

Robust temporal graph clustering and cluster evaluation measure for group record linkage

Charini Nanayakkara, Peter Christen, and Thilina Ranbaduge

peter.christen@anu.edu.au

Research School of Computer Science, College of Engineering and Computer Science,

The Australian National University, Canberra, Australia

This research is conducted as part of the Digitising Scotland project

https://www.lscs.ac.uk/projects/digitising-scotland/

and partially funded by the Australian Research Council under DP160101934.

Outline

- Group record linkage and (temporal) constraints
- Temporal constraints based graph clustering
 - Detailed steps of our approach
 - Experimental evaluation on a Scottish data set from the Isle of Skye
- Cluster quality evaluation measure for group record linkage
 - Why traditional evaluation measures might not be adequate
 - A new cluster quality evaluation measure
 - Illustrative use on a Scottish data set
- Conclusions and future work

(Historical) Group Record Linkage

- Record linkage is the process of identifying sets of records that refer to the same entity (person) within one database or across different databases.
- In group record linkage, the aim is to link records for groups of entities, such as families or households.
- Historical record linkage refers to the linkage of historical birth, marriage, and death records for population reconstruction (building family trees), where each record contains information about several people.

Problem Statement

• **Aim**: To identify groups of records that refer to the same entities where there are certain temporal constraints between records.

• Challenges:

- Existing record linkage techniques do not consider constraints that are implied by factors such as time (temporal), culture, or geographic location.
- Data errors are often introduced when recording and transcribing the data.
- Missing values in records.
- Highly skewed frequency distributions of names.

First	name	Last name		
Father	Mother	Father	Mother	
John $(3,444)$	Mary $(2,740)$	Mcleod $(1,571)$	Mcdonald $(1,793)$	
Donald $(2,628)$	Catherine $(2,607)$	Mcdonald $(1,556)$	Mcleod $(1,761)$	
Alexander $(1,665)$	Ann $(2,084)$	Mckinnon $(1,168)$	Mckinnon $(1,164)$	
Malcolm (800)	Margaret $(2,031)$	Nicolson $(1,047)$	Nicolson (908)	
Neil (787)	Christina $(1,626)$	Mclean (908)	Mclean~(850)	

Temporal Constraints Based Graph Clustering

- We introduce a novel graph clustering approach for group record linkage which takes temporal constraints into account.
- Temporal constraints: The constraints implied by time differences when linking records.

Bangladesh woman with two wombs has twins one month after first birth: <u>https://www.bbc.com/news/world-asia-47729118</u>

Phase 1: Similarity Graph Generation

Phase 1: Similarity Graph Generation

Phase 2 (a): Link Strength Based Edge Classification

- The concept of link strength is first used in record linkage by Saeedi et al. (2018). Only the edges with similarities greater than a user defined threshold are used.
- Strong: Edges (r_i, r_j) with the highest similarity with respect to all other edges connected to both r_i and r_i.
- Norm: Edges (r_i, r_j) with the highest similarity with respect to all other edges connected to either r_i or r_i, but not both.
- WeakHigh: Edges which are neither strong nor normal.

- Strong: *c, b* with similarity 0.95
- Norm: *f, h* with similarity 0.9
- WeakHigh: *a, k* with similarity 0.6

Phase 2 (b): Base Cluster Generation

Create a new similarity graph G' using the selected link strength(s)

Generate connected components based on G'

Iterative cluster refinement

Iterative Cluster Refinement:

- The temporal implausibilities of connected components are eliminated in this step.
- For each connected component, nodes involved in implausible connections are ordered to determine the best sequence to iteratively remove non-temporal edges.

Phase 3: Iterative Cluster Merging

Pairwise base cluster similarity calculation using edges of the selected link strength(s) Iteratively merge temporally plausible cluster pairs with cluster similarity greater than a user defined threshold

- Pairwise base cluster similarity is a combination of the similarity and the coverage.
- Similarity can be calculated as:
 - Maximum maximum similarity among edges between two clusters (complete-link)
 - Minimum minimum similarity among edges between two clusters (single-link)
 - Average average similarity across edges between two clusters (average-link)
- Coverage = <u>Number of edges of the selected link strength between two clusters</u> Number of all edges between two clusters (with respect to the similarity graph G)

Experimental Setup

- Data set
 - For evaluation we used a real Scottish birth data set with 17,614 birth certificates, covering the population of the Isle of Skye from 1861 to 1901.
 - Each birth certificate contains personal details about a baby and its parents such as their names, address, marriage date, occupations, and the baby's date of birth.
 - We used six different attribute combinations for similarity calculation: all (parents names, addresses, occupations, and marriage dates), parent names with addresses, and parent names only, with and without weighting (Fellegi and Sunter, 1969).
- Evaluation measures:

Precision	Recall	Area under the precision-recall curve (AUC-PR)		
TP/(TP+FP)	TP/(TP+FN)	A summary measure of the precision and recall values across different similarity thresholds		

TP – True matching record pairs, FP – Wrongly matched record pairs, FN – Wrongly non-matched record pairs

Precision-Recall Curves

- Results are shown only for base clusters created with 'Strong' edges, since they showed highest precision (95%). Since the variation across similarity calculation methods was minimal, we have shown curves only for the 'average' similarity method.
- Surprisingly, better results were obtained with fewer attributes for similarity graph generation!

Area Under the Precision-Recall Curve (AUC-PR)

	Temporal		Non-temporal					
Similarity graph	Connected component	Star	Connected component	Star				
All (UW)	0.72 ± 0.012	0.70 ± 0.003	0.64 ± 0.005	0.63 ± 0.003				
All (W)	0.77 ± 0.014	0.74 ± 0.006	0.69 ± 0.005	0.68 ± 0.004				
Names and addresses (UW)	0.87 ± 0.006	0.70 ± 0.014	0.83 ± 0.002	0.73 ± 0.003				
Names and addresses (W)	0.86 ± 0.007	0.69 ± 0.016	0.80 ± 0.003	0.72 ± 0.007				
Names only (UW)	0.88 ± 0.002	0.72 ± 0.018	0.85 ± 0.001	0.78 ± 0.015				
Names only (W)	0.80 ± 0.002	0.65 ± 0.016	0.73 ± 0.001	0.69 ± 0.019				
Averages	0.82 ± 0.064	0.70 ± 0.030	0.76 ± 0.083	0.71 ± 0.051				

- We compared this novel approach against our recently proposed temporal star clustering approach (Nanayakkara et al. 2018).
- There are no other temporal clustering approaches that we are aware of.
- Our new temporal approach achieved the highest average AUC-PR value of 0.88, compared to the previous temporal star clustering approach.

Are Precision and Recall Suitable for Evaluating Group Record Linkage?

- Precision and recall (as used before) have traditionally been employed to evaluate linkage quality in situations where ground truth data is available.
 - True Positives (true matching record pairs correct matches).
 - False Positives (wrongly matched record pairs false matches).
 - False Negatives (wrongly non-matched record pairs missed matches).
- These metrics measure the quality of links between records.
- For group record linkage, however, we want the quality of clusters (groups) of records.
- Precision and recall can be ambiguous and not meaningful.

Examples of Different Cluster Predictions with same Precision and Recall Results

- The number of correct true matches (true positives) is 6 (solid lines).
- The number of false matches (false positives) is 4 (dotted lines).
- The number of missed matches (false negatives) is 3.
- Precision is 6/10 and recall is 6/9 for all three cluster predictions.

Record Based Cluster Evaluation Measures

- We need measures that assess the quality of clusters based on the records within them with regard to ground truth clusters.
- This is a more complex undertaking, as there can be some correctly and some wrongly linked records in a cluster.
- The number of predicted clusters can also be higher or lower than the number of ground truth clusters.
 - In some applications this is problematic.
 - For example, in our birth bundling linkage we cannot have several clusters associated with a single mother.

Seven Categories of Predicted Clusters (1)

- Correct singleton (**SS**): Records in clusters of size 1 in both ground truth and predicted clusters.
- Wrongly grouped singleton (SG): Records in clusters of size 1 in ground Ground truth clusters truth but size larger than 1 (groups)
 Karl in predicted clusters.
- Missed group member (GS): Records in clusters larger than size 1 in ground truth but size 1 in predicted clusters.
- Wrongly assigned member (**GG_W**): Records from a ground truth cluster of size larger than 1 are assigned to a wrong predicted group (not singleton).

Ground truth clusters	Predicted clusters		
John	John		
Singleton J	Singleton J		
Ground truth clusters	Predicted clusters		
• Karl	Karl Ommunited Max		
Singleton K	Cluster Z		

Seven Categories of Predicted Clusters (2)

- Exact group match (**GG_E**): Clusters of size larger than 1 which are the same in ground truth and predicted clusters.
- Majority group match (**GG_M**): Clusters of size larger than 1 in both ground truth and predicted clusters, where the majority of records are the same.
- Minority group match (GG_m): Clusters of size larger than 1 in both ground truth and predicted clusters, where the majority of records are not the same.

Categorising Records based on Thresholds

- As with traditional record linkage, we can classify record pairs as matches or non-matches based on different similarity thresholds.
- This will result in different numbers of records being classified into the seven categories.

Areas Under the Curves

- As with the AUC-PR, we can summarise these lines as areas under the curves over a range of different similarity thresholds (and normalised into the 0..1 range).
- Better clustering results will have higher values for SS, GG_E, GG_M and GG_m, and lower values for SG, GS, and GG_W.

Clustering technique	AUC-PR	SS	GG_E	GG_M	GG_m	SG	GS	GG_W
Connected components	0.744	0.036	0.206	0.077	0.010	0.087	0.017	0.567
Star clustering	0.775	0.046	0.367	0.333	0.020	0.077	0.020	0.137
Robust graph clustering	0.885	0.044	0.413	0.298	0.027	0.077	0.017	0.124

Conclusions and Future Work

• We proposed:

- A novel temporal graph clustering approach for group record linkage, which addresses the previously highlighted challenges in this domain.
- Our proposed approach takes advantage of the link strength categorisation in the record grouping, which improves clustering quality.
- Experimental results show that our approach achieves improved linkage quality with respect to non-temporal clustering approaches, and substantially outperforms a previous temporal clustering approach for group record linkage.
- A novel record based cluster evaluation measure for group record linkage which classifies records into one of seven categories.

• Future work:

- Conduct empirical evaluations for different data sets and parameter settings.
- Develop an adaptive technique to learn temporal constraints for different time intervals using ground truth data.
- Investigate record linkage evaluation measures when no ground truth data are available.

Questions?

Robust temporal graph clustering and cluster evaluation measure for group record linkage

Charini Nanayakkara, **Peter Christen**, and Thilina Ranbaduge peter.christen@anu.edu.au

This research is conducted as part of the Digitising Scotland project <u>https://www.lscs.ac.uk/projects/digitising-scotland/</u> and partially funded by the Australian Research Council under DP160101934.

Slide 22 of 22