‘e’, @,
‘o’, ‘u’). The character before the pattern ‘e’ in this example is a ‘b’ so the
modification ‘le’ into ‘e’ can be applied.

— MIDDLE, ge, ke, None, None, None, y;van;von;sch
van geraldus — van keraldus
This rule states that in order to replace the pattern ‘ge’ in the middle of the
input string, it must begin (start existence condition set to ‘4’) with one of
the three patterns ‘van’, ‘von’ or ‘sch’.

3 Experimental Evaluation

Our data generator is implemented as part of the Febrl (Freely Extensible
Biomedical Record Linkage) open source data linkage system [5],} and is written
in the Python programming language. Due to the availability of its source code,
it can be modified and extended according to a user’s needs.

! Available from: https://sourceforge.net/projects/febrl/

Typographic error distribution Family age distributions
0.5

3 " Error probability setfing s " Son-org
g 04r Generated error probabilities q Daughter-org -
E Father-dup -
3 03 r] Mother-dup
s 02F 5 Brother-dup ------- |
S : 3 Sister-dup ------
o =
S o1} I I =
5]
€, L | I | [| B
%4
Q%0 T, e, e, By 20 Y %, B, %, E
%y %, % by, by, S0, 0, Y So, 05, %, Z
D O, U %, % Uy R, Y
D %%, % %, % %
% %, 7

30 40 50 60
Age

Fig. 4. Example distributions of typographic errors and family age values from syn-
thetically generated data.

A large number of parameters can be set by the user, including the number
of original and duplicate records to be generated, the frequency and dependency
look-up tables to be used, the distributions of household and family records, and
the various error characteristics to be applied when the duplicate records are
being created. A detailed description is available elsewhere [20].

We used a variety of data sets to create our look-up tables, including a data
set containing 99,571 names and their culture of origin (37 different cultures) [18],
a data set with Australian postcode, suburb and state values as available from the
Australia Post Web site,? and the various look-up tables supplied with the Febrl
data linkage system [5]. Error and modification probabilities were set according
to real world studies on typographic and other errors [7,11,14, 16, 19].

Due to space limitations, we can only show a selection of experimental results
that illustrate the characteristics of the generated data. A more detailed analysis
and discussion is provided elsewhere [20]. A user can repeat our experiments by
downloading the Febrl system and run the generator program supplied with it
(and possibly change parameter settings according to her or his needs).

The left-hand side of Fig. 4 shows how the error distribution in the generated
data does follow the parameter settings provided by the user. The differences
that can be seen are mainly due to the characteristics of the data. For example,
misspellings are much less frequent in the generated data than as set by the
user, because they are based on a look-up table of name values and their possible
misspellings. Thus, no misspelling modification can be applied if a name value in
an original record is not listed in the corresponding misspellings look-up table.
Similar, word swaps within an attribute (such as ‘paul thomas’ < ‘thomas paul’)
can only be applied when an attribute value contains more than one word.

The right-hand side of Fig. 4 illustrates the age distributions of family records,
where son and daughter records were originally generated, followed by the gen-
eration of records that correspond to other family members. As can be seen, the

2 Available from: http://www.post.com.au/postcodes/

(a) Typographic errors

rec-id, age, given_name, surname, street_number, address_1, address_2, state, suburb, postcode

rec-l-org, 33, madison, solomon, 35, tazewell circuit, trail view, vic, beechboro, 2761

rec-1-dup-0, 33, madison, solomon, 35, tazewell circ, trail view, viv, beechboro, 2761
rec-1-dup-1, 33, madison, solomon, 35, tazewell crct, trail view, vic, bechboro, 2761
rec-1-dup-2, , madison, solomon, 36, tazewell circuit, trail view, vic, beechboro, 2716

rec-1-dup-3, 33, madisoi, solomon, 35, tazewell circuit, trail view, vic, beech boro, 2761

rec-2-org, 29, soida, perera, 416, marchant place, weemilah, nsw, belmont, 2280
rec-2-dup-0, 29, soida, perera, 414, marchant place, wemilah, nsw, belmont, 2280
rec-2-dup-1, 92, soida, perera, 416, marchant place, weemilah, naw, belmont, 2280

(b) Phonetic errors

rec-id, age, given_name, surname, street_number, address_1, address_2, state, suburb, postcode

rec-3-org, 29, jalisa, wane, 25, prisk place, seabank, , wa, latham, 6616
rec-3-dup-0, 29, ghialisa, wane, 25, prisk place, zeabank, , wa, latham, 6616
rec-3-dup-1, 29, jalisa, whane, 25, prisc place, seabank, , wa, latham, 6616
rec-3-dup-2, 29, jalissa, wane, 25, prisk place, seapank, , wa, latham, 6616

rec-4-org, 39 , desirae, contreras, 44, maltby street, phillip lodge, nsw, burrawang, 3172
rec-4-dup-0, 39, desirae, kontreras, 44, maltby street, phillip lodge, nsw, burrawank, 3172
rec-4-dup-1, 39, desirae, contreras, 44, maltby street, fillip lodge, nsw, buahrawang, 3172

(c) OCR errors

rec-id, age, given_name, surname, street_number, address_1, address_2, state, suburb, postcode

rec-5-org, 28, phyliss, winter, 20, aspinall road, , qld, wairewa, 3887
rec-5-dup-0, 28, phyliss, winter, 20, aspinall road, , qld, wairewa, 3881
rec-5-dup-1, 28, phyl’lss, winter, 20, aspinall road, , qld, wajrewa, 3887
rec-6-org, 81, madisyn, sergeant, 6, howitt street, creekside cottage, vic, nangiloc, 3494
rec-6-dup-0, 87, madisyn, sergeant, 6, howitt street, creekside cottage, vic, nangiloc, 3494
rec-6-dup-1, 81, madisvn, sergeant, 6, hovitt street, creekside cottage, vic, nangiloc, 3494

Fig. 5. Three example of generated data with different error types. Original values that
were modified are highlighted in bold-italics and their corresponding modifications are
underlined. Two modifications were introduced into each duplicate record.

age distribution of all family members follows what one would expect in the real
world. Please note that all the settings that control these distributions can be
modified by a user according to her or his requirements [20].

Examples of generated data are shown in Fig. 5. As can be seen, the record
identifier values designate if a record is an original or a duplicate, and the du-
plicate records are numbered and refer back to their original record in order to
allow the calculation of matching rates [6].

4 Related Work

The first data generator to facilitate research in data linkage and related areas
was developed in the mid 1990s [12]. Called DBGen,? it allowed the generation of
records and duplicates using lists of names, cities, states and postcodes, however

3 Available from: http://www.cs.utexas.edu/users/ml/riddle/data.html

without information about the frequency distribution of these values. It allowed
various parameters to be set by the user, including the number of records to be
generated, the percentage and distribution of duplicates to be generated, as well
as the types and amounts of errors to be introduced.

An improved generator was then described in 2003 [1]. Tt allows attribute
values to become missing, and also improved the variability of the created values.
It is however unclear if this generator is using real frequency information or not,
as not many details were published. To the best of our knowledge this generator
is not publicly available.

A first simple version of our generator, called DSGen [2], has been freely
available as part of the Febrl data linkage system. It improved upon earlier gen-
erators by including frequency tables of attribute values (for example extracted
from telephone directories), more flexible setting of individual error probabili-
ties, as well as inclusion of look-up tables with name variations (to be used for
example for nick-names, known phonetic variations, and common misspellings).
This generator however does not include attribute dependencies, does not al-
low creating family or household record groups, and it does not model errors as
accurately as the new version described in this paper.

The error model presented in Section 2.2 is based on rules that were originally
developed for phonetic encoding methods [3]. These methods have a long history,
with the original Sounder method, designed for the analysis of US census data,
having been patented in 1918 [22]. A common feature of all phonetic encoding
methods is that they convert a name string into a code according to how the
name is being spoken. This is obviously a language dependent process, and most
phonetic encoding methods have been developed for the English language. Names
that have the same phonetic code are grouped into the same block or cluster,
and this then allows, for example, to find and match records that have differently
spelled names but that might refer to the same person [3].

The traditional Soundex encoding keeps the first letter of a name string and
encodes the remainder with digits based on an encoding table. Phonez [15] aims
to improve this approach by pre-processing name strings according to their En-
glish spelling (for example, ‘ph’ will be replaced by f’, or a ‘b’ at the beginning
of a name will be removed). Phoniz [10] is an algorithm that goes even further,
by applying more than a hundred transformation rules on letter groups (some
only applicable to the beginning, middle or end of a name string). These rules
were used in the error modelling of our data generator as described in Section 2.2.
While the three so far described methods return a phonetic encoding made of an
initial letter followed by digits, the NYSIIS (New York State Identification In-
telligence System) and Double-Metaphone [17] algorithms return phonetic codes
made only of letters. The Double-Metaphone algorithm is also aimed to be more
suitable for non-English names, and for certain names returns two alternative
encodings. Similar to Phoniz, it is based on a large number of rules.

Much of our work is also based on the results of various studies that have

been conducted in the area of spelling errors and their corrections. An early
such study [7] in 1964 found that over 80% of typographic errors were single

character errors (i.e. either an inserted, deleted, or substituted character; or two
transposed adjacent characters), while another study [11] in 1980 found that
OCR and other automatic devices introduce similar error rates for substitutions,
deletions and insertions, but not transpositions. Yet another study [19] reported
that OCR output contains almost exclusively substitution errors, while this type
of error accounts for less than 20% of errors with keyboard based manual data
entry. This study also reported that typically 90% to 95% of misspellings in
raw keyboard entry only contain one error, and that only around 8% of first
letters were incorrect, compared to almost 12% of second and nearly 20% of
third letters. Similar results were reported by other later studies [14, 16].

A rule-based approach of error modelling, similar to our method as described
in Section 2.2, has recently been applied to spelling corrections [8]. The experi-
mental results reported were better than for other spelling correction techniques
based on lexicons of words and their misspellings.

5 Conclusions

We have presented a synthetic data generator for personal information that al-
lows the generation of realistic data based on real-world frequency look-up tables,
as well as attribute generation rules. Our generator is capable to model depen-
dencies between attributes, it can generate records for individuals, families and
households, and it can accurately model typographic, phonetic and OCR errors.
Our generator can be used for research where data with private information
cannot be shared, linked or published.

There are various possibilities to improve our generator. First, allowing the
generation of not just personal information, but also application specific at-
tributes, such as medical, employee, or customer details, would make our gener-
ator applicable to the wider data mining community. Second, the generation of
family records can be extended to include family roles such as grandparents or
cousins, with the ultimate aim to synthetically generate complex family connec-
tions as they occur in real life. Third, making the generator more international,
by enabling Unicode characters, would also be a useful endeavour, as it would al-
low the generation of data sets containing, for example, Thai, Chinese, Japanese,
Russian, or Arabic characters.

Finally, we also plan to develop a graphical user interface (GUT), which is
to be integrated into the Febrl data linkage system [5], in order to facilitate the
setting of the many possible parameters.

References

1. P. Bertolazzi, L. De Santis, and M. Scannapieco. Automated record matching in
cooperative information systems. In International workshop on Data Quality in
Cooperative Information Systems, Siena, Italy, 2003.

2. P. Christen. Probabilistic data generation for deduplication and data linkage. In
IDEAL’05, Springer LNCS wvol. 3578, pages 109-116, Brisbane, Australia, 2005.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

P. Christen. A comparison of personal name matching: Techniques and practical
issues. In IEEE ICDM’06 workshop on Mining Complex Data (MCD’06), Hong
Kong, 2006.

P. Christen. Privacy-preserving data linkage and geocoding: Current approaches
and research directions. In IEEE ICDM’06 workshop on Privacy Aspects of Data
Mining (PADM’06), Hong Kong, 2006.

P. Christen. Febrl — A freely available record linkage system with a graphical user
interface. In HDKM’08, CRPIT wvol. 80, Wollongong, Australia, 2008.

. P. Christen and K. Goiser. Quality and complexity measures for data linkage

and deduplication. In Quality Measures in Data Mining, volume 43 of Studies in
Computational Intelligence, pages 127-151. Springer, 2007.

F. Damerau. A technique for computer detection and correction of spelling errors.
Communications of the ACM, 7(3):171-176, 1964.

S. Deorowicz and M. Ciura. Correcting spelling errors by modelling their causes.
International Journal of Applied Mathematics and Computer Science, 15(2):275—
285, 2005.

A. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate record detection: A survey.
IEEE Transactions on Knowledge and Data Engineering, 19(1):1-16, 2007.

T. Gadd. PHONIX: The algorithm. Program: Automated Library and Information
Systems, 24(4):363-366, 1990.

P. Hall and G. Dowling. Approximate string matching. ACM Computing Surveys,
12(4):381-402, 1980.

M. Hernandez and S. Stolfo. The merge/purge problem for large databases. In
ACM SIGMOD’95, pages 127-138, San Jose, California, 1995.

M. Hernandez and S. Stolfo. Real-world data is dirty: Data cleansing and the
merge/purge problem. Data Mining and Knowledge Discovery, 2(1):9-37, 1998.
K. Kukich. Techniques for automatically correcting words in text. ACM Computing
Surveys, 24(4):377-439, 1992.

A. Lait and B. Randell. An assessment of name matching algorithms. Techni-
cal report, DepartmentDeptartment of Computer Science, University of Newcastle
upon Tyne, 1993.

J. Peterson. A note on undetected typing errors. Communications of the ACM,
29(7):633-637, 1986.

L. Philips. The Double-Metaphone search algorithm. C/C++ User’s Journal,
18(6), 2000.

C. Phua, V. Lee, and K. Smith-Miles. The personal name problem and a rec-
ommended data mining solution. Encyclopedia of Data Warehousing and Mining,
Information Science Reference, 2008.

J. Pollock and A. Zamora. Automatic spelling correction in scientific and scholarly
text. Communications of the ACM, 27(4):358-368, 1984.

A. Pudjijono. Probabilistic data generation. Master of Computing (Honours)
thesis, Department of Computer Science, The Australian National University, 2008.
W. Winkler. Overview of record linkage and current research directions. Technical
Report RR2006/02, US Bureau of the Census, 2006.

J. Zobel and P. Dart. Phonetic string matching: Lessons from information retrieval.
In ACM SIGIR’96, pages 166172, Ziirich, Switzerland, 1996.

