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function of layer thickness,[2,6–8] strain,[9–13]  
defects, and intercalations,[14–18] charge car-
rier doping,[19–21] charge transfer,[22,23] and 
pressure.[24] In addition to this, due to its 
intrinsic atomically smooth surface, it has 
been regarded as an ideal barrier for tun-
neling junctions.[25] Single-layer MoS2 has 
been theoretically predicted to withstand a 
critical intrinsic stress and strain of σc  ≈ 
24GPa and εc  ≈ 20% for biaxial tensile 
deformations (and higher for uniaxial), by 
employing first-principle calculations and 
investigating the stress–strain (σ − ε) rela-
tions up to the failure point.[26,27] On the 
other hand, experimental estimates of εc 
in MoS2 sheets subjected to nanoinden-
tation (which has the effect of a biaxial 
tensile stress), lead to lower values, εc  = 
6%—13%,[27,28] for measured σc close to 
the expected one. The discrepancy in the 
experimental value of εc is caused by the 

use of a linear σ − ε relation, σ = Yε, where Y is the material 
Young’s modulus, in a no-longer linear regime (close to the 
breaking point).

Recently, the excellent robustness and flexibility of MoS2 
and other 2D crystals has led to a keen interest into 2D-mate-
rial-blisters, such as bubbles, wrinkles, and tents. Their spon-
taneous formation has been observed after transferring 2D 
materials on top of a substrate, or on stacks of van der Waals 
(vdW) heterostructures, and it has been attributed to the trap-
ping of adsorbed water and/or hydrocarbons inevitably pre-
sent on the individual layers before assembly.[29–31] Moreover, 

The combination of extremely high stiffness and bending flexibility with 
tunable electrical and optical properties makes van der Waals transition 
metal dichalcogenides appealing both for fundamental science and applied 
research. By taking advantage of localized H2-bulged MoS2 membranes, an 
innovative approach, based on atomic force microscopy nanoindentation, is 
demostrated and discussed here, aiming at measuring elastic and thermody-
namic properties of nanoblisters made of 2D materials. The results, inter-
preted in the membrane limit of the Föppl–von Karman equation, lead to the 
quantification of the internal pressure and mole number of the trapped H2 
gas, as well as of the stretching modulus and adhesion energy of the MoS2 
membrane. The latter is discussed in the limit of strong (clamped and fully 
bonded interlayer interface) shear, as experimentally achieved in the investi-
gated H2-bulged 2D blisters. Moreover, this approach allows to quantify the 
stress, and consequently the strain, locally imposed to the MoS2 membrane 
by the bulging of the domes.
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1. Introduction

Molybdenum disulfide (MoS2) is a 2D layered crystal consisting 
of stacked S-Mo-S sheets, with strong in-plane covalent bonds 
between Mo and S atoms and weak van der Waals interaction 
holding the layers together, thus enabling the isolation of single 
or few layers, akin to graphene.[1] As a wide bandgap semicon-
ductor (1.9 eV at room temperature in the monolayer form),[2] 
MoS2 has easily found possible applications in electronic and 
optoelectronic devices.[3–5] Moreover, it has attracted growing 
interest due to the great tunability of its electronic properties as a 
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several strategies for artificially inducing nanoblistering in 2D 
materials have been developed and employed, such as sur-
face etching,[32,33] low temperature growth,[34,35] and surface 
hydrogenation.[36–40]

The growing interest into 2D material blisters relies on the 
possibility of using them as a tool to probe and study: 1) the 
induced strain occurring at the blister surface and its impact 
on the electronic and optical properties of 2D materials; 2) the 
elastic properties of the 2D crystal involved (stretching mod-
ulus, Young’s modulus, adhesion and/or exfoliation energy); 
3) the nanoscale confinement exerted on the enclosed material 
(e.g., hydrostatic pressure). These studies are particularly rel-
evant for the field of straintronics and twistronics (e.g., applica-
tions of flexible and stretchable electronics and photonics based 
on 2D materials and vdW heterostructures). Recently, several 
groups demonstrated the ability to investigate the elastic prop-
erties of 2D materials at the nanoscale, by atomic force micros-
copy (AFM) nanoindentation on free-standing membranes 
obtained by suspending mono- or few-layers of 2D crystals on 
top of microcavities,[27,41–45] by bimodal AFM on monolayers,[46] 
or even by combining AFM and high spatial resolution Raman 
spectroscopy.[47] However, the quest for the measurement of 
the adhesion energy between a monolayer of 2D material and 
its substrate (or exfoliation energy between the layers of a 2D 
crystal) has further motivated the development of experiments 
on the delamination of monolayers from the substrate (e.g., by 
a controlled pressurization of monolayers through the micro-
cavities of a holey substrate,[48,49] or by the intercalation of nan-
oparticles to generate blisters on the substrate surface [50]), as 
well as theoretical efforts to describe the problem and relate the 
shape and aspect ratio of the blisters to their elastic and ther-
modynamic properties (stretching modulus, adhesion energy, 
and inner gas pressure).[51–54]

In this paper, we report a novel approach for a systematic 
measurement of inner gas pressure, membrane stretching 
modulus, crystal exfoliation energy and strain in blisters made 
of 2D materials. We expose mechanically exfoliated MoS2 bulk 
flakes to hydrogen ion irradiations[39] to intentionally induce 
the formation of hydrogen-filled, nano- and micro-sized spher-
ical membranes (spontaneously formed domes), holding a 
large, local biaxial strain. The formation process is also engi-
neered, allowing the creation of ordered arrays of domes, 
clamped at their edges and containing over-pressurized gas 
(engineered clamped domes).[40] The loading resistance of these 
structures is probed by AFM nanoindentation experiments, 
and the results are compared to the solutions of the Föppl–von 
Karman equation,[53,54] describing the mechanics of thin plates 
under large deformations.

Here, we use the Föppl–von Karman approach by introducing 
some novelty elements: first, we apply the macroscopic elastic 
model to the relatively new context of nanoscale deformations 
of ultrathin shells of 2D materials (MoS2 bulged domes).[55–57] 
Second, we consider a modified formulation of the Föppl–von 
Karman equation (in the membrane limit), including the action 
of two loading forces: the internal gas pressure and the local 
indentation force.[54,57] Finally, we apply the Föppl–von Karman 
theoretical formulation to interpret the findings of AFM nanoin-
dentation experiments on two different systems, i.e., the sponta-
neously formed and the engineered clamped domes.

This work leads to multiple outcomes: on one side the pre-
cise knowledge of the amount of hydrogen molecules confined 
in the domes, together with the technological capability of pro-
ducing domes in a controlled manner, has applicative poten-
tialities. For instance, it can be exploited for the on-demand 
delivery of extremely small quantities of reactive gas, useful for 
nanoreactors[58] and for fine calibration kits for H2 sensors. It 
is worth mentioning that a one-by-one membrane breaking, 
with consequent gas release, can be induced, for example, by 
a properly focused laser scanning over the crystal surface (a 
movie showing this procedure is presented as supplementary 
material). On the other side, the measurement of stretching 
modulus, stress/strain, and adhesion energy allows for a full 
characterization of the 2D crystal’s elastic properties. In this 
framework, the results of our loading experiments point toward 
a fine tuning of the mechano-elastic properties of MoS2 domes: 
compared to the spontaneously formed MoS2 membranes, 
the engineered domes exhibit higher level of strain,[40] stiffer 
behavior to the AFM solicitation—up to 500 nN—and higher 
internal pressure and exfoliation energy. We discuss these find-
ings as a consequence of the superimposed constraint, acting 
as a source of strong clamping at the interface between the top-
most layer and the bulk, and preventing local delamination of 
the MoS2 layer at the edge of the dome.

2. Results and Discussions

2.1. Membrane Formation in MoS2

Localized protrusions, or domes, have been obtained in MoS2 
bulk flakes via hydrogen ion irradiation: it has been recently 
demonstrated that accelerated protons possess enough kinetic 
energy to penetrate through MoS2 (as well as other transition-
metal dichalcogenides, graphene and h-BN) planes, without 
damaging the crystal lattice. The subsequent formation of 
hydrogen molecules in the crystal interlayer regions gives rise 
to localized protrusions appearing on the flake surface in the 
shape of domes.[36–40] Here, we engineer the dome formation 
process as follows:[40] first of all, MoS2 flakes are mechanically 
exfoliated onto a Si/SiO2 substrate (top panel of Figure  1a); 
subsequently, the sample is partially coated by hydrogen siles-
quioxane (HSQ) negative-tone e-beam resists, of thickness 
varying in the range 50–100  nm; then, octagonal openings of 
micrometer-scale radius (middle panel of Figure 1a) are created 
in the HSQ layer via electron-beam lithography (EBL); finally, 
a low-energy proton irradiation is performed (bottom panel of 
Figure  1a). Additional information on sample production, pat-
terning, and irradiation is reported in the Experimental Section. 
Uncoated MoS2 flakes reveal the formation of randomly dis-
tributed domes of random size (sponeously formed), whereas 
in the patterned flakes the domes can form only within the 
openings. With this method, a regular array of domes with uni-
form size distribution can be achieved by controlling the area 
of the sample participating in the hydrogen production pro-
cess. Figure  1b,c compare tapping-mode AFM topographies, 
15  µm × 15  µm in lateral size, of uncoated and HSQ-coated 
MoS2 surfaces, revealing the evolution toward a fine control of 
dome size and position due to the engineering of the sample 
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prior to H+ irradiation (corresponding optical images are given 
in Note S1 in the Supporting Information). Furthermore, the 
spontaneously created domes have a typical aspect ratio h/R = 
0.16 (where h is the maximum height and R the footprint 
radius of the dome), namely universal value, in agreement with 
previous measurements;[29,39,40] on the contrary, the presence 
of the HSQ mask favors an over-pressurization of the internal 
gas inside the engineered domes, making their aspect ratio 
higher than 0.16.[40] With this method we have thus intention-
ally created domes spanning over a wide range of aspect ratios 
in between 0.15 and 0.31, thus permitting studies under quite 
different conditions, otherwise unattainable.

More specifically, in this work we have focused on three dif-
ferent sizes for the HSQ openings (and consequently for the 
MoS2 domes): 5, 3, and 1.2 µm in diameter, hereinafter referred 
to as big, medium, and small size.

The AFM topographies of Figure  2a–c compare the nuclea-
tion of H2-filled domes, as obtained by reducing the opening size 
(from 5 to 1.2 µm) and pattern periodicity (an AFM image of the 
corresponding HSQ mask is given in Note S1 in the Supporting 
Information). The AFM scan size scales from 15 µm × 15 µm in 
(a), to 9 µm × 9 µm in (b), to 5.5 µm × 5.5 µm in (c), whereas the 
height range (from dark blue to yellow) is 495, 330, and 150 nm 
in (a), (b), and (c), respectively. Figure 2d zooms in on a small 
dome, protruding from a 50-nm thick and 1.2-µm wide HSQ-
opening. The dome profile overlays to the AFM image, revealing 
a maximum height and radius of h = 138 nm and R = 520 nm, 
respectively. This leads to an aspect ratio of h/R = 0.265, remark-
ably higher than the universal value h/R = 0.16.[29,40]

2.2. Nanoscale Measure of Inner Pressure and Elastic Properties

We performed AFM nanoindentation to measure the H2 pres-
sure inside the domes and the relevant elastic and adhesion 

parameters of the 2D MoS2 membranes. A similar approach 
has been used in the past to measure osmotic pressure inside 
viral particles,[59] pressurized elastic shells of finite thickness,[60] 
as well as bubbles generated by transferring monolayers of 2D 
materials.[29,57]

Here, we take a systematic approach using the membrane 
limit of the Föppl–von Karman equation in the case of inden-
tation on pressurized ultrathin elastic sheets, clamped to the 
edge of a circular hole of footprint radius R.[54] In particular, 
Föppl and von Karman wrote a system of coupled, nonlinear, 
partial differential equations, establishing the relation between 
the following quantities: deflection of the plate, stress, Young’s 
modulus of the material Y, geometrical dimensions of the plate 
(lateral size and thickness t), applied load, and flexural rigidity 

12(1 )

3

2D
Yt

ν
=

−
 (where ν is the Poisson ratio of the material).[61,62] 

As the thickness t approaches zero (membrane limit), the flex-
ural rigidity, and consequently the bending stiffness, becomes 
negligible (more information is given in Note S2 in the Sup-
porting Information). By modeling the AFM sharp tip as a 
finite indenter of radius Rtip ≪ R, exerting a normal load on 
the top of the pressurized domes, the problem of indentation 
on the clamped, pressurized and pre-tensed membrane can be 
written by incorporating the differential pressure Δp = p − p0, 
with p and p0 internal and external pressure respectively, in the 
normal force balance equation

2 2
2r

d

dr

F p
rψ ζ

π
( ) = − ∆

 
(1)

where ψ(r) is the Airy stress function, related to the radial and 
circumferential stress components as σrr = ψ/r and σθθ = dψ/dr, 
respectively, and ζ(r) is the out-of-plane membrane displace-
ment due to the simultaneous action of indentation force F and 
differential pressure Δp  = p − p0. This equation can be solved 
numerically, together with the strain compatibility equation, 

Figure 1. a) Schematic illustration of the process used to achieve spontaneous and ordered domes. Top panel: MoS2 flakes are mechanically exfoli-
ated on top of a Si/SiO2 substrate. Middle panel: the substrate is partially coated by hydrogen silesquioxane (HSQ) negative-tone e-beam resists, 
with octagonal openings of micrometer-scale radius. Bottom panel: low energy proton irradiation is performed. b) Tapping-mode AFM topography of 
uncoated MoS2 surface after proton irradiation, 15 µm × 15 µm in lateral size. c) Tapping-mode AFM topography of HSQ-MoS2 surface after proton 
irradiation, 15 µm × 15 µm in lateral size.

Adv. Mater. Interfaces 2020, 2001024



www.advancedsciencenews.com

© 2020 Wiley-VCH GmbH2001024 (4 of 11)

www.advmatinterfaces.de

which sets the unique relation between the stress and the out-
of-plane displacement, through the stretching modulus, or 2D 
Young’s modulus, E2D

1 1
2

2

2

r
d

dr r

d

dr
r E

d

dr
Dψ ζ





= − 



  

(2)

with boundary conditions

tipR hζ δ( ) = −
 (3)

and

0Rζ ( ) =  (4)

Here the indentation depth δ is the contribution to the normal 
membrane displacement due to the action of the external load, 
so that, in the center of the dome (r = 0), in absence of AFM 
indentation, ζ(0) = h.

During the AFM indentation, a spatially uniform defor-
mation depth h  − δ is considered at any distance r  ≤ Rtip 
(Equation (3)), whereas zero displacement is experienced at the 
edge (Equation  (4)). The numerical solution of Equation  (1),  
together with Equations  (2–4), can be pursued in the limits of 
small and large indentations, leading to F ≈ kδ (linear regime) 

and F ≈ αδ 3 (cubic regime), respectively, with 2 ( )

log( / )

2/3
2
1/3

k
A pR E

R R
D

tip

π
≈

∆τ  

and , 2
2f

R

R

E

R
tip Dα ν≈ 



  (Aτ is a tabulated function of Poisson’s 

ratio).[54] It is worth noticing that the linear stiffness k depends 
on E2D, as well as on the internal pressure p, differently from 
Schwerin-like models on free-standing membranes.[27,41–43] In 
the latter, the stretching modulus E2D plays a role only in the 

force-indentation response at very large indentation depths 
(cubic component), whereas k leads the information on mate-
rial’s Poisson ratio ν, radius of the indenter and material’s pre-
tension. By using the results on the equilibrium height of highly 

pressurized blisters,[49,63] 
4

2

1/3

h A
pR

E
h

D

= ∆





 (Ah is a tabulated func-

tion of Poisson’s ratio), and combining it with 2 ( )

log( / )

2/3
2
1/3

k
A pR E

R R
D

tip

π
≈

∆τ ,  

one can demonstrate that the knowledge of both dome’s height 
(before AFM indentation) and stiffness (i.e., slope of loading 
force curve in the small indentation range) is sufficient for both 
p and E2D to be inferred. Indeed, under the conditions of 1. 
small indentation and 2. high pressurization, one can find

2
tip

2 0p

log
R

R
hk

A A R
p

hπ
≈







+
τ  

(5)

and

2
2

tip

2 2

2E

log
R

R
A R k

A h
D

h

π
≈







τ  
(6)

where Ah ≈ 0.645 and Aτ ≈ 0.438 for ν ≈ 0.3, as in the case of 
MoS2.[64]

If they are verified, the conditions 1. and 2. are particularly 
relevant since p and E2D can be expressed independently and 
thus inferred via indentation experiments. The signature of 
being in the small indentation regime is given by an approxi-
mately constant behavior of the linear stiffness k (i.e., linear 

Figure 2. Tapping-mode AFM topography of a) big domes—scan size is 15 µm × 15 µm; b) medium domes—scan size is 9 µm x 9 µm; c) small 
domes—scan size is 5.5 µm × 5.5 µm. d) Tapping-mode AFM topography of a small dome—scan size is 1.9 µm × 1.9 µm with overlaid height profile.
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behavior of the loading force curve), whereas the signature of 
being in the large pressure regime can be extrapolated by stud-
ying the dependence of k on the internal pressure (see Note S3 
in the Supporting Information).
Figure 3a, which refers to big, medium and small engineered 

domes, validates the condition of being in the small indenta-
tion regime. As sketched in the inset, during a nanoindenta-
tion experiment, a loading force is applied along the normal 
direction after positioning the AFM tip on the top of the dome, 
and force-distance curves are recorded on each selected mem-
brane. The main panel of Figure 3a shows three typical loading 
force curves measured on big (red), medium (orange) and 
small (blue) engineered domes, where the indentation depth δ 
is normalized to the maximum dome height (hmax). A loading 
force as high as 500 nN is applied, and an indentation depth of 
about 8%, 12%, and 17%, is reached for big, medium, and small 
domes, respectively. The black dashed lines represent their 
linear fits, having relative errors (standard error Δβ, divided by 
the slope β) of β

β
∆ = 0.05%, 0.06% and 0.19%. These very small 

values confirm the accuracy of the linear fitting model with 
respect to the experimental behavior. However, a slight increase 
of β

β
∆  is found as the dome’s size shrinks, indicating that the 

nonlinearity arises at lower forces in smaller domes. A similar 
information is derived in Note S4 in the Supporting Informa-
tion by studying the slope of the linear fit of the log-log plot of 
loading force versus indentation depth.

On the other hand, Figure 3b–d compare indentation experi-
ments performed on big (b), medium (c), and small (d) engi-
neered and spontaneous domes (the latter having footprint 
radii close to the three engineered cases, and differing by 1%, 
9% and 16%, respectively), by employing a maximum loading 
force of 100 nN. In the case of spontaneous domes, we avoided 
applying higher loads to prevent potentially irreversible situa-
tions from occurring, such as the splitting and slipping of the 
domes. As shown in Note S5 in the Supporting Information, 
spontaneous domes can move under the AFM solicitation by 
profiting of a local delamination of the top-most layer at the 
unconstrained edge. In this scenario, the presence of the HSQ-
coating, surrounding the engineered domes, guarantees higher 
stability under the external load.

Experimental loading force curves measured on engineered 
and spontaneous domes are plotted in Figure 3b–d as black and 
red dots, respectively. One can notice that 1) engineered domes 
are, in general, stiffer than spontaneous ones (the same loading 
force leads to a higher indentation depth in spontaneous 
domes), pointing toward a lower pressurization in the latter; 
2) in the linear regime, the loading force required to achieve 
a certain indentation increases as the dome size decreases 
(which, given the same elastic properties of the MoS2 mem-
brane, would be qualitatively consistent with an increase of 

H2 pressure as 1
volume

); 3) nonlinearity is easily reached in 

small-size spontaneous domes. The arise of such a nonlinear 

Figure 3. a) Main panel: three typical loading force curves measured on big (red), medium (orange), and small (blue) engineered domes. Black dashed 
lines are their linear fits. Inset: sketch of the AFM nanoindentation experiments; a loading force is applied through the AFM probe on the top of each 
selected pressurized dome. b–d) Main panels: loading force curves acquired on big, medium, and small engineered (black dots) and spontaneous (red 
dots) domes. Insets: Engineered (black) and spontaneous (red) dome’s profiles. d) Blue dashed line: threshold depth between linear and nonlinear 
regime. Green solid line: fit of the loading force curve by Equation (7).
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behavior indicates that, in the investigated case (spontaneous 
dome with h = 69 nm, R = 437 nm, h/R = 0.157), the range of 
indentation depth, achieved by using a loading force of 80 nN 

14%
hmx

δ =




, covers the intermediate regime (between large and  

small indentation). Since the transition region between small and 
large indentation depths is very hard to model analytically, it is a 
common use to fit such an intermediate regime, with a sum of 
the asymptotic models obtained in the small and large indenta-
tion limits. However, Vella et al. have shown that the out-coming 
error can be very large, and further increased as the indenter’s 
size shrinks.[54] In the present study, therefore, we have decided 
to implement a different approach: the loading force curve (red 
dots in Figure 3d) has been fitted (green line) by the combina-
tion of a linear component (FL = kδ) and a nonlinear component 
(FNL = αδω), where the exponent ω is found by the optimization 
of the fitting procedure, both weighted by the Heaviside function 
Θ(δ − δT), with δT being the depth threshold between linear and 
nonlinear regime (blue dashed line in Figure 3d):

1F k kT T T Tδ δ δ δ δ αδ αδ δ δ( )( ) ( )( ) ( ) ( )= − Θ − + − + Θ −ω

 
(7)

Our indentation results indicate that a loading force lower 
than 100 nN is enough to produce a nonlinear response in 
spontaneously generated domes of medium and small size 
(with δT  = 1 − 8 nm), while for the engineered domes the 
behavior is still linear at least up to 500 nN (δT > 20 nm). Such 
results prove that the condition of small indentation into thin 
pressurized elastic shells is more insidious than just δin < t or 
δin ≪ hmax, where δin and t are indentation depth and mem-
brane thickness respectively, but the role of the internal pres-
sure has to be taken into account. It is worth noticing that the 
fitting of force-indentation curves acquired on spontaneous 
domes, by means of Equation (7), gives ω ≈ 1.5, indicating that 
the cubic behavior of F vs δ is never reached in the presented 
experiments, with a maximum loading of 100 nN in sponta-
neous domes and 500 nN in the engineered ones.

A statistical analysis of loading force curves has been carried 
on by performing nano indentation on 110 engineered domes, 
as well as, for comparison, on 9 spontaneous domes, having 
size similar to the engineered ones (due to the randomness in 
the dome’s production process in uncoated flakes, spontaneous 
domes with the same size as the engineered cases are hard to 
be found, thus motivating the difference in the number of sam-
pled membranes). We have thus selected and studied the linear 
regime of the curves relative to each dome to extract an esti-
mate of their internal pressure and of the stretching modulus, 
via the theoretical expressions derived above (Equations  (5) 
and (6)). Half-black scatters and red stars in Figure 4 are rep-
resentative of engineered and spontaneous domes, respectively. 
Moreover, half-black circles, half-black squares and half-black 
diamonds will hereinafter indicate small, medium and big 
curved membranes. Figure  4a shows the behavior of p vs V 
(dome’s volume), as derived by measuring the stiffness k of the 
loading force curve and employing Equation  (5). The internal 
pressure of both engineered and spontaneous domes decreases 
as the dome’s volume increases (more information on 

3

4p vs
h

R
∆   

and versus
4

3p
R

th

h

t
∆ , where t is MoS2 monolayer thickness, are 

reported in Note S6 in the Supporting Information).

The distribution of internal pressure in big, medium and 
small engineered domes mostly ranges between 1.9 − 2.9 MPa, 
3.4 − 4.0 MPa, and 6.5 − 11.7 MPa, respectively. The larger 
dispersion of pressure values in small membranes is fully 

accounted by the stiffer variation of the function 
1

p
V

∝  as 

the volume approaches zero. Moreover, as expected from the 
loading force curve behavior of Figure  3, the pressure meas-
ured in spontaneous domes is generally lower than in the 
engineered ones, ranging from 1.2 to 9.3  MPa, as a function 
of the dome’s volume. Table  1 compares one by one the pres-
sure measured in the engineered and spontaneous domes 
given almost the same footprint radius in the first case, and 
almost the same volume in the second. In both comparisons, 
engineered membranes support higher internal pressure. 
Given the same volume, Table  2 lists the number N of mole-
cules inside each dome (and the relative moles n) as calculated 
by employing the van der Waals equation for the real gases  

2

P a
n

V

V

n
b RT+ 













 −



 = , where 0.2419

atm
mol

2

2a
L=  and 0.02651

mol
b

L=   

are the van der Waals constants for H2 gas,[65] 0.0821
atm
mol

R
L

K
=   

and N = nNA (NA = 6.022 × 1023 is the Avogadro number). The 
correction to N (or n), coming from using the van der Waals 
equation rather than the ideal gas law, is less than 10%, given 
the low compressibility of H2 gas.

Figure  4b shows the results of the analysis of the linear 
component of the loading force curves in terms of 2D and 3D 
Young’s modulus, E2D (left scale) and 2Y

E

t
D=  (right scale—

where t  = 0.65 nm is the monolayer thickness), respectively. 
Here, the yellow patterned region highlights the range of 
Young’s modulus values reported in literature [27,41,42,64] for 
MoS2 monolayers produced by using different approaches. Our 
results fully lie in the expected range. It is worth noticing that 
only small size domes exhibit occurrences of lower E2D (Y), 
both in the engineered and spontaneous cases. We infer that 
such a result can be affected by the finite size of the indenter. 
Indeed, even with the smallest tip used (Rtip ≈ 40 nm), the ratio 

tipR

R
 on the smallest domes is ≈0.1, leading to some spurious 

effects, such as an enhanced probability of off-center indenta-
tion, with consequent asymmetric tip-dome contact area during 
the loading procedure. Besides such a side effect, the scattering 
of E2D (Y) values can be likely attributed to the sampling of dif-
ferent flakes, which may intrinsically have slightly different 
stretching moduli, due for example to the (random) density of 
defects created during the mechanical exfoliation.

In the main panel of Figure  4c we evaluate the 2D and 3D 
in-plane stress of the bulged MoS2 membranes, as 

2
2

2pR

h
Dσ =   

(from the Young-Laplace law) and 3
2

t
D

Dσ σ= , respectively. The 
blue dashed line identifies the maximum stress supported by 
the MoS2 membrane before rupture ( 15.5

N
m

, 23.8 GPa2 3D Dσ σ= = ), 

as predicted by first-principle calculations.[26] All our domes lie 
beneath this threshold, with the engineered membranes being 
almost at the stress limit. Moreover, the inset of Figure 4c shows 
the MoS2 membrane strain, as evaluated by using .2

2E
D

D

ε σ=  In 
agreement with,[40] all the spontaneous domes have almost 
the same ε, whereas overall the engineered domes support an 
higher strain. It is worth mentioning that when σ approaches 
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the critical value (as in the engineered case), the stress–strain 
relationship is no longer linear, and the expression 2

2E
D

D

ε σ=  can 

only give an approximative estimate of ε. As a matter of fact, 

the strain measured here reached slightly higher values than 
those estimated via theoretical models (such as Hencky’s model 
[66] and finite element method calculations [39–40]): spontaneous 
domes support an average strain of (4.8 ± 1.2)%, to be compared 
to an expected value of 3.5 − 4.7%, whereas a strain in the range 
6% − 13%, 8% − 12% and 6.4% − 11.5% is measured in small, 

Figure 4. a) Main plot: H2 pressure versus dome’s volume for engineered (half-black scatters) and spontaneous (red stars) domes. Black and red 
dashed lines work as a guide for the eye to follow the behavior of p versus V. b) Stretching modulus E2D versus dome’s volume for engineered (half-black 
scatters) and spontaneous (red stars) domes. The yellow area highlights the range of E2D values reported in literature for MoS2 monolayer.[27,41,42,64] c) 
Main plot: stress versus dome’s volume for engineered (half-black scatters) and spontaneous (red stars) domes. Blue dashed line: critical stress value 
at the failure point.[26,27] Inset: strain versus dome’s volume for engineered (half-black scatters) and spontaneous (red stars) domes. Green dashed 

line: Griffith’s strain limit 
Y

1

9
maxσ ≈ . Blue dashed line: MoS2 strain limit 1

8
max

Y

σ ≈ . d) Adhesion energy versus dome’s volume for engineered (half-black 

scatters) and spontaneous (red stars) domes.

Table 1. Comparison of internal pressure between engineered and 
spontaneous domes with similar footprint radius (first raw) and similar 
volume (second raw).

Engineered Spontaneous

Radius [µm] Pressure [MPa] Radius [µm] Pressure [MPa]

Big 2.1 2.4 2.2 1.4

Medium 1.04 4.1 0.9 2.8

Small 0.47 9.1 0.43 4.4

Volume [µm3] Pressure [MPa] Volume [µm3] Pressure [MPa]

Big 2.2 2.4 2.2 1.1

Medium 0.9 3.8 0.9 0.9

Small 0.047 7.4 0.047 3.3

Table 2. Number of particles (and moles) per each size engineered and 
spontaneous dome, calculated by employing the van der Waals equation 
for real gases.

Engineered Spontaneous

Big 1.3 × 109 5.8 × 108

2.1 × 10−15 mol 9.6 × 10−16 mol

Medium 8.0 × 108 1.9 × 108

1.3 × 10−15 mol 3.2 × 10−16 mol

Small 8.0 × 107 3.7 × 107

1.3 × 10−16 mol 6.1 × 10−17 mol
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medium and big domes, to be compared to expected values of 
5 − 11%, 5 − 8% and 5 − 7%, respectively. A slight over-estimate 
of the membrane strain is fully expected when using the AFM 
loading experiments as a measurement technique. Indeed, the 
nanoindentation itself introduces an additional local strain, 

decreasing as 1 2/3

r






 from the loading point at r = 0.[47,67] With 

a maximum applied load Fmax  = 100 nN, the strain imposed 
by a spherical probe indenting a linearly elastic membrane is 

4 2

F

E R
AFM

max

D tip

ε
π

= ,[27] that in our case results in εAFM = 2% − 5%, 

depending on stretching modulus value and on the tip used. 
Even though the linearly elastic regime is strictly guaranteed 
only in the case of spontaneous domes—given the value of 
the membrane stress—this amount, added to the pre-existing 
strain of the membrane, accounts for an over-estimate of the 
measured ε. Finally, green and blue dashed lines in the inset 
represent the Griffith ideal strength limit 1

9Y
maxσ ≈





—the max-

imum stress any material is predicted to withstand, given its  
Y—and the DFT expectation for single-layer MoS2, 

1
8Y

maxσ ≈ ,[28] 

further confirming that engineered domes are close to the limit 
of the supported stress/strain.

Within the framework of the membrane model, the simulta-
neous knowledge of the equilibrium dome’s size (radius R and 
height h) and the stretching modulus (E2D) leads to the esti-

mate of the MoS2 adhesion energy: 2
4

4

E h

R
D

ϕ
Γ = .[52,53] The constant 

pre-factor ϕ, which relates the aspect ratio of the domes (or 
ultimately the strain of the membrane) to the ratio of adhesion 
energy to stretching modulus, has been shown to assume dif-
ferent values depending on the coupling between the material 

and substrate, in the two opposite limits of strong 24(1 )

5(7 )
ϕ ν

ν
=

−
−







 

and weak 6
5

ϕ =



  shear.[53] In a typical modelling of blisters in 

2D materials, the blister’s edges are always assumed to be fully 
clamped (strong shear) due to the adhesion with the supporting 
substrate outside the boundary. This assumption may be some-
times quite far from reality, indeed the atomically smooth sur-
faces of 2D materials make interfacial sliding particularly easy, 
giving rise to the phenomenon of superlubrification (near-zero 
friction) when a 2D material sits on atomically flat substrates, 
including itself (weak shear).[68] Note S7 in the Supporting 
Information provides the evidence, based on Raman results, 
that a strong-shear coupling sets up both in spontaneus and 
engineered domes. In Figure  4d we show the values of Γ for 
each investigated dome. Interestingly, the adhesion energy in 
spontaneous domes ranges between Γsp = 7.6 − 22 meV/Å2, very 
close to previous experimental results,[29,57,69] and to the values 
theoretically predicted in.[70] It’s worth noticing that the excel-
lent agreement between the adhesion energy estimated here 
and in [29] is consistent with the investigation of domes with 

the same aspect ratio 0.16
h

R
≈





. On the other hand, higher 

values of Γeng are recorded in engineered domes, with a fur-
ther increasing trend when the dome’s size shrinks. The value 
of Γeng in big and medium membranes ranges almost in the 
same interval 20 − 40 meV/Å2 (with only few outliers at lower 
and higher values), whereas a continuous distribution of Γeng, 

between 28− 73 meV/Å2, is measured in small domes. In gen-
eral, the relationship between adhesion energy Γ,  exfoliation 
energy Γex, and surface energy Γsurf is Γex ≈ Γ ≈ 2Γsurf.[70] Such 
a relation fully describes the spontaneous case, Γsp, whereas, 
in the enginereed case, the patterning contributes to an “effec-
tive” adhesion energy, Γeng. The value of Γeng is thus not only 
affected by the MoS2-MoS2 surface energy but also by the pres-
ence of the superimposed HSQ mask as well as by the size of 
the openings. Indeed, the presence of the mask translates into 

the formation of domes with aspect ratios 
h

R
 exceeding the 

universal value, and spanning over a wide range, in between 
0.15 and 0.31,[40] thus resulting in an “effective” Γeng, higher 
than Γsp, given the same Γsurf. The superimposed mask on one 
side allows the exfoliation to happen only in specific locations,  
i.e., the openings in the HSQ-layer, and on the other side acts 
as a spatial constraint against the exfoliation of the MoS2 mono-
layer toward the formation of the spherical membrane. In this 
framework, reducing the portion of surface area participating 
in the hydrogen production process (by reducing the size of the 
opening), increases the effect of the clamped boundary against 
the lift-up of the topmost MoS2 layer.

3. Conclusion

In this paper we have demonstrated an innovative approach for 
measuring the internal pressure, stretching modulus, mem-
brane stress/strain, and adhesion energy of 2D material blis-
ters, by performing AFM nanoindentation experiments and by 
interpreting the results in the membrane limit of the Föppl–
von Karman equation.[53,54] We tested H2-filled MoS2 domes 
produced by the local exfoliation of the topmost S-Mo-S layers, 
due to low-energy proton irradiation of bulk flakes. We com-
pared the properties of MoS2 domes in two different cases:  
1) spontaneous generation (random spatial distribution of 
domes of random size); 2) engineered creation, i.e., spatially 
controlled nucleation (uniform distribution of the dome’s size 
within a regular pattern) for three pattern periodicities and 
opening sizes. This second method has been optimized on 
purpose to create structures with remarkably different charac-
teristics, such as higher internal pressure and fully clamped 
boundaries. Our AFM experiments, supported by theoretical 
models,[53,54] have led to the quantification of the H2 pressure 
inside each selected membrane, confirming that the engineered 
domes are subjected to higher pressurization, compared to 
the spontaneous ones, as expected by their higher aspect ratio 
(or strain), as also discussed elsewhere.[40] Moreover, we have 
shown that the inner pressure further increases by reducing 
the dome’s volume. We believe that the exact knowledge of H2 
pressure (or ultimately the knowledge of the number of gas 
moles confined in the domes), together with the possibility of 
fabricating a controlled distribution of equally sized domes, 
can have a strong impact in the field of hydrogen storage and 
extraction, for applications requiring the on-demand release of 
well-known, extremely small amounts of hydrogen gas.

Moreover, from the indentation experiments we were able to 
evaluate the stretching modulus of MoS2 as E2D  = (150 ± 36)
N/m, which can be converted into the 3D Young’s modulus 
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value by dividing E2D by the interlayer distance (0.65  nm), 
resulting in: Y = (231 ± 55) GPa, in good agreement with previ-
ously reported values.[27,41,42,64]

Furthermore, we have used the Young-Laplace law to evaluate 
the in-plane stress of the bulged membranes, and their relative 
strain. Our results indicate that 1. engineered domes always 
support higher stress/strain, compared to the spontaneous 
case, and 2. stress/strain values in engineered membranes, fur-
ther strained by the nanoindentation procedure, are close to the 
breaking point. This remarkable result suggests the engineered 
formation of domes via proton-irradiation to be an ideal method 
for subjecting 2D materials to extremely high strains.

Finally, we have evaluated the adhesion energy (or exfoliation 
energy, i.e., the cost of removing a single layer from the surface 
of the bulk compound) in the limit of clamped and fully bonded 
interface (strong shear). Our results indicate an increase of the 
effective exfoliation energy when MoS2 flakes are coated by the 
HSQ layer. Moreover, the exfoliation energy is shown to be fur-
ther enhanced when the opening size shrinks, interpreted as a 
consequence of the higher resistance of the clamped boundary 
against the delamination of topmost MoS2 layers.

4. Experimental Section
Sample Preparation and Proton Irradiation: Thick MoS2 flakes 

(hundreds of layers) were first mechanically exfoliated onto Si/SiO2 
substrates. Part of the substrates was then coated with HSQ masks and 
subjected to electron beam lithography, as detailed in the next section. 
With this procedure, both coated and uncoated flakes were present on 
a same sample. The samples were subsequently ion-irradiated with a 
Kaufman source.[39] To perform irradiation, the sample was mounted 
on a metallic holder so as to be grounded. The holder was placed into 
a vacuum chamber, which was brought to a base pressure <1 × 10−6 
mbar, and the temperature was raised to a value in the range 120–150°C. 
Hydrogen ions were obtained in an ionization chamber and accelerated 
by a system of grids, thus irradiating the sample with a ion beam with 
energy in the range 10–20 eV. The samples were irradiated with a total 
dose in the range 6− 7 × 1016 protons/cm2.

Electron-Beam Lithography Patterning: The engineered formation 
of MoS2 domes was achieved via the fabrication of H-opaque masks, 
treated by means of electron-beam lithography (EBL, Vistec EPBG 5HR 
system working at 100 kV). The engineering procedure was as follows:[39] 
a hydrogen silesquioxane (HSQ) negative-tone e-beam resist was spun 
onto the sample surface. EBL was then performed to get octagonal 
openings of predetermined dimensions and with the desired ordering 
on the HSQ layer. An electron dose of 300 µC cm−2 and an aqueous 
development solution of tetramethyl ammonium hydroxide at 2.4% were 
used for the patterning of the HSQ masks. In order to make the resist 
act as a constraint during the dome formation process, a resist thickness 
≥50 nm was employed. Moreover, being the HSQ a negative-tone resist, 
only the area irradiated with the electron beam was subjected to a 
hardening during the EBL process. As a consequence, only the electron-
irradiated area finally remains on the sample, as the unexposed HSQ 
dissolves in the developer.

Atomic Force Microscopy Measurements: AFM images have been 
acquired by using a JPK Nanowizard III, equipped with Vortex electronics, 
in the standard tapping mode technique, by using a LTESP Si probe 
(from Bruker). The measurement of the elastic properties has been 
achieved by exerting a loading force of 80–500 nN at the center of the 
pressurized membrane to perform nanoindentation AFM experiments. 
The indentation depth δ was determined as δ  =  Δzpiezo  −  Δztip, where 
Δzpiezo was the displacement of the AFM piezotube and Δztip was the 
deflection of the cantilever, measured by the photodiode. In order to 

preserve the tip’s shape and size, the cantilever characterization has 
been carried out, prior to performing the indentation, by employing the 
contact-free method,[72] which does not require preceding force-distance 
curve acquisition on a hard material to determine cantilever sensitivity, 
although it only applies to rectangular cantilevers. The knowledge of the 
cantilever’s geometrical dimensions (length and width) as well as of the 
physical properties of the environment/medium (density and viscosity) 
where the measurements are performed is mandatory to derive reliable 
values of the spring constant s and deflection sensitivity δc, besides 
resonance frequency f0 and quality factor, by employing thermal noise 
measurement. The presented experiments have been performed at 
room temperature under ambient conditions (density ≈ 1.185 kg m−3 
and viscosity ≈ 18.37 µPa x sec)  and by using rectangular cantilevers of 
225 µm in length and 35 µm in width, having in average δc ≈ 40 nm/V 
and s  ≈ 50 N/m. s and δc have been tested afterward, by employing 
the standard contact-based method at the end of each measurement 
run, on a hard substrate (e.g., Si/SiO2), confirming the results of the 
contact-free procedure. The curvature radius of the used probes has 
been tested before and after each indentation experiment, through the 
topographic imaging of a sharp step of known height a,[73] resulting in 
40 − 100 nm. A single atomic step of freshly cleaved muscovite mica or 
highly oriented pyrolytic graphite (HOPG) was chosen to be imaged and 
Rtip was extracted from its observed width w, which was caused by the 
convolution with the finite probe, R a w

atip 2

2 2
= + . This procedure was tested 

on several new tips of distinct size, ranging from tens to hundreds of 
nm, and a high consistence was found between the measure of Rtip and 
the values declared by the factory.

Such values of Rtip, compared to the indentation depth, in the small 
indentation regime (δ  ≤ 10 nm), ensure a negligible change in contact 
area during the indentation procedure ( A A

A
c c

c
5%

∗ − < , where A Rc tip
2π=  and 

A Rc tip( ) ( )2 2δ π δ∗ = + ).
All the data were analyzed by using WsXM, Scanning Probe Image 

Processor (SPIP), Origin and Mathematica.
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