
How Fast is -fast?
Performance Analysis of KKD Applications
using Hardware Performance Counters on

UltraSPARC-III

Peter Christen and Adam Czezowski

CAP Research Group

Department of Computer Science, Australian National University

Contact: peter.christen@anu.edu.au

Funded by the Fujitsu-ANU CAP project (see http://cap.anu.edu.au)

Copyright c

�

2002 Peter Christen – p.1/18

Outline

Performance of modern computing platforms

Characteristics of KDD / data mining applications

Performance analysis
Hardware performance counters

Selected data mining applications
Decision tree induction C4.5

Association rules APRIORI

Additive models ADDFIT

Experimental results

Conclusions

Copyright c

�

2002 Peter Christen – p.2/18

Performance of modern
computing platforms

There is an increasing gap between CPU and
memory access speed (memory hierarchy)
Registers � L1 caches � External cache � Main memory

CPU caches are only useful (efficient) when many
data items or instructions can be accessed (and
re-used) directly from the cache (locality)

Hardware and compilers assume regular memory
access patterns

Regular data structures like matrices and vectors

Temporal and spacial locality

High efficiency and high-performance for many
scientific and engineering applications

Copyright c

�

2002 Peter Christen – p.3/18

Characteristics of data mining
applications

Operate on large and complex data sets
(often access input data several times)

Are compute and memory intensive

Operate on dynamic and recursive data structures
(hash tables, dynamic linked lists, trees, etc.)

Data structure access is data dependent
(often irregular and unpredictable)

Size of data structures is data dependent
(often not linear scalable with input data)

Complex core routines
(large instruction foot-prints)

Copyright c

�

2002 Peter Christen – p.4/18

Performance analysis

Modern CPUs and computer systems are
becoming more and more complex

Longer pipelines

Multiple functional units and multiple instruction issued

Speculative branch predictions

Several cache levels

Symmetric multiprocessing (SMP)

Many of today’s applications are very complex
(multi-user, interactive, many functions and large data sizes)

Understanding program behaviour is important to
achieve good efficiency and high performance

Copyright c

�

2002 Peter Christen – p.5/18

Performance analysis methods

Profiling
(information about where your program spent its time and
which functions called which other functions while it was
executing)

Monitoring system utilisation
(using commands like: ps, iostat, top, kstat, vmstat,
cputrack, cpustat, pmap, har, etc.)

Simulation
(possibility to modify hardware parameters)

Hardware performance counters
(CPU registers that count hardware events)

Copyright c

�

2002 Peter Christen – p.6/18

Hardware performance counters

Most modern CPUs have hardware event counter
registers

Possibility to count various hardware events
(like MIPS, FLOPS, cycles per instructions, address bus
utilisation, cache hit and miss rates, etc.)

Control and access through library calls
(e.g. libcpc on SPARC/Solaris, PAPI, PCL, etc.)

Easy to instrument source code
Possible to analyse only parts of the code (like the

computational core routines)

Possible to analyse programs with short run times

Copyright c

�

2002 Peter Christen – p.7/18

Example libcpc code on SPARC III

#include <libcpc.h>

int cpc_cpuver;

cpc_event_t cpc_event, start, stop;

char *cpc_arg="pic0=cycle_cnt, pic1=instr_cnt";

cpc_cpuver = cpc_getcpuver(); /* Get CPU version */

cpc_strtoevent(cpc_cpuver, cpc_arg, &cpc_event);

cpc_bind_event(&cpc_event, 0); /* Bind counter to process */

cpc_take_sample(&start);

/* ... add your code to analyse here ... */

cpc_take_sample(&stop);

printf("cycle_cnt: %lld, instr_cnt: %lld\n",

(stop.ce_pic[0]-start.ce_pic[0]),(stop.ce_pic[1]-start.ce_pic[1]));

Copyright c

�

2002 Peter Christen – p.8/18

Decision tree induction (C4.5)

Given a data set with records (e.g. SQL table),
where each record has the same attributes

Build a classification model of the data
(classify records into different classes)

Tree is built using training data (labeled records)

Primary (input) data structure
Array with pointers to vectors

Either a floating-point or an integer value

Secondary data structure
Recursive tree

Not restricted to binary tree

Copyright c

�

2002 Peter Christen – p.9/18

Association rules (APRIORI)

Freely available implementation by C. Borgelt

Popular for market basket analysis

Given a data set with transactions
(which can have variable length)

The task is to (1) find frequent large item sets and
then (2) build rules from these item sets

Primary (input) data structure
Vectors of item numbers (integers)

Secondary data structure
Prefix tree and hash tables

Counter vector
Copyright c

�

2002 Peter Christen – p.10/18

Additive models (ADDFIT)

Developed by the ANU Data Mining Group (2000)

Build a predictive model of the data with additive
functions

� ���� �� � � � �	
 � �
� � �� � ��
 � � � � � �	 � �	

Two steps
1. Assemble dense symmetric linear system from data

2. Solve linear system sequential or in parallel

Assembly is data dependent and results in
irregular memory access patterns

Primary data structure (input records) need to be
accessed once only

Secondary data structure is a dense linear system

Copyright c

�

2002 Peter Christen – p.11/18

Characteristics of test applications

Program BLAS (SUNPERF) ADDFIT

small medium large small large

Data 209 � 209 660 � 660 2090 � 2090 104,858 rec 209,715 rec

Run time 0.003 sec 1.10 sec 44.03 sec 1.09 sec 5.89 sec

Iterations 100 10 1 10 10

Heap size 1 MB 10 MB 100 MB 10,024 KB 90,408 KB

User code 99.46% 97.09% 93.03% 99.64% 96.36%

Program APRIORI C4.5

small large small large

Data 10,000 rec 1,000,000 rec 8,322 rec 266,305 rec

Run time 3.36 sec 31.78 sec 2.35 sec 421.04 sec

Iterations 10 1 5 1

Heap size 19,776 KB 70,512 KB 3,960 KB 62,152 KB

User code 89.37% 94.30% 98.43% 75.93%

Copyright c

�

2002 Peter Christen – p.12/18

Dynamic memory allocation in
APRIORI and C4.5

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

H
ea

p
si

ze
 (

in
 K

B
yt

es
)

�

Run time (totally 3.1 seconds)

Memory allocation for APRIORI

0

500

1000

1500

2000

2500

3000

3500

4000

H
ea

p
si

ze
 (

in
 K

B
yt

es
)

�

Run time (totally 3.2 seconds)

Memory allocation for C4.5

First phase is loading data from file

Second phase is computing frequent item sets or

decision tree

ADDFIT (like BLAS matrix-matrix multiplication) allocates

all memory in one block at beginning
Copyright c

�

2002 Peter Christen – p.13/18

MIPS and MFLOPS

0

200

400

600

800

1000

(s) (m) (l) (s) (l) (s) (l) (s) (l)

M
IP

S�

 BLAS ADDFIT APRIORI C4.5

MIPS

un-optimised
optimised

0

100

200

300

400

500

(s) (m) (l) (s) (l) (s) (l) (s) (l)

M
F

LO
P

S �
 BLAS ADDFIT APRIORI C4.5

MFLOPS

un-optimised
optimised

Optimised compilation was done using the -fast option

Data mining applications do not use floating-point units

(instead mainly integer operations, plus more loads/ stores)

MIPS rate generally decreases with larger data sizes

Copyright c

�

2002 Peter Christen – p.14/18

Cycles per instruction and run times

0

2

4

6

8

10

(s) (m) (l) (s) (l) (s) (l) (s) (l)

C
P

I �

 BLAS ADDFIT APRIORI C4.5

Cycles per Instruction

un-optimised
optimised

Program ADDFIT APRIORI C4.5

small large small large small large

Un-optimised 1.1 sec 5.9 sec 3.4 sec 31.8 sec 2.4 sec 421.0 sec

Optimised 0.5 sec 2.8 sec 2.2 sec 19.9 sec 1.6 sec 375.5 sec

Improvement 52% 53% 34% 37% 34% 11%

Copyright c

�

2002 Peter Christen – p.15/18

Cache miss rates

0

5

10

15

20

25

30

(s) (m) (l) (s) (l) (s) (l) (s) (l)
P

er
ce

nt
ag

e �

 BLAS ADDFIT APRIORI C4.5

Data cache miss rate

un-optimised
optimised

0

0.02

0.04

0.06

0.08

0.1

0.12

(s) (m) (l) (s) (l) (s) (l) (s) (l)

P
er

ce
nt

ag
e �

 BLAS ADDFIT APRIORI C4.5

Instruction cache miss rate

un-optimised
optimised

Irregular memory access patterns result in higher data

cache miss rates (less locality)

Optimised compilation increases data cache miss rate

Higher instruction cache miss rates due to more complex

and longer core routines
Copyright c

�

2002 Peter Christen – p.16/18

Branch rates and branch miss rates

0

5

10

15

20

(s) (m) (l) (s) (l) (s) (l) (s) (l)

P
er

ce
nt

ag
e �

 BLAS ADDFIT APRIORI C4.5

Branch rate

un-optimised
optimised

0

2

4

6

8

10

(s) (m) (l) (s) (l) (s) (l) (s) (l)

P
er

ce
nt

ag
e �

 BLAS ADDFIT APRIORI C4.5

Branch miss rate

un-optimised
optimised

Irregular data structures result in higher branch (miss) rates

Data mining applications do not have long loops that are

‘predictable’ (e.g. over vectors)

Optimised compilation ‘removes’ many loads and stores

(e.g. for indices) from the code
Copyright c

�

2002 Peter Christen – p.17/18

Conclusions

Performance analysis is important to
understand behaviour of modern complex applications

find bottlenecks both in software (applications as well as

OS) and hardware (CPU and memory system)

improve efficiency and performance of modern computer

systems

Hardware counters are a good performance
analysis tool (but it’s easy to drown in numbers, and
results can be hard to understand)

Various improvements can be done on data mining
applications (e.g. try to use floating-point operations)

Copyright c

�

2002 Peter Christen – p.18/18

	Outline
	Performance of modern \ computing platforms
	Characteristics of data mining \ applications
	Performance analysis
	Performance analysis methods
	Hardware performance counters
	Example 	exttt {libcpc} code on SPARC III
	Decision tree induction (C4.5)
	Association rules (APRIORI)
	Additive models (ADDFIT)
	Characteristics of test applications
	Dynamic memory allocation in APRIORI and C4.5
	MIPS and MFLOPS
	Cycles per instruction and run times
	Cache miss rates
	Branch rates and branch miss rates
	Conclusions

