
Automatic Record Linkage using Seeded Nearest
Neighbour and Support Vector Machine Classification

Peter Christen
Department of Computer Science
The Australian National University

Canberra ACT 0200, Australia
peter.christen@anu.edu.au

ABSTRACT
The task of linking databases is an important step in an
increasing number of data mining projects, because linked
data can contain information that is not available otherwise,
or that would require time-consuming and expensive collec-
tion of specific data. The aim of linking is to match and ag-
gregate all records that refer to the same entity. One of the
major challenges when linking large databases is the efficient
and accurate classification of record pairs into matches and
non-matches. While traditionally classification was based on
manually-set thresholds or on statistical procedures, many
of the more recently developed classification methods are
based on supervised learning techniques. They therefore
require training data, which is often not available in real
world situations or has to be prepared manually, an expen-
sive, cumbersome and time-consuming process.

A novel two-step approach to automatic record pair clas-
sification has previously been presented by the author. In
its first step, training examples of high quality are automat-
ically selected from the compared record pairs, and used in
the second step to train a support vector machine (SVM)
classifier. Initial experiments showed the feasibility of this
approach, achieving results that outperformed k-means clus-
tering. Two variations of this approach are presented in this
paper. The first is based on a nearest-neighbour classifier,
while the second improves a SVM classifier by iteratively
adding more examples into the training sets. Experimental
results show that this two-step approach can achieve better
classification results than other unsupervised approaches.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.2.8 [Database
Management]: Database applications—Data mining

General Terms
Algorithms, Experimentation, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Submitted to KDD 2008Las Vegas
Copyright 2008 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Keywords
Data matching, data linkage, deduplication, entity resolu-
tion, nearest neighbour, support vector machine

1. INTRODUCTION
As increasingly large amounts of data are being collected

by many organisations, techniques that enable efficient min-
ing of massive databases have in recent years attracted in-
terest from both academia and industry. Sharing of large
databases between organisations is also of growing impor-
tance in many data mining projects, as data from various
sources often has to be linked and aggregated in order to
improve data quality, or to enrich existing data with addi-
tional information [9, 24, 25]. Similarly, detecting duplicate
records that relate to the same entity within one database
is commonly required in the data preparation step of many
data mining projects [14]. The aim of such linkages and
deduplications is to match all records that relate to the same
entity. These entities can be, for example, patients, cus-
tomers, businesses, product descriptions, or publications.

Traditionally, record linkage has been employed in the
health sector and within statistical agencies [24]. Today,
many public and private sector organisations use deduplica-
tion and linkage techniques to improve the quality of their
databases. Government agencies use record linkage to, for
example, identify people who register for assistance mul-
tiple times, or who collect unemployment benefits despite
being employed. National security, and crime and fraud de-
tection, are other areas where record linkage is increasingly
being employed. Security agencies often require fast access
to files of a particular individual in order to solve crimes or
to prevent terror through early intervention [18].

If all databases to be linked contain common entity iden-
tifiers (or keys), then the problem of linking at the entity
level can be solved by a standard database join. In most
situations, however, no such entity identifiers are available,
and therefore more sophisticated linkage techniques have to
be applied. Broadly, these techniques can be classified into
deterministic, probabilistic, and modern approaches [9].

Figure 1 outlines the general record linkage process. An
important initial step for successful linkage is data cleaning
and standardisation, as in most real-world databases noisy,
incomplete and incorrect information is common [10]. A lack
of high quality data can be one of the biggest obstacles to
successful record linkage. The main tasks of data cleaning
and standardisation are the conversion of the raw input data
into well defined, consistent forms, and the resolution of
inconsistencies in the way information is represented [10].

Cleaning and
standardisation

Cleaning and
standardisation

Database A

Database B

Non−
matches matchesMatches

Evaluation

ClericalPossible

Indexing

Weight vector Field

review

comparisonclassification

Blocking /

Figure 1: The general record linkage process. The
output of the blocking step are candidate record
pairs, while the field (attribute) comparison step
generates weight vectors with matching weights.

When linking two databases, A and B, potentially each
record in A should be compared with all records in B.
Therefore, the total number of potential record pair com-
parisons equals |A| × |B|, with | · | denoting the number
of records in a database. Similarly, when deduplicating a
database, A, the total number of potential record pair com-
parisons is |A| × (|A| − 1)/2, as each record potentially has
to be compared to all others. However, as the performance
bottleneck in a record linkage or deduplication system is
normally the expensive detailed comparison of field (or at-
tribute) values between records [1, 9], it is impossible to com-
pare all pairs when the databases are large. Additionally,
assuming there are no duplicate records in the databases to
be linked (i.e. one record in A can only be a true match to
one record in B, and vice versa), then the maximum num-
ber of true matches corresponds to min(|A|, |B|). Thus,
when linking larger databases the computational efforts po-
tentially increase quadratically while the maximum number
of true matches only increases linearly. This also holds for
deduplication, where the number of true duplicate records
is always less than the number of records in a database.

To reduce the potentially very large number of compar-
isons to be conducted between records, some form of index-
ing or filtering technique, collectively known as blocking [1],
is employed by most record linkage systems. A single record
attribute, or a combination of attributes, often called the
blocking key, is used to split the databases into blocks. All
records that have the same value in the blocking key will be
inserted into the same block, and candidate record pairs are
only generated from records within the same block. Even
though blocking will remove many of the record pairs that
are obvious non-matches, some true matches will also likely
be removed in the blocking process because of errors or ty-
pographical variations in attribute values [9].

The two records in a candidate pair are compared us-
ing similarity functions applied to selected record attributes
(fields). These functions can be as simple as an exact string
or a numerical comparison, can take typographical varia-
tions into account [25], can be specialised for example for
date or time values, or they can be as complex as a dis-
tance comparison based on look-up tables of geographic lo-
cations (longitudes and latitudes). There are also various
approaches to learn such similarity functions from training

R1 : Christine Smith 42 Main Street
R2 : Christina Smith 42 Main St
R3 : Bob O’Brian 11 Smith Rd
R4 : Robert Bryce 12 Smythe Road

WV(R1,R2): [0.9, 1.0, 1.0, 1.0, 0.9]
WV(R1,R3): [0.0, 0.0, 0.0, 0.0, 0.0]
WV(R1,R4): [0.0, 0.0, 0.5, 0.0, 0.0]
WV(R2,R3): [0.0, 0.0, 0.0, 0.0, 0.0]
WV(R2,R4): [0.0, 0.0, 0.5, 0.0, 0.0]
WV(R3,R4): [0.7, 0.3, 0.5, 0.7, 0.9]

Figure 2: Four example records (made of given
name and surname; and street number, name and
type attributes) and the corresponding weight vec-
tors (WV) resulting from the comparisons of these
records.

data [3, 11]. Each similarity function returns a numerical
matching weight that is usually normalised, such that 1 cor-
responds to exact similarity and 0 to total dissimilarity, with
attribute values that are somewhat similar having a match-
ing weight somewhere in between 0 and 1.

As illustrated in Figure 2, for each compared record pair a
weight vector is formed that contains the matching weights
calculated for that pair. Using these weight vectors, can-
didate pairs are then classified into matches, non-matches,
and possible matches, depending upon the decision model
used [9, 15, 17]. Pairs of records that are not compared due
to the blocking process are implicitly assumed to be non-
matches. Assuming there are no duplicate records in the
databases to be linked, then the majority of candidate pairs
are likely non-matches, as the maximum possible number of
true matches corresponds to the number of records in the
smaller of the databases that are linked. Classifying record
pairs is therefore often a very imbalanced problem [9].

Two records that have equal or very similar values in all
their attributes will likely refer to the same entity, as it is
unlikely that two entities have very similar or even the same
values in all their record attributes. All matching weights
calculated when comparing such a pair of records will be 1,
or close to 1. On the other hand, weight vectors that contain
matching weights of only 0, or values close to 0, were with
high likelihood calculated when two records that refer to two
different entities were compared, as it is unlikely that two
records that refer to the same entity have totally different
values in all their attributes. For example, when a person
moves house, most their address details will change, while
their name and date-of-birth will stay the same, so there
would be several record attributes that keep their values.

Based on these observations, it is often easy to accurately
classify record pairs as matches when their weight vectors
contain only matching weights close to or equal to 1, and as
non-matches when their weights are all close to or equal to
0. On the other hand, it is more difficult to correctly clas-
sify record pairs that have some similar and some dissimilar
attribute values. In Figure 2, for example, records R1 and
R2 are very similar to each other, with only two small dif-
ferences in their given name and street type attributes, and
thus very likely refer to the same person. On the other hand,
records R3 and R4 are more different from each other, and
it is not obvious if they refer to the same person or not.

It follows that it is possible to automatically select train-
ing examples (weight vectors) from the set of all weight vec-
tors that with high likelihood correspond to true matches or

true non-matches, and to then train a supervised binary clas-
sifier using these training examples as ‘seeds’. For example,
of the weight vectors shown in Figure 2, WV(R1,R2) can be
selected as a match training example, while WV(R1,R3) and
WV(R2,R3), possibly even WV(R1,R4) and WV(R2,R4),
can be used as non-match training examples.

This two-step approach to automated record pair classifi-
cation has first been proposed by the author in [6], with ini-
tial experiments indicating its feasibility. The contribution
of this paper is the evaluation of two improved classifica-
tion methods to be used in the second step of the approach.
The first method is based on nearest-neighbour classifica-
tion, and the second improves SVM classification by itera-
tively adding more weight vectors into the training sets.

The remainder of this paper is structured as follows. An
overview of related work is given next. Then, the proposed
two-step approach to record pair classification is presented
in detail in Section 3, with the new classification methods
discussed in Section 3.2. These two methods are then eval-
uated experimentally in Section 4 using both real and syn-
thetic data sets, and the paper is concluded in Section 5
with an outlook to future work.

2. RELATED WORK
The classic probabilistic record linkage approach, as for-

malised in the 1960s by [15], has in recent years been im-
proved by applying the expectation-maximisation (EM) al-
gorithm for better parameter estimation in record pair clas-
sification [23], and by using approximate string comparisons
to calculate partial agreement weights when record attribute
(field) values have typographical variations [14, 25].

Since the mid 1990s, researchers have investigated a vari-
ety of approaches to record linkage, originating from artifi-
cial intelligence, database technology, information retrieval,
machine learning, and data mining [9, 14, 25], with the ob-
jectives of improving the linkage quality and the scalability
of the linkage process. Many of these approaches are based
on supervised learning techniques and require training data
(record pairs with known true match or true non-match sta-
tus). Such training examples, however, are often not avail-
able in real world situations, or they have to be prepared
manually. This is an expensive and time consuming process
that can be quite error prone, as even humans sometimes are
not able to clearly determine weather two records are a true
match or not without having access to further information.

One supervised approach is to learn similarity measures
for approximate string comparisons, such as the costs for
edit-distance [3, 11] operations, with the aim to adapt sim-
ilarity calculations to a particular data domain. Decision
tree induction [13, 22] and support vector machines [19] are
two popular supervised machine learning techniques that
have been employed successfully for record pair classifica-
tion. As expected, these techniques usually achieve better
linkage quality compared to unsupervised approaches.

Three methods for record pair classification have been im-
plemented in TAILOR [13]: the first is based on supervised
decision tree induction, the second is using unsupervised k-
means clustering (with three clusters, one each for matches,
possible matches and non-matches), and the third is a hy-
brid approach that combines the first two to overcome the
problem of lack of training data. It first clusters a sub-set of
the weight vectors (again into matches, possible matches and
non-matches), and then uses the match and non-match clus-

ters to train a supervised decision tree classifier. Both the
fully supervised and hybrid approach outperformed k-means
clustering in experimental studies. In Section 4, a variation
of the hybrid approach (employing an SVM instead of a de-
cision tree classifier) will be compared experimentally to the
proposed two-step classification approach.

Active learning is an approach that aims to overcome the
problem of lack of training data. A system that presents
a difficult to classify record pair to a user for manual clas-
sification is discussed in [21]. After such a pair has been
manually classified by the user, it is added to the training
data and the classifier is re-trained. This process is repeated
until all record pairs are successfully classified. Using this
approach, manually classifying less than 100 training pairs
provided better results than a fully supervised approach that
required 7,000 randomly selected examples. A similar ap-
proach is presented in [22], where a committee of decision
trees is used to learn a set of rules that describe linkages.

Unsupervised clustering techniques have been investigated
both to improve blocking [1, 12] and for automatic record
pair classification [13, 16, 17]. The clustering techniques k-
means and farthest-first were compared in [16] with super-
vised decision tree induction using both synthetic and real
data. Surprisingly, farthest-first clustering outperformed k-
means and achieved results comparable to decision trees.
In [17], the k-means clustering algorithm has been employed
to group weight vectors into matches and non-matches. In
this approach, a user can also identify a ‘fuzzy’ region halfway
in between the two cluster centroids where the difficult to
classify record pairs are located. These pairs will then be
handed to the user for manual clerical review. Using syn-
thetic data, it was shown that this approach can significantly
reduce the number of record pairs that have to be reviewed
manually, while keeping high linkage quality.

In the past few years, unsupervised techniques based on
relational clustering [2] have been explored in the area of en-
tity resolution of relational data. While traditional record
linkage techniques assume that only similarities between at-
tribute values are available, in relational data the entities
have additional relational information that can be used to
improve the quality of entity resolution. Relational infor-
mation can be present, for example, in census databases
that include a family relationship attribute (with values
such as ‘married to’, ‘dependent of’, or ‘parent of’); or in
bibliographic data where, besides the name of a paper, a
publication record also contains a list of one or more au-
thors that can indicate co-author relationships. Experimen-
tal results [2] showed that relational entity resolution outper-
forms non-relational entity resolution based only on record
attribute similarities. However, non-relational data is still
available in many real world situations, such as in databases
that contain patient or customer information, and this pa-
per concentrates on improving unsupervised classification of
such non-relational data.

The two-step approach to record pair classification pre-
sented in this paper has been inspired by similar methods
for text classification, where commonly only a limited num-
ber of positive labeled examples, besides many unlabeled
examples, are available for training. In such situations the
aim is to learn a classifier from these positive and unlabeled
examples. In [26, 27], the PEBL and TC-WON approaches
are presented, which are both based on iteratively training a
SVM using the positive and a selected set of strong negative

+
?

−

−

1.0

0.0
1.00.0 wv[0]

wv[1]

−

+

?

?

(a)

+
?

−

−

1.0

0.0
1.00.0 wv[0]

wv[1]

−

+

?

?

(b)

+

−

−

1.0

0.0
1.00.0 wv[0]

wv[1]

−

+

?

?

+

(c)

+

−

−

1.0

0.0
1.00.0 wv[0]

wv[1]

−

+

?

+

+

(d)

+

−

−

1.0

0.0
1.00.0 wv[0]

wv[1]

−

+

+

+

+

(e)

Figure 3: Example of the seeded nearest-neighbour classification process with 2-dimensional weight vectors
and k = 1. Weight vectors classified as matches are shown with a plus, non-matches with a minus, and
unclassified weight vectors with a question mark. The seed training examples are shown as bold circles. In
each step, the unclassified weight vector closest to k already classified neighbours is added to one of the
training sets. Details of this process are described in Section 3.2.1.

examples. Additional unlabeled examples are included into
the negative training set as the trained classifier becomes
more accurate, until all unlabeled examples are classified.

3. TWO-STEP CLASSIFICATION
The idea of seeded record pair classification is based on

the following two assumptions. First, weight vectors that
contain exact or high similarity values in all their match-
ing weights were with high likelihood generated when two
records that refer to the same entity were compared. Sec-
ond, weight vectors that contain mostly low similarity values
were with high likelihood generated when two records that
refer to different entities were compared. As a result, select-
ing such weight vectors in a first step as seeds for generat-
ing training data, and training a classifier using these seed
training examples in a second step, should enable automatic,
efficient and accurate record pair classification.

Previously, in [6] and [7], the author has shown the fea-
sibility of this proposed approach and investigated several
variations of how to select the initial seed training examples.
This paper concentrates on the second step of the approach,
which will be discussed in detail in Section 3.2. First, an
overview of the first step of the approach is given.

3.1 Step 1: Selection of Training Examples
The aim of the first step of the proposed classification

approach is to select weight vectors from the set W of all
weight vectors, generated in the comparison step, that with
very high likelihood correspond to true matches and true
non-matches, and to insert them into the match seed train-
ing examples set, WM , and the non-match seed training
examples set, WN , respectively (with WM ∩ WN = ∅).
There are two main approaches to selecting training exam-
ples, either using distance thresholds or nearest-based.

The threshold based approach selects weight vectors that
have all their matching weights within a certain distance
threshold to the exact similarity or total dissimilarity values,
respectively. For example, using the weight vectors from
Figure 2 and a distance threshold of 0.2, only WV(R1,R2)
will be selected into WM , and WV(R1,R3) and WV(R2,R3)
into WN . The remaining three weight vectors will not be
selected, as at least one of their matching weights is further
than the 0.2 distance threshold away from 0 or 1.

In the nearest based approach, on the other hand, weight
vectors are sorted according to their distances (using for ex-
ample Manhattan or Euclidean distance) from the vectors

containing only exact similarities, and only total dissimilari-
ties, respectively, and the respectively nearest vectors are se-
lected into the training sets. In Figure 2, WV(R1,R2) is clos-
est to the exact similarities vector ([1.0, 1.0, 1.0, 1.0, 1.0]),
followed by WV(R3,R4); while WV(R1,R3) and WV(R2,R3)
only contain total dissimilarity values, and WV(R1,R4) and
WV(R2,R4) are the next vectors closest to them.

Experiments [6] showed that the nearest based approach
generally outperforms threshold based selection. One reason
is that nearest based selection allows explicit specification of
the number of weight vectors to be included into WM and
WN . As weight vector classification is commonly a very
imbalanced problem, the number of true non-matches in W
is often much larger than the number of true matches [9],
and thus more weight vectors should be selected into WN

than into WM . An estimation of the ratio r of true matches
to true non-matches can be calculated using the number of
records in the two databases to be linked, A and B, and the
number of weight vectors in W:

r =
min(|A|, |B|)

|W| − min(|A|, |B|)
, (1)

with | · | denoting the number of elements in a set or a
database. The problem with balanced training set sizes is
that weight vectors that likely do not refer to true matches
will be selected into WM [6].

3.2 Step 2: Classification of Record Pairs
Once the seed training example sets for matches, WM ,

and non-matches, WN , have been generated, they can be
used to train any binary classifier. In this paper, a nearest-
neighbour based classifier and an iterative SVM classifier are
investigated. In the following two sections, the set of weight
vectors not selected into the seed training example sets is
denoted with WU , with WU = W \ (WM ∪ WN).

3.2.1 Nearest-Neighbour Classification
The basic idea of this classifier is to iteratively add un-

classified weight vectors from WU into the training sets until
all weight vectors are classified. In each iteration, the un-
classified weight vector closest to k already classified weight
vectors is classified according to a majority vote of its clas-
sified neighbours (i.e. if the majority is either matches or
non-matches). Using the seed training example sets, this
nearest-neighbour based classifier can be implemented effi-
ciently as illustrated in Figure 3 and detailed in Algorithm 1.

Algorithm 1: Seeded k-NN classification

Input:
- Complete weight vector set: W
- Seed training examples match set: WM

- Seed training examples non-match set: WN

- Distance function: dist
- Number of nearest-neighbours to consider: k

Output:
- Weight vectors classified as matches: ZM

- Weight vectors classified as non-matches: ZN

1: ZM := WM and ZN := WN

2: WT := (WM ∪ WN) and WU := W \ WT

3: Initialise empty heap H
4: M := [], N := [], U := []

5: for (wm ∈ WM) do:
6: M[wm] := {(k + 1) nearest wu ∈ WU ,

sorted according to dist(wm, wu)}
7: end for
8: for (wn ∈ WN) do:
9: N[wn] := {(k + 1) nearest wu ∈ WU ,

sorted according to dist(wn, wu)}
10: end for
11: for (wu ∈ WU) do:
12: U[wu] := {(k + 1) nearest wt ∈ WT ,

sorted according to dist(wu, wt)}
13: s :=

P

wt∈U[wu][1:k] dist(wu, wt)

14: Insert (s, wu) into H
15: end for

16: while (WU 6= ∅) do:
17: (s, wt) := first element in H
18: WU := WU − wt

19: if (U[wt] contains more weight vectors from
ZM than ZN) then:

20: ZM := ZM + wt

21: else:
22: ZN := ZN + wt

23: end if
24: Xu := ∪wu∈U[wt](M[wu] ∪ N[wu])
25: for (wu ∈ Xu) do:
26: d := dist(wt, wu)
27: if (wu is one of (k + 1) nearest to wt) then:
28: Update wt in U[wu] with d
29: s :=

P

wv∈U[wu][1:k] dist(wu, wv)

30: Update (s,wu) in H
31: end if
32: end for
33: if (wt ∈ ZM) then:
34: M[wt] := {(k + 1) nearest wu ∈ Xu,

sorted according to dist(wt, wu)}
35: else:
36: U[wt] := {(k + 1) nearest wu ∈ Xu,

sorted according to dist(wt, wu)}
37: end if
38: end while

In Algorithm 1, the number of nearest weight vectors to
be considered when nearest neighbours are selected is de-
noted with k, with k ≥ 1. The function dist calculates
the distance between two weight vectors, and can be any
distance function such as Euclidean, Manhattan, or Cosine
distance. In the first line of the algorithm, the output sets

of classified match and non-match weight vectors, ZM and
ZN , are initialised to the seed training example sets. Next,
in line 2, the sets WT of all seed training examples, and WU

of all unclassified weight vectors, are generated. An empty
heap data structure, H, is then initialised next. A heap has
the property that its first element is always the smallest ele-
ment. It will be used in the second phase of the algorithm to
iteratively get the next unclassified weight vector that has
the smallest distance to the training sets. In line 4, three
lists, M, N and U, are initialised that will be used to store
nearest weight vectors as detailed below.

Lines 5 to 15 constitute the first phase of Algorithm 1.
In lines 5 and 6, for each weight vector in the match seed
training set WM , the closest (k + 1) not classified weight
vectors from WU are stored in the list M. The same is
done in lines 8 and 9 for the weight vectors in the non-
match seed training set WN , with nearest neighbours from
WU stored in list N. These (k + 1) nearest neighbours (in
M and N) are represented in Figure 3 using dashed arrowed
lines. In lines 11 and 12, for each unclassified weight vector
in WU , the closest (k + 1) weight vectors from the overall
seed training set WT are stored in the list U. These nearest
neighbours (in U) are represented in Figure 3 using black
arrowed lines (with the nearest neighbour indicated using a
bolder black line). Additionally, in lines 13 and 14, the sum
of the distances, s, of the k closest training set neighbours
for each wu in Wu are calculated and inserted into the heap
H. Therefore, at the end of this first phase of the algorithm,
the first element of H will be the weight vector from WU

with the smallest distance sum to vectors from WT .
Phase two of Algorithm 1 (line 16 onwards) iterates until

all weight vectors in WU are classified. In line 17, the first
element in H, i.e. the weight vector with the smallest sum
of distances to classified weight vectors, is taken from H
and removed from WU in line 18. Depending upon if the
majority of neighbours of wt are matches or non-matches,
it is added to the set of classified matches, ZM , or classified
non-matches, ZN , respectively (lines 19 to 22).

In line 24, the set U[wt] of nearest training set weight
vectors of wt is used to create the set of nearest unclassified
weight vectors, Xu, retrieved via the corresponding nearest
sets in the lists M and N. Line 25 then loops over each of
the unclassified weight vectors wu in Xu that are nearest to
wt. In line 26, the distance d from wu to the newly clas-
sified weight vector wt is calculated, and the list of nearest
classified weight vectors for wu, U[wu], is updated with this
new distance d in line 28 if d is one of the (k + 1) smallest
distances. In this case, the heap element for wu also needs
to be updated in H with the newly calculated distance sum
s (lines 29 and 30). Finally, depending upon if wt was classi-
fied as a match or a non-match, the set of nearest unclassified
weight vectors for wt is updated in the corresponding list M
or N in lines 33 to 36.

This process is illustrated in Figure 3 (b) and (c). The
middle upper, unclassified weight vector is classified as a
match as its nearest neighbour is a match. Its list of near-
est matches (solid lines) is used to get its nearest classified
neighbours (the two seed matches in the top right), which in
turn have lists of their nearest unclassified neighbours (dot-
ted lines). The union of these lists becomes the new list of
unclassified nearest neighbours, represented in Figure 3 (c)
with the new dotted lines that point from the newly classi-
fied match to its two unclassified neighbours.

While näıve nearest-neighbour based classification would
involve calculating the distances between all pairs of weight
vectors, the seeded training sets allow a reduction through
the use of the nearest lists M, N and U. In the first phase
of Algorithm 1, distances are only calculated between the
weight vectors in the overall training example set WT and
those in WU . If a fraction of t (t < 1) of all weight vectors
is included in WT , then the number of distance calculations
in phase one of the algorithm is |W|2 × (t − t2). The max-
imum number of distance calculations will have to be done
if half the weight vectors are in WT and half are in WU ,
i.e. t = 0.5: |W|2 × 0.25; while with t = 0.1, for exam-
ple, the number of distance calculations to be done is only
|W|2×0.09. The second phase of the algorithm involves cal-
culating a maximum of (k + 1)× k distances for each of the
weight vectors in WU , as for each of the k nearest training
set weight vectors the (k +1) nearest vectors will have to be
checked for closeness.

The overall efficiency and scalability of the proposed near-
est neighbour classifier can further be improved using data
reduction or fast searching and indexing techniques as de-
scribed in [20]. This is left for future work.

3.2.2 Iterative SVM Classification
The iterative SVM classifier is similar to the PEBL [26]

and TC-WON [27] approaches for text and Web page clas-
sification based on only positive labeled training examples.
The basic idea is to train an initial SVM using the seed train-
ing example sets WM and WN , and to then iteratively add
the strongest positive and negative classified weight vectors
from WU into the training sets of subsequent SVMs.

Algorithm 2 details the steps involved in this approach.
The input parameter ip determines what percentage of un-
classified weight vectors will be added into the training sets
in each iteration, and tp determines the total percentage of
weight vectors that will be added into the training sets. For
example, if tp = 100% then all weight vectors from W will
be used in the last iteration to train the final SVM.

The algorithm starts with initialising the training sets TM

for matches and TN for non-matches, and by creating the
set WU of all unclassified weight vectors. The initial SVM
is trained in line 3 using TM and TN . The main loop then
starts in line 5 and iterates until tp percent of all weight
vectors have been included into the training sets.

Each iteration starts in line 6 by classifying the weight vec-
tors in WU using the previously trained SVM svmi. The
function svm classify returns two sets, XM and XN , that
contain the weight vectors from WU classified into matches
and non-matches. These classified weight vectors are sorted
in line 7 according to how far away they are from the SVM
decision boundary, and in lines 8 and 9 the strongest posi-
tive and negative weight vectors are extracted into the sets
YM of new matches, and YN of new non-matches. The
size of these sets is determined by the increment percent-
age parameter ip. For example, if ip = 50%, then in each
iteration half of the weight vectors in XM are inserted into
YM and half of XN into YN . In lines 10 and 11, the new
training examples in YM and YN are added to the training
sets TM and TN , and a new SVM svmi is trained next in
line 13 using these expanded training sets. Finally, in the
last step within the iteration, in line 14, the new training
examples from YM and YN are removed from the set WU

of unclassified weight vectors.

Algorithm 2: Seeded iterative SVM classification

Input:
- Complete weight vector set: W
- Seed training examples match set: WM

- Seed training examples non-match set: WN

- Increment percentage: ip
- Total training percentage: tp

Output:
- Weight vectors classified as matches: ZM

- Weight vectors classified as non-matches: ZN

1: TM := WM and TN := WN

2: WU := W \ (WM ∪ WN)
3: svm0 := train svm(TM ,TN)
4: i := 0
5: while (|TM | + |TN |) < (|W| ∗ tp/100) do:
6: XM , XN := svm classifiy(svmi, WU)
7: Sort XM and XN according to distance from

svmi decision boundary (hyperplane)
8: YM := |XM | ∗ (ip/100) vectors from XM

furthest away from decision boundary
9: YN := |XN | ∗ (ip/100) vectors from XN

furthest away from decision boundary
10: TM := TM ∪ YM

11: TN := TN ∪ YN

12: i := i + 1
13: svmi := train svm(TM , TN)
14: WU := WU \ (YM ∪ YN)
15: end while
16: XM ,XN := svm classifiy(svmi,WU)
17: ZM := TM ∪ XM and ZN := TN ∪ XN

The final SVM is then used in line 16 to classify the weight
vectors in WU that have not been classified so far (this step
is not required if tp = 100%), and in line 17 the final two
sets of matches, ZM , and non-matches, ZN , are created.

Assuming that training a SVM is of quadratic complexity
in the number of training examples [27], then the overall
complexity of Algorithm 2 is O(|W| ∗ i), with i being the
number of times a SVM is trained. The value of i depends
upon the ip and tp parameter values. For example, if ip =
50% and tp = 100% then i = log2(|WU |), while if ip = 25%
and tp = 50% then i = 3, as in each step 25% of weight
vectors from WU will be added to the training sets. Training
of SVMs will become increasingly time consuming as more
weight vectors are added into the training sets.

4. EXPERIMENTAL EVALUATION
The two record pair classifiers presented above were eval-

uated and compared with two other classification methods.
The first is a fully supervised SVM that has access to the
true match status of all weight vectors. Nine parameter vari-
ations were evaluated: three kernel methods (linear, poly-
nomial and RBF), and three values for the cost parameter,
C [4] (0.1, 1, 10). The second method is based on the hybrid
approach implemented in the TAILOR [13] toolbox. It first
employs k-means (with one cluster each for matches, possi-
ble matches and non-matches), and then uses the match and
non-match clusters to train a SVM (in [13] a decision tree
classifier has been used instead). Two distance functions
(Manhattan and Euclidean) were evaluated for the k-means
step, while for the SVM classifier step the same nine param-
eter variations as for the supervised SVM were used.

Table 1: Data sets used in experiments. See Section 4 for more details.
Data set Number of Task Pairs Reduction Number of weight Ratio r according

records completeness ratio vectors (i.e. |W|) to Equation (1)

Census 449 + 392 Linkage 1.000 0.988 2,093 1 / 4.34
Restaurant 864 Deduplication 1.000 0.713 106,875 1 / 122.7
Cora 1,295 Deduplication 0.924 0.793 173,769 1 / 133.2

DS-Gen-A 1,000 Deduplication 0.957 0.995 2,475 1 / 1.48
DS-Gen-B 2,500 Deduplication 0.940 0.997 9,878 1 / 2.95
DS-Gen-C 5,000 Deduplication 0.953 0.997 35,491 1 / 6.10
DS-Gen-D 10,000 Deduplication 0.948 0.997 132,532 1 / 12.25

For the two-step classification approach, the imbalanced
nearest based selection was used, with the number of seed
training examples in WN selected as 5% or 10% of all weight
vectors in W, respectively, and the number of training exam-
ples in WM was calculated according to the ratio r as given
in Equation (1). For the nearest-neighbour based two-step
classifier, again Manhattan and Euclidean distances were
evaluated in combination with k set to 3 and 9. For the iter-
ative SVM based two-step classifier, the same nine param-
eter variations as for the supervised SVM were evaluated,
and the parameters ip and tp were set to the pairs (0,0) (no
iterative refinement), (25,25), (25,50), and (50,100).

The experiments for the supervised SVM and TAILOR
classifiers were conducted using 10-fold cross validation (90%
used for training and 10% for testing), while this was not
possible for the two-step classifier because the selection of
seed training examples requires all weight vectors in W.

All classifiers are implemented in the Febrl [8] record link-
age system, which is written in Python. The libsvm library
was used for the SVM classifier [4]. All experiments were
run on a 2.13 GHz dual-core CPU with 2 GBytes of main
memory, running Linux 2.6.20 and using Python 2.5.1.

Experiments were conducted using both real and synthetic
data, as summarised in Table 1. Three real data sets from
the SecondString toolkit1 were used, while four synthetic
data sets of various sizes were created using the Febrl data
set generator [5]. This synthetic data contains name and
address attributes that are based on real-world frequency
tables, and includes 60% original and 40% duplicate records.
These duplicates were randomly created through modifica-
tion of record attributes (like inserting, deleting or substitut-
ing characters, and swapping, removing, inserting, splitting
or merging words), again according to real-world error char-
acteristics. Up to nine duplicates were generated for one
original record, with a maximum of three modifications per
attribute and a maximum ten modifications per record.

Standard blocking [1] was applied in all experiments to re-
duce the number of record pair comparisons, with the block-
ing keys being combinations of name, address and postcode
values. In the record pair comparison step, the Winkler [24]
approximate string comparator (commonly used in record
linkage) was employed for name, address, paper title and
conference name attribute (field) comparisons. Additionally,
character difference comparisons [8] were used on attributes
such as postcode, street number, and publication year.

The quality of the compared record pairs is shown in Ta-
ble 1 using the pairs completeness measure (which is the
number of true matched record pairs generated by blocking

1http://secondstring.sourceforge.net

divided by the total number of true matched record pairs),
and the complexity of the record pair comparison step is
shown using the reduction ratio measure (which is one minus
the number of record pairs generated by blocking divided by
the total possible number of record pairs) [9, 13].

Due to the normally imbalanced distribution of matches
and non-matches in the weight vector set W, the accu-
racy measure commonly used for evaluating classifier perfor-
mance is not suitable for assessing the quality of record pair
classification [9]: the large number of non-matches would
dominate accuracy, and show results that are too optimistic.
Instead, the F-measure, F , the harmonic mean of precision,
P , and recall, R, is used for measuring classifier quality:
F = 2(P × R)/(P + R), with P = TP/(TP + FP) and
R = TP/(TP + FN). TP is the number of true positives
(true matched record pairs classified as matches), FN the
number of false negatives (true matched record pairs classi-
fied as non-matches), and FP the number of false positives
(true non-matched record pairs classified as matches).

Table 2 shows the quality of the seed training example
sets generated in the first step of the proposed two-step
classification approach, given as the percentage of correctly
selected weight vectors in these sets, i.e. |true matches in
WM |/|WM | and |true non-matches in WN |/|WN |. For the
second step, Figure 4 shows the average F-measure results,
together with the minimum and maximum F-measure val-
ues over all parameter variations discussed above (i.e. 9 su-
pervised SVMs, 18 TAILOR classifiers, 8 nearest-neighbour
based two-step classifiers, and 72 iterative two-step SVM
classifiers – 18 each for the four variations of the (ip,tp) pa-
rameter pairs). These average results, rather than the ‘best’
results using a certain parameter setting, are presented as
they provide a more realistic picture of the overall perfor-
mance of a classifier (which likely depends upon the charac-
teristics of a data set).

4.1 Results and Discussion
As can be seen in Table 2, the seed training example

sets selected in the first step of the proposed two-step clas-
sification approach are mostly of very high quality, with
the match training example set WM only containing true
matches in all but one case (10% seed size for the ‘Restau-
rant’ data set). While overall the 1% training set selection
contains the highest quality seed training data, the size of
these sets (especially WM) is very small, and the resulting
classifiers based on these 1% seeds generated in the second
step were much worse in most experiments compared to the
classifiers generated based on 5% or 10% seed sizes. There-
fore, the 1% seed size classifiers were not included into the
F-measure results presented in Figure 4.

Table 2: Quality of nearest-based seed training example selection as described in Section 3.1. Each pair of
values shows the quality of WM / WN as percentage of correctly selected training examples. The seed size
gives the percentage of weight vectors from W selected into WN .

Seed size Census Restaurant Cora DS-Gen-A DS-Gen-B DS-Gen-C DS-Gen-D

1% 100%/100% 100%/100% 100%/96.8% 100%/100% 100%/99.0% 100%/100% 100%/100%
5% 100%/100% 100%/100% 100%/98.0% 100%/96.7% 100%/98.4% 100%/99.8% 100%/99.8%
10% 100%/100% 90.8%/100% 100%/97.6% 100%/95.5% 100%/98.3% 100%/99.5% 100%/99.7%

The F-measure results for six data sets are shown in Fig-
ure 4 (the results for the small ‘DS-Gen-A’ data set are
similar to those of the other synthetic data sets). As can
be seen, there is a large range of F-measure result values for
certain classifiers, and very different F-measure values for
the same classifier on the different data sets.

As expected, the supervised SVM classifier performs best
on all data sets. For the ‘Census’ and ‘Restaurant’ data sets,
there are however parameter settings that lead to SVM clas-
sifiers that perform worse than the best two-step classifier
using the iterative SVM approach. The TAILOR hybrid
classifier approach has the lowest performance on most data
sets. Only on the ‘Cora’ data set it achieves better results
than most two-step classifier variations.

The nearest-neighbour based two-step classifier performs
better than all iterative SVM variations for all synthetic
data sets, while for the real data sets the iterative SVM
generally achieves better classification results. Looking at
the different values of the parameter pairs (ip,tp), a notice-
able improvement when including more weight vectors into
the training sets is only visible for the ‘Cora’ data set, while
the improvements are very small for the three smaller syn-
thetic data sets, and mixed for the ‘DS-Gen-D’ and ‘Census’
data sets. For the ‘Restaurant’ data set, the results are even
getting worse when more training data is added.

The results for the ‘Restaurant’ data set are generally very
low for all unsupervised classifiers compared to the super-
vised SVM. The reasons for this are that for this data set
the weight vector set W only contains 112 true matches
(duplicates), but 106, 763 non-matches; and also because the
attributes in this data set contain addresses with a large pro-
portion of either abbreviations or completely different values
(such as ‘Los Angeles’ versus ‘Beverly Hills’) for the same
restaurant. Therefore, the weight vectors generated when
such attribute values were compared have a very mixed dis-
tribution of matches and non-matches that are hard to clas-
sify without knowing the true match status of these weight
vectors. This can already be seen in Table 2 where with the
10% seed size the match training set WM contains more
than 9% non-matches.

The experiments presented in this paper show that the
proposed two-step classification approach can achieve re-
sults that outperform other unsupervised record pair clas-
sification techniques, such as the hybrid TAILOR approach
which has shown to be better than k-means clustering [13].
On the other hand, these experiments also showed the limi-
tations of unsupervised classification based on only pair-wise
attribute similarities, compared to supervised classification.

5. CONCLUSIONS AND FUTURE WORK
This paper presented a novel unsupervised two-step ap-

proach to record pair classification that is aimed at automat-
ing the record linkage process. This approach combines au-

tomatic selection of seed training examples with training of
a binary classifier. The two classifiers discussed (nearest-
neighbour based and iterative refinement of a SVM) achieve
improved record pair classification results compared to other
unsupervised classifiers, such a the hybrid TAILOR [13] ap-
proach. Thus, the proposed approach can be used in situa-
tions where no training data is available.

Future work will include to conduct more experiments
using different data sets, including run-time tests on data
sets of various sizes in order to experimentally get scal-
ability results. Related to this is the implementation of
data reduction and fast searching and indexing techniques
for the nearest-neighbour based classifier [20], and similar
approaches for the iterative SVM, with the aim to reduce
training times while keeping a high record pair classification
quality. Another area of research will be to investigate ac-
tive learning techniques [21, 22] and combine them with the
seeded training example selection approach presented here.
Active learning can, for example, be used in the iterative
two-step SVM classifier to select the hardest to classify ex-
amples and hand them to a user for manual classification.

6. ACKNOWLEDGEMENTS
This work is supported by an Australian Research Council

(ARC) Linkage Grant LP0453463 and partially funded by
the New South Wales Department of Health.

7. REFERENCES
[1] R. Baxter, P. Christen, and T. Churches. A

comparison of fast blocking methods for record
linkage. In ACM KDD’03 workshop on Data Cleaning,
Record Linkage and Object Consolidation, pages
25–27, Washington DC, 2003.

[2] I. Bhattacharya and L. Getoor. Collective entity
resolution in relational data. ACM Transactions on
Knowledge Discovery from Data (TKDD), 1(1), 2007.

[3] M. Bilenko and R. J. Mooney. Adaptive duplicate
detection using learnable string similarity measures. In
ACM KDD’03, pages 39–48, Washington DC, 2003.

[4] C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. Manual, Department of
Computer Science, National Taiwan University, 2001.
Software available at:
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[5] P. Christen. Probabilistic data generation for
deduplication and data linkage. In IDEAL’05,
Springer LNCS 3578, pages 109–116, Brisbane, 2005.

[6] P. Christen. A two-step classification approach to
unsupervised record linkage. In AusDM’07, CRPIT
vol. 70, pages 111–119, Gold Coast, Australia, 2007.

[7] P. Christen. Automatic training example selection for
scalable unsupervised record linkage. In Accepted for

 0

 0.2

 0.4

 0.6

 0.8

 1

2S-SVM
-50-100

2S-SVM
-25-50

2S-SVM
-25-25

2S-SVM
-0-0

2S-NN

TAILOR

SVM

F
-m

ea
su

re
’Census’ data set (449 + 392 records)

 0

 0.2

 0.4

 0.6

 0.8

 1

2S-SVM
-50-100

2S-SVM
-25-50

2S-SVM
-25-25

2S-SVM
-0-0

2S-NN

TAILOR

SVM

F
-m

ea
su

re

’Restaurant’ data set (864 records)

 0

 0.2

 0.4

 0.6

 0.8

 1

2S-SVM
-50-100

2S-SVM
-25-50

2S-SVM
-25-25

2S-SVM
-0-0

2S-NN

TAILOR

SVM

F
-m

ea
su

re

’Cora’ data set (1295 records)

 0

 0.2

 0.4

 0.6

 0.8

 1

2S-SVM
-50-100

2S-SVM
-25-50

2S-SVM
-25-25

2S-SVM
-0-0

2S-NN

TAILOR

SVM

F
-m

ea
su

re

’DS-Gen-B’ data set (2,500 records)

 0

 0.2

 0.4

 0.6

 0.8

 1

2S-SVM
-50-100

2S-SVM
-25-50

2S-SVM
-25-25

2S-SVM
-0-0

2S-NN

TAILOR

SVM

F
-m

ea
su

re

’DS-Gen-C’ data set (5,000 records)

 0

 0.2

 0.4

 0.6

 0.8

 1

2S-SVM
-50-100

2S-SVM
-25-50

2S-SVM
-25-25

2S-SVM
-0-0

2S-NN

TAILOR

SVM

F
-m

ea
su

re

’DS-Gen-D’ data set (10,000 records)

Figure 4: Average F-measure results (shown with minimum and maximum values).

PAKDD’08, Osaka, Japan, 2008.

[8] P. Christen. Febrl - a freely available record linkage
system with a graphical user interface. In HDKM’08,
CRPIT vol. 80, Wollongong, Australia, 2008.

[9] P. Christen and K. Goiser. Quality and complexity
measures for data linkage and deduplication. In
F. Guillet and H. Hamilton, editors, Quality Measures
in Data Mining, volume 43 of Studies in
Computational Intelligence. Springer, 2007.

[10] T. Churches, P. Christen, K. Lim, and J. X. Zhu.
Preparation of name and address data for record
linkage using hidden Markov models. BioMed Central
Medical Informatics and Decision Making, 2(9), 2002.

[11] W. Cohen, P. Ravikumar, and S. Fienberg. A
comparison of string distance metrics for
name-matching tasks. In IJCAI’03 workshop on
Information Integration on the Web (IIWeb-03), pages
73–78, Acapulco, 2003.

[12] W. Cohen and J. Richman. Learning to match and
cluster large high-dimensional data sets for data
integration. In ACM KDD’02, pages 475–480,
Edmonton, 2002.

[13] M. Elfeky, V. Verykios, and A. Elmagarmid. TAILOR:
A record linkage toolbox. In ICDE’02, pages 17–28,
San Jose, 2002.

[14] A. Elmagarmid, P. Ipeirotis, and V. Verykios.
Duplicate record detection: A survey. IEEE
Transactions on Knowledge and Data Engineering,
19(1):1–16, 2007.

[15] I. Fellegi and A. Sunter. A theory for record linkage.
Journal of the American Statistical Society,
64(328):1183–1210, 1969.

[16] K. Goiser and P. Christen. Towards automated record
linkage. In AusDM’06, CRPIT, volume 61, pages
23–31, Sydney, 2006.

[17] L. Gu and R. Baxter. Decision models for record
linkage. In Selected Papers from AusDM, Springer

LNCS 3755, pages 146–160, 2006.

[18] J. Jonas and J. Harper. Effective counterterrorism and
the limited role of predictive data mining. Policy
Analysis, (584), 2006.

[19] U. Y. Nahm, M. Bilenko, and R. J. Mooney. Two
approaches to handling noisy variation in text mining.
In TextML’02, pages 18–27, Sydney, 2002.

[20] J. S. Sanchez, J. M. Sotoca, and F. Pla. Efficient
nearest neighbor classification with data reduction
and fast search algorithms. In IEEE International
Conference on Systems, Man and Cybernetics,
volume 5, pages 4757–4762, 2004.

[21] S. Sarawagi and A. Bhamidipaty. Interactive
deduplication using active learning. In ACM KDD’02,
pages 269–278, Edmonton, 2002.

[22] S. Tejada, C. Knoblock, and S. Minton. Learning
domain-independent string transformation weights for
high accuracy object identification. In ACM KDD’02,
pages 350–359, Edmonton, 2002.

[23] W. E. Winkler. Using the EM algorithm for weight
computation in the Fellegi-Sunter model of record
linkage. Technical Report RR2000/05, US Bureau of
the Census, 2000.

[24] W. E. Winkler. Methods for evaluating and creating
data quality. Elsevier Information Systems,
29(7):531–550, 2004.

[25] W. E. Winkler. Overview of record linkage and
current research directions. Technical Report
RR2006/02, US Bureau of the Census, 2006.

[26] H. Yu, J. Han, and K. C.-C. Chang. PEBL: Positive
example based learning for Web page classification
using SVM. In ACM KDD’02, pages 239–248,
Edmonton, 2002.

[27] H. Yu, C. X. Zhai, and J. Han. Text classification
from positive and unlabeled documents. In CIKM’03,
pages 232–239, New Orleans, 2003.

