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1 Introduction

The purpose of these notes is to provide an overview of some aspects of optimal and robust
control theory considered relevant to quantum control. The notes begin with classical
deterministic optimal control, move through classical stochastic and robust control, and
conclude with quantum feedback control. Optimal control theory is a systematic approach
to controller design whereby the desired performance objectives are encoded in a cost
function, which is subsequently optimized to determine the desired controller. Robust
control theory aims to enhance the robustness (ability to withstand, to some extent,
uncertainty, errors, etc) of controller designs by explicitly including uncertainty models
in the design process. Some of the material is in continuous time, while other material
is written in discrete time. There are two underlying and universal themes in the notes:
dynamic programming and filtering.

Dynamic programming is one of the two fundamental tools of optimal control, the other
being Pontryagin’s principle, [24]. Dynamic programming is a means by which candidate
optimal controls can be verified optimal. The procedure is to find a suitable solution to
a dynamic programming equation (DPE), which encodes the optimal performance, and to
use it to compare the performance of a candidate optimal control. Candidate controls
may be determined from Pontryagin’s principle, or directly from the solution to the DPE.
In general it is difficult to solve DPEs. Explicit solutions exist in cases like the linear
quadratic regulator, but in general approximations must usually be sought. In addition,
there are some technical complications regarding the DPE. In continuous time, the DPE
is a nonlinear PDE, commonly called the Hamilton-Jacobi-Bellman (HJB) equation. The
complications concern differentiability, or lackthereof, and occur even in “simple” classical
deterministic problems, section 2. This is one reason it can be helpful to work in discrete
time, where such regularity issues are much simpler (another reason for working in discrete
time is to facilitate digital implementation).
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Filtering concerns the processing of measurement information. In optimal control,
filters are used to represent information about the system and control problem of interest.
In general, this information is incomplete, i.e. the state is typically not fully accessible,
and may be corrupted by noise. To solve optimal control problems in these situations,
the cost function is expressed in terms of the state of a suitably chosen filter, which is
often called an information state. Dynamic programming can then be applied using the
information state dynamics. The nature of the measurements and the purpose for which
the data is to be used determine the architecture of the filter. In stochastic situations,
this is closely linked to the probabilistic concept of conditional expectation. The famous
Kalman filter computes dynamically conditional expectations (of states given measure-
ments in linear gaussian models), which are also optimal estimates in the mean square
error sense. The quantum Belavkin filter, or stochastic master equation, also computes
a quantum version of conditional expectation. In linear gaussian cases, the information
states are gaussian, a fact which considerably simplifies matters due to the finite num-
ber of parameters. Filters such as these based on computing conditional expectations of
states or system variables do not include any information about the cost or performance
objective. While this is not an issue for many problems such as LQG, where the task
of estimation can be completely decoupled from that of control [17], there are important
problems where the filter dynamics must be modified to take into account the control
objective. These problems include LEQG [48, 49] or risk-sensitive control [8, 37], and H∞

robust control [19, 54].
Figure 1 shows a physical system being controlled in a feedback loop. The so-called

separation structure of the controller is shown. The control values are computed in the box
marked “control”, using a function of the information state determined using dynamic
programming. The information state, as has been mentioned, is the state of the filter
whose dynamics are built into the box marked “filter”. This structure embodies the two
themes of these notes.

�

-

�filter

physical system
u y

control

feedback controller

input output

Figure 1: Feedback controller showing the separation structure.

These notes were assembled from various lecture notes and research papers, and so we
apologize for the inevitable inconsistencies that resulted.

4



2 Deterministic Dynamic Programming and Viscos-

ity Solutions

References for this section include [24], [25], [3], [15].

2.1 Introduction

2.1.1 Preamble

Hamilton-Jacobi (HJ) equations are nonlinear first-order partial differential equations of
the form

F (x, V (x),∇V (x)) = 0 (1)

(one can also consider second-order equations but we do not do so here). V (x) (x ∈ Ω ⊂
Rn) is the unknown function to be solved for, and ∇V (x) = (∂V (x)

∂x1
, . . . , ∂V (x)

∂xn
) denotes

the gradient. F (x, v, λ) is a nonlinear function.
HJ equations have a long history, dating back at least to the calculus of variations

of the 19th century, and HJ equations find wide application in science, engineering, etc.
Perhaps surprisingly, it was only relatively recently that a satisfactory general notion
of solutions for (1) became available, with the introduction of the concept of viscosity
solution (Crandall-Lions, c. 1980). The difficulty, of course, is that solutions are not in
general globally smooth (e.g. C1). Solutions are often smooth in certain regions, in which
the famous method of characteristics may be used to construct solutions. There are a
number of other notions of solution available, such as encountered in non-smooth analysis
(e.g. proximal solution), though we will not discuss them here.

In Engineering our principal interest in HJ equations lies in their connection with
optimal control (and games) via the dynamic programming methodology. The value func-
tion is a solution to an HJ equation, and solutions of HJ equations can be used to test
a controller for optimality, or perhaps to construct a feedback controller. In these notes
we discuss dynamic programming and viscosity solutions in the context of two examples,
and make some mention of the general theory.

2.1.2 Optimal Control

As a first and perhaps familiar example (e.g. LQR), let’s consider a finite time horizon
optimal control problem defined on a time interval [t0, t1]:

J∗(t0, x0) = inf
u(·)

J(t0, x0, u(·)) (2)

Here, x0 is the initial state at time t0, and u(·) is the control; J(t0, x0, u(·)) represent the
associated cost.

To be specific, and to prepare us for dynamic programming, suppose one wants to
minimize the cost functional

J(t, x;u(·)) =

∫ t1

t

L(x(s), u(s)) ds+ ψ(x(t1)), (3)
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where x(·) is the solution of the initial value problem
ẋ(s) = f(x(s), u(s)), t ≤ s ≤ t1,

x(t) = x.
(4)

Here, t ∈ [t0, t1] is a “variable” initial time, u(·) is a control defined on [t, t1] taking values
in, say, U ⊂ Rm (U closed), and x(·) is the state trajectory in Rn. We denote by Ut,t1 a
space of admissible controls, containing at least the piecewise continuous controls.

The value function is defined by

V (t, x) = inf
u(·)∈Ut,t1

J(t, x;u(·)) (5)

for (t, x) ∈ [t0, t1] × Rn. The dynamic programming principle states that for every r ∈
[t, t1],

V (t, x) = inf
u(·)∈Ut,r

[∫ r

t

L(x(s), u(s)) ds+ V (r, x(r))

]
(6)

(we will prove this later on). From this, one can derive formally the equation

∂

∂t
V (t, x) +H(x,∇xV (t, x)) = 0 in (t0, t1)×Rn, (7)

with terminal data
V (t1, x) = ψ(x) in Rn. (8)

Here, the Hamiltonian is given by

H(x, λ) = inf
v∈U

{λ · f(x, v) + L(x, v)} (9)

The nonlinear first order PDE (7) is the dynamic programming PDE or Hamilton-Jacobi-
Bellman (HJB) equation. The pair (7), (8) specify what is called a Cauchy problem, and
can be viewed as a special case of (1) together with suitable boundary conditions, using
Ω = (t0, t1) ×Rn. Notice that the Hamiltonian (9) is concave in the variable λ (since it
is the infimum of linear functions).

Let us see how (7) is obtained. Set r = t+ h, h > 0, and rearrange (6) to yield

inf
u(·)

[
1

h
(V (t+ h, x(t+ h))− V (t, x)) +

1

h

∫ t+h

t

L(x(s), u(s)) ds

]
= 0.

If V and u(·) are sufficiently smooth, then

1

h
(V (t+ h, x(t+ h))− V (t, x)) → ∂

∂t
V (x, t) +∇xV (x, t) · f(x, u(t)) as h→ 0

and
1

h

∫ t+h

t

L(x(s), u(s)) ds→ L(x, u(t)) as h→ 0.
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Combining these displays one is formally led to (7). A proof of (7) when V is sufficiently
smooth requires a careful derivation of two inequalities which combine to give (7). Below
we will prove that V is a viscosity solution of (7); in fact, the unique one satisfying the
terminal condition (8).

Verification. Let Ṽ (t, x) be a C1 solution of (7), (8). Let u(·) ∈ Ut1,t1 be any control.
Then using (7)

d
dt
Ṽ (t, x(t)) = ∂

∂t
Ṽ (t, x(t)) +∇Ṽ (t, x(t))ẋ(t)

= ∂
∂t
Ṽ (t, x(t)) +∇Ṽ (t, x(t))f(x(t), u(t))

≥ −L(x(t), u(t))

Integrating, we get

Ṽ (t1, x(t1))− Ṽ (t0, x0) ≥ −
∫ t1

t0

L(x(t), u(t))dt

or
Ṽ (t0, x0) ≤

∫ t1
t0
L(x(t), u(t))dt+ Ṽ (t1, x(t1))

=
∫ t1

t0
L(x(t), u(t))dt+ ψ(x(t1))

using (8). This shows that Ṽ (t0, x0) ≤ V (t0, x0) (V is the value function defined by (5)).
Now this same calculation for the control u(·) = u∗(·) ∈ Ut0,t1 satisfying

u∗(t) ∈ argmin
v∈U

{
∇xṼ (t, x∗(t)) · f(x∗(t), v) + L(x∗(t), v)

}
, (10)

for t ∈ [t1, t1], where x∗(·) is the corresponding state trajectory, gives

Ṽ (t0, x0) =

∫ t1

t0

L(x∗(t), u∗(t))dt+ ψ(x∗(t1))

showing that in fact u∗ is optimal and Ṽ (t0, x0) = V (t0, x0). Indeed we have Ṽ = V in
[t0, t1] × Rn by this arguement, and so we have shown that any smooth solution to (7),
(8) must equal the value function - this is a uniqueness result. Unfortuneatly, in general
there may be no such smooth solutions.

Optimal feedback. The above calculations suggest how one might obtain an optimal
feedback controller. To simplify a bit, suppose that

U = Rm, f(x, u) = f(x) + g(x)u, L(x, u) = `(x) + 1
2
|u|2.

Then evaluating the infimum in (9) gives

u∗ = −g(x)′λ′

and
H(x, λ) = λf(x)− 1

2
λg(x)g(x)′λ′ + `(x).
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Hence the HJB equation can be written as

∂

∂t
V +∇V f − 1

2
∇V gg′∇V ′ + ` = 0 (11)

with optimal feedback controller

u∗(t, x) = −g(x)′∇V (t, x)′. (12)

This means that the optimal control u∗(·) ∈ U is given by

u∗(t) = u∗(t, x∗(t)), t0 ≤ t ≤ t1.

Of course, this makes sense only when V is sufficiently smooth.
The equation (11) is sometimes refered to as a nonlinear Riccati equation.
LQR. Take

U = Rm, f(x, u) = Ax+Bu, L(x, u) = 1
2
|x|2 + 1

2
|u|2, ψ(x) = 1

2
x′Ψx.

As a trial solution of (11) we use

Ṽ (t, x) = 1
2
x′P (t)x,

where P (t) ≥ 0 (symmetric) is to be determined. Now

∂

∂t
Ṽ (t, x) = 1

2
x′Ṗ (t)x, and ∇V (t, x) = x′P (t).

Plugging these into (11) gives

1
2
x′Ṗ (t)x+ x′P (t)Ax− 1

2
x′P (t)BB′P (t)x+ 1

2
x′x = 0.

Since this holds for all x ∈ Rn we must have

Ṗ (t) + A′P (t) + P (t)A− P (t)BB′P (t) + I = 0. (13)

At time t = t1 we have Ṽ (t1, x) = 1
2
x′Ψx, and so

P (t1) = Ψ. (14)

Therefore if there exists a C1 solution P (t) to the Riccati differential equation (13) on
[t0, t1] with terminal condition (14) we obtain a smooth solution 1

2
x′P (t)x to (7), (8), and

as argued above the value function for the LQR problem is given by

V (t, x) = 1
2
x′P (t)x. (15)

The optimal feedback controller is given by

u∗(t, x) = −B′P (t)x. (16)

This gives the optimal control u∗(·) ∈ U :

u∗(t) = −B′P (t)x∗(t), t0 ≤ t ≤ t1. (17)

8



2.1.3 Distance Function

As another example, we consider the distance function d(x, ∂Ω) to the boundary ∂Ω of
an open, bounded set Ω ⊂ Rn. In some ways the HJ equation for this function is simpler
than that of the optimal control problem described above, and we can more easily explain
viscosity solutions and issues of uniqueness, etc, in this context.

The distance function is defined by

d(x, ∂Ω) = inf
y∈∂Ω

|x− y|. (18)

Note that the infimum here is always attained, not necessarily uniquely, since ∂Ω is
compact and y 7→ |x− y| is continuous; denote by π(x) ⊂ ∂Ω the set of minimizing y.

We write
V (x) = d(x, ∂Ω) (19)

for simplicity, and consider V (x) as a function on the closed set Ω. It can be verified that
V (x) is a non-negative Lipschitz continuous function. In fact, we shall see that V is the
unique continuous viscosity solution of

|∇V | − 1 = 0 in Ω (20)

satisfying the boundary condition

V = 0 on ∂Ω. (21)

Equations (20) and (21) constitute a Dirichlet problem.

Example 2.1 Ω = (−1, 1) ⊂ R1. Here, ∂Ω = {−1, 1} and Ω = [−1, 1]. Then

V (x) =

{
1 + x if − 1 ≤ x ≤ 0
1− x if 0 ≤ x ≤ 1

which is Lipschitz continuous, and differentiable except at x = 0. At each point x 6= 0
V solves the HJ equation (20), and V satisfies the boundary condition (21) (V (−1) =
v(1) = 0), see Figure 2. Note that π(x) = −1 for −1 ≤ x < 0, π(x) = 1 for 0 < x ≤ 1,
and π(0) = {−1, 1}. The Lipschitz function V1(x) = |x| − 1 also satisfies (20) a.e. and
(21); there are many other such functions.

Dynamic programming. The distance function satisfies a simple version of the
dynamic programming principle: for any r > 0 we have

V (x) = inf
|x−z|<r

{|x− z|+ V (z)}. (22)

We will use this later to show that V is a viscosity solution of (20), but for now we discuss
and derive (22).

9



V

V_1

-1 1

Figure 2: Distance function V and another Lipschitz solution V1.

Fix x ∈ Ω and r > 0, and let |x − z| < r. Choose y∗(z) ∈ π(z), so that V (z) =
|z − y∗(z)|. Then

V (x) ≤ |x− y∗(z)|
≤ |x− z|+ |z − y∗(z)|
= |x− z|+ V (z).

Since this holds for all |x− z| < r we have

V (x) ≤ inf
|x−z|<r

{|x− z|+ V (z)}.

To see that equality holds, simply take z = x. Thus establishes (22). Note that there are
many minimizers z∗ for the RHS of (22), viz. segments of the lines joining x to points in
π(x).

2.1.4 Viscosity Solutions

We turn now to the concept of viscosity solution for the HJ equation (1). The terminology
comes from the vanishing viscosity method, which finds a solution V of (1) as a limit
V ε → V of solutions to

−ε
2
∆V ε(x) + F (x, V ε(x),∇V ε(x)) = 0 (23)

The Laplacian term ε
2
∆V ε = ε

2

∑n
i=1

∂2

∂x2
i
V ε can be used to model fluid viscosity. The

definition below is quite independent of this limiting construction, and is closely related
to dynamic programming; however, the definition applies also to equations that do not
necessarily correspond to optimal control.

10



A function V ∈ C(Ω) is a viscosity subsolution of (1) if, for any φ ∈ C1(Ω) and any
local maximum x0 ∈ Ω of V − φ we have

F (x0, V (x0),∇φ(x0)) ≤ 0 (24)

A function V ∈ C(Ω) is a viscosity supersolution of (1) if, for any φ ∈ C1(Ω) and any
local minimum x0 ∈ Ω of V − φ we have

F (x0, V (x0),∇φ(x0)) ≥ 0 (25)

A function V ∈ C(Ω) is a viscosity solution of (1) if it is both a subsolution and a
supersolution.

This definition may at first sight appear strange, though in practice it is often easy to
use. Note that derivatives in (24) and (25) appear only on the smooth function φ. There
are a number of equivalent formulations, and the key point is that the definitions relate
sub- or superdifferentials (of functions which need not be differentiable) to inequalities
associated with the HJ equation.

The superdifferential of a function V ∈ C(Ω) is defined by

D+V (x) = {λ ∈ Rn : lim sup
y→x, y∈Ω

V (y)− V (x)− λ(y − x)

|x− y|
≤ 0} (26)

The subdifferential of a function V ∈ C(Ω) is defined by

D−V (x) = {λ ∈ Rn : lim inf
y→x, y∈Ω

V (y)− V (x)− λ(y − x)

|x− y|
≥ 0} (27)

If V ∈ C1(Ω) then D+V (x) = D−V (x) = {∇V (x)}. In general, λ ∈ D+V (x) iff
there exists φ ∈ C1(Ω) such that ∇φ(x) = λ and V − φ has a local maximum at x; and
λ ∈ D−V (x) iff there exists φ ∈ C1(Ω) such that ∇φ(x) = λ and V − φ has a local
minimum at x.

Therefore the viscosity definition is equivalently characterized by

F (x, V (x), λ) ≤ 0 ∀ λ ∈ D+V (x) (28)

and
F (x, V (x), λ) ≥ 0 ∀ λ ∈ D−V (x) (29)

Example 2.2 Continuing with Example 2.1, we see that

D+V (x) = D−V (x) =

{
{1} if − 1 < x < 0

{−1} if 0 < x < 1
D+V (0) = [−1, 1],
D−V (0) = ∅.

(30)

Consequently V is a viscosity solution of (20).
However, the function V1 is not is viscosity solution, since 0 ∈ D−V1(0) = [−1, 1], and

|0| − 1 6≥ 0.
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Properties. Some properties of viscosity solutions:

1. (Consistency.) If V ∈ C(Ω) is a viscosity solution of (1), then for any point x ∈ Ω
at which V is differentiable we have

F (x, V (x),∇V (x)) = 0.

2. If V is locally Lipschitz continuous in Ω, then

F (x, V (x),∇V (x)) = 0 a.e. in Ω.

3. (Stability.) Let V N ∈ C(Ω) (N ≥ 0) be viscosity solutions of

FN(x, V N(x),∇V N(x)) = 0 in Ω,

and assume V N → V locally uniformly in Ω, and FN → F locally uniformly in
Ω×R×Rn, as N →∞. Then V ∈ C(Ω) is a viscosity solution of (1).

4. (Monotonic change of variable.) Let V ∈ C(Ω) be a viscosity solution of (1) and
Ψ ∈ C1(R) be such that Φ′(t) > 0. Then W = Φ(V ) is a viscosity solution of

F (x,Ψ(W (x)),Ψ′(W (x))∇W (x)) = 0 (31)

where Ψ = Φ−1.

2.2 Value Functions are Viscosity Solutions

2.2.1 The Distance Function is a Viscosity Solution

We showed in Example 2.2 that in the specific case at hand the distance function is a
viscosity solution. Let’s now consider the general case. We use the dynamic programming
principle (22) to illustrate a general methodology.

Subsolution property. Let φ ∈ C1(Ω) and suppose that V −φ attains a local maximum
at x0 ∈ Ω; so there exists r > 0 such that the ball B(x0, r) ⊂ Ω and

V (x)− φ(x) ≤ V (x0)− φ(x0) ∀ x ∈ B(x0, r). (32)

We want to show that
|∇φ(x0)| − 1 ≤ 0. (33)

Let h ∈ Rn, and set x = x0 + th. Then for t > 0 sufficiently small x ∈ B(x0, r), and
so from (32),

−(φ(x0 + th)− φ(x0)) ≤ −(V (x0 + th)− V (x0)) (34)

Now from the dynamic programming principle (22) we have

V (x0) ≤ t|h|+ V (x0 + th) (35)

12



Combining (34) and (35) we find that

−(φ(x0 + th)− φ(x0)) ≤ t|h|, (36)

and so

−(
φ(x0 + th)− φ(x0)

t|h|
)− 1 ≤ 0 (37)

Send t ↓ 0 to obtain

− 1

|h|
∇φ(x0)h− 1 ≤ 0. (38)

Since h ∈ Rn is arbitrary we obtain (32) as required. This proves that V is a viscosity
subsolution.

Supersolution property. Let φ ∈ C1(Ω) and suppose that V −φ attains a local minimum
at x0 ∈ Ω; so there exists r > 0 such that the ball B(x0, r) ⊂ Ω and

V (x)− φ(x) ≥ V (x0)− φ(x0) ∀ x ∈ B(x0, r). (39)

We want to show that
|∇φ(x0)| − 1 ≥ 0. (40)

Suppose that (40) is false, so that

|∇φ(x0)| − 1 ≤ −α < 0 (41)

for some 1 > α > 0. By making r > 0 smaller if necessary, we may assume

|∇φ(x)| − 1 ≤ −α/2 < 0 ∀ x ∈ B(x0, r). (42)

By the fundamental theorem of calculus, we have

φ(x) = φ(x0) +

∫ 1

0

∇φ(γx+ (1− γ)x0)(x− x0)dγ (43)

Now from the dynamic programming relation (22), pick z∗ ∈ B(x0, r), z
∗ 6= x0, such

that
V (x0) = |x0 − z∗|+ V (z∗). (44)

Using this and (39) we have

−(φ(z∗)− φ(x0)) ≥ |z∗ − x0|. (45)

However, from (42) and (43) we must have

−(φ(z∗)− φ(x0)) ≤ (1− α/2)|z∗ − x0|. (46)

Inequalities (45) and (46) are in contradiction, so in fact (40) holds. This proves that V
is a supersolution.

It can be seen here that the dynamic programming principle provided the key inequal-
ities to derive the sub- and supersolution relations.
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2.2.2 The Optimal Control Value Function is a Viscosity Solution

Dynamic programming. The dynamic programming principle states that for every
r ∈ [t, t1],

V (t, x) = inf
u(·)∈Ut,r

[∫ r

t

L(x(s), u(s)) ds+ V (r, x(r))

]
. (6)

We now prove this (by a standard technique in optimal control).
Fix r ∈ [t, t1], and u(·) ∈ Ut,t1 . Let x(·) denote the corresponding trajectory with

initial state x(t) = x, and consider (r, x(r)). Let ε > 0 and choose u1(·) ∈ Ur,t1 , with
trajectory x1(·) on [r, t1] with x1(r) = x(r) be such that

V (r, x(r)) ≥ J(r, x(r);u1(·))− ε. (47)

Define

u2(s) =

{
u(s) t ≤ s < r
u1(s) r ≤ s ≤ t1

(48)

with trajectory x2(·), x2(t) = x. Now x2(s) = x(s), s ∈ [t, r], and x2(s) = x1(s), s ∈ [r, t1].
Next,

V (r, x) ≤ J(t, x;u2(·))
=

∫ t1
t
L(x(s), u(s)) ds+ ψ(x(t1))

=
∫ t

r
L(x(s), u(s)) ds+

∫ r

t
L(x1(s), u1(s)) ds+ ψ(x(t1))

=
∫ t

r
L(x(s), u(s)) ds+ V (r, x(r)) + ε

(49)

using (47). Therefore

V (t, x) ≤ inf
u(·)∈Ut,r

[∫ r

t

L(x(s), u(s)) ds+ V (r, x(r))

]
+ ε. (50)

Since ε > 0 was arbitrary, we have

V (t, x) ≤ inf
u(·)∈Ut,r

[∫ r

t

L(x(s), u(s)) ds+ V (r, x(r))

]
. (51)

This proves one half of (6).
For the second half of (6), let u(·) ∈ Ut,t1 , and let x(·) be the corresponding trajectory

with x(t) = x. Then

J(t, x;u(·)) =
∫ t1

t
L(x(s), u(s)) ds+ ψ(x(t1))

=
∫ r

t
L(x(s), u(s)) ds+

∫ t1
r
L(x(s), u(s)) ds+ ψ(x(t1))

≥
∫ r

t
L(x(s), u(s)) ds+ V (r, x(r)).

(52)

Now minimizing, we obtain

V (t, x) = infu(·)∈Ut,t1
J(t, x;u(·))

≥ infu(·)∈Ut,t1
{
∫ r

t
L(x(s), u(s)) ds+ V (r, x(r))} (53)
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which is the desired second half of (6). This establishes the dynamic programming prin-
ciple (6).

Regularity. By regularity we mean the degree of continuity or differentiability; i.e. of
smoothness. The regularity of value functions is determined by both the regularity of the
data defining it (e.g. f , L, ψ), and on the nature of the optimization problem. In many
applications, the value function can readily be shown to be continuous, even Lipschitz, but
not C1 in general. The finite horizon value function V (t, x) defined by (5) can be shown
to be bounded and Lipschitz continuous under the following (rather strong) assumptions
on the problem data: f , L, ψ are bounded with bounded first order derivatives. We shall
assume this.

It should be noted that in general it can happen that value functions fail to be con-
tinuous. In fact, the viscosity theory is capable of dealing with semicontinuous or even
only locally bounded functions.

Viscosity solution. Let us re-write the HJ equation (7) as follows:

− ∂

∂t
V (t, x) +H(x,∇xV (t, x)) = 0 in (t0, t1)×Rn, (7)′

with a new definition of the Hamiltonian

H(x, λ) = sup
v∈Rm

{−λ · f(x, v)− L(x, v)} . (9)′

The sign convention used in (7)’ relates to the maximum principle in PDE, and is compat-
ible with the convention used for the general HJ equation (1). Note that the Hamiltonian
is now convex in λ.

A function Ṽ ∈ C([t0, t1]×Rn) is a viscosity subsolution (resp. supersolution) of (7)’
if for all φ ∈ C1((t0, t1)×Rn),

− ∂

∂t
φ(s0, x0) +H(x0,∇φ(s0, x0)) ≤ 0 (resp. ≥ 0) (54)

at every point (s0, x0) where Ṽ − φ attains a local maximum (resp. minimum). Ṽ is a
viscosity solution if it is both a subsolution and a supersolution.

We now show that the value function V defined by (5) is a viscosity solution of (7)’.
Subsolution property. Let φ ∈ C1((t0, t1)×Rn) and suppose that V −φ attains a local

maximum at (s0, x0); so there exists r > 0 such that

V (t, x)− φ(t, x) ≤ V (s0, x0)− φ(s0, x0) ∀ |x− x0| < r, |t− s0| < r. (55)

Fix u(t) = u ∈ U for all t (constant control) and let ξ(·) denote the corresponding state
trajectory with ξ(s0) = x0. By standard ODE estimates, we have

|ξ(s0 + h)− x0| < r (56)

for all 0 ≤ h ≤ h0 (some h0 > 0) - since U and f are bounded. Then by (55)

V (s0 + h, ξ(s0 + h))− φ(s0 + h, ξ(s0 + h)) ≤ V (s0, x0)− φ(s0, x0) (57)
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for all 0 < h ≤ h0. Now from the dynamic programming principle (6) we have

V (s0, x0) ≤
∫ s0+h

s0

L(ξ(s), u(s)) ds+ V (s0 + h, ξ(s0 + h)) (58)

which with (57) implies

−(
φ(s0 + h, ξ(s0 + h))− φ(s0, x0))

h
)− 1

h

∫ s0+h

s0

L(x(s), u(s)) ds ≤ 0. (59)

Send h→ 0 to obtain

− ∂

∂t
φ(s0, x0)−∇φ(s0, x0)f(x0, u)− L(x0, u) ≤ 0. (60)

Now maximize over u to obtain

− ∂

∂t
φ(s0, x0) + sup

u∈U
{−∇φ(s0, x0)f(x0, u)− L(x0, u)} ≤ 0. (61)

This proves that V is a viscosity subsolution.
Supersolution property. Let φ ∈ C1((t0, t1) ×Rn) and suppose that V − φ attains a

local minimum at (s0, x0); so there exists r > 0 such that

V (t, x)− φ(t, x) ≥ V (s0, x0)− φ(s0, x0) ∀ |x− x0| < r, |t− s0| < r. (62)

Again by ODE estimates, there exists h0 > 0 such that

|ξ(s0 + h)− x0| < r (63)

for all 0 ≤ h ≤ h0 and all u(·) ∈ Us0,t1 , where ξ(·) denotes the corresponding state
trajectory with ξ(s0) = x0.

Assume the supersolution property is false, i.e. there exists α > 0 such that

− ∂

∂t
φ(s0, x0) + sup

u∈U
{−∇φ(s0, x0)f(x0, u)− L(x0, u)} ≤ −3αh < 0, (64)

where 0 < h < h0. Now (64) implies

− ∂

∂t
φ(s, ξ(s))−∇φ(s, ξ(s))f(ξ(s), u(s))− L(ξ(s), u(s)) ≤ −2αh < 0, (65)

for all s ∈ [s0, s0 + h] and all u(·) ∈ Us0,t1 , for h > 0 sufficiently small.
By the dynamic programming formula (6), there exists u0(·) ∈ Us0,t1 such that

V (s0, x0) ≥
∫ s0+h

s0

L(ξ0(s), u0(s)) ds+ V (s0 + h, ξ0(s0 + h))− αh (66)
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where ξ0(·) denotes the corresponding trajectory with ξ(s0) = x0, and combining this
with (62) we have

−(
φ(s0 + h, ξ0(s0 + h))− φ(s0, x0))

h
)− 1

h

∫ s0+h

s0

L(ξ0(s), u0(s)) ds ≥ −α. (67)

However, integration of (65) implies

−(
φ(s0 + h, ξ0(s0 + h))− φ(s0, x0))

h
)− 1

h

∫ s0+h

s0

L(ξ0(s), u0(s)) ds ≤ −2α. (68)

which contradicts (67) since α > 0. This proves the supersolution property.

2.3 Comparison and Uniqueness

The most important features of the theory of viscosity solutions are the powerful com-
parison and uniqueness theorems. Comparison theorems assert that inequalities holding
on the boundary and/or terminal time also hold in the entire domain. Uniqueness follows
from this. Such results are important, since they guarantee unique characterization of
viscosity solutions, and ensure that convergent approximations converge to the correct
limit. In the context of optimal control problems, value functions are the unique viscosity
solutions.

In this section we give a detailed proof of the comparison and uniqueness results for a
class of Dirichlet problems, and apply this to equation (20) for the distance function. We
also present without proof results for Cauchy problems of the type (7), (8).

2.3.1 Dirichlet Problem

Here we follow [3, Chapter II] and consider the HJ equation

V (x) +H(x,∇V (x)) = 0 in Ω, (69)

a special case of (1).
To help get a feel for the ideas, suppose V1, V2 ∈ C(Ω)∩C1(Ω) (i.e. are smooth) satisfy

V1(x) +H(x,∇V1(x)) ≤ 0 (subsolution)
V2(x) +H(x,∇V2(x)) ≥ 0 (supersolution)

(70)

in Ω and
V1 ≤ V2 on ∂Ω (boundary condition). (71)

Let x0 ∈ Ω be a maximum point of V1 − V2. Now if x0 ∈ Ω (interior, not on boundary)
then ∇V1(x0) = ∇V2(x0) and subtracting the first second line of (70) from the first gives

V1(x0)− V2(x0) ≤ 0
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which implies
V1(x)− V2(x) ≤ V1(x0)− V2(x0) ≤ 0 ∀ x ∈ Ω. (72)

If it happened that x0 ∈ ∂Ω, then using (71)

V1(x)− V2(x) ≤ V1(x0)− V2(x0) ≤ 0 ∀ x ∈ Ω. (73)

Therefore V1 ≤ V2 in Ω, a comparison result.
Comparison implies uniqueness for the Dirichlet problem

V (x) +H(x,∇V (x)) = 0 in Ω,
V = ψ on ∂Ω.

(74)

To see this, suppose V1 and V2 are two solutions. Now V1 = V2 = ψ on ∂Ω. Then by the
comparison result, we get V1 ≤ V2 in Ω. Similarly, interchanging V1, V2 we again apply
comparison to obtain V2 ≤ V1 in Ω. Hence V1 = V2 in Ω.

This illustrates the role of sub- and supersolutions and boundary conditions in the
comparison and uniqueness theory. We now give a precise theorem and proof ([3, Theorem
II.3.1]). This result does not use convexity or any connection to optimal control, and
applies generally.

Theorem 2.3 Let Ω be a bounded open subset of Rn. Assume V1, V2 ∈ C(Ω) are, re-
spectively, viscosity sub- and supersolution of (69), and satisfy the inequality (71) on the
boundary. Assume that H satisfies

|H(x, λ)−H(y, λ)| ≤ ω1(|x− y|(1 + |λ|)), (75)

for x, y ∈ Ω, λ ∈ Rn, where ω1 : [0,+∞) → [0,+∞) is continuous, nondecreasing with
ω1(0) = 0 (ω1 is called a modulus). Then

V1 ≤ V2 in Ω. (76)

Proof. For ε > 0 define the continuous function on Ω× Ω by

Φε(x, y) = V1(x)− V2(y)−
|x− y|2

2ε
.

Let (xε, yε) ∈ Ω× Ω be a maximum point for Φε over Ω× Ω. Then

max
x∈Ω

(V1 − V2)(x) ≤ max
x∈Ω

Φε(x, x) ≤ max
x,y∈Ω

Φε(x, y) = Φε(xε, yε). (77)

We claim that
lim sup

ε→0
Φε(xε, yε) = 0, (78)

which together with (77) proves the theorem.
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Let us prove (78). Now the fact that

Φε(xε, xε) ≤ Φε(xε, yε)

implies
|xε − yε|2

2ε
≤ V2(xε)− V2(yε) ≤ C (79)

for suitable C > 0 (recall V2 is bounded on Ω), and so

|xε − yε| ≤ (Cε)1/2. (80)

Therefore
|xε − yε| → 0 as ε→ 0, (81)

and by continuity, V2(xε)− V2(yε) → 0 as ε→ 0; hence (79) gives

|xε − yε|2

2ε
→ 0 as ε→ 0. (82)

We now need to consider where the points xε, yε lie.
Case (i). Suppose xε, yε ∈ Ω (both interior points), for all sufficiently small ε > 0. Let

φ1(y) = V1(xε)−
|xε − y|2

2ε
, φ2(x) = V2(yε) +

|x− yε|2

2ε
, (83)

Now φ1, φ2 ∈ C1(Ω), xε is a local maximum for V1 − φ2, and yε is a local minimum for
V2 − φ1. Also,

∇φ1(yε) =
xε − yε

ε
= ∇φ2(xε). (84)

The viscosity sub- and supersolution definition implies

V1(xε) +H(xε,
xε−yε

ε
) ≤ 0,

V2(yε) +H(yε,
xε−yε

ε
) ≥ 0.

(85)

Subtracting we have

V1(xε)− V2(yε) +H(xε,
xε − yε

ε
)−H(yε,

xε − yε

ε
) ≤ 0 (86)

and using the assumption on H

V1(xε)− V2(yε) ≤ ω1(|xε − yε|(1 +
|xε − yε|

ε
)). (87)

This implies

Φε(xε, yε) ≤ ω1(|xε − yε|(1 +
|xε − yε|

ε
)), (88)

and hence (78) follows using (81) and (82).
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Case (ii). Now suppose there exists a subsequence εi → 0 as i→∞ such that xεi
∈ ∂Ω

or yεi
∈ ∂Ω. If xεi

∈ ∂Ω,

V1(xεi
)− V2(yεi

) ≤ V2(xεi
)− V2(yεi

) → 0 (89)

as i→∞, or if yεi
∈ ∂Ω,

V1(xεi
)− V2(yεi

) ≤ V1(xεi
)− V1(yεi

) → 0 (90)

as i→∞; hence (78).
This completes the proof.
The distance function is the unique viscosity solution of (20), (21). At first

sight Theorem 2.3 does not apply to (20), (21). This is because equation (20) does not
have the additive V -term that (69) has, and this term was used in an essential way in the
proof of Theorem 2.3. In fact, in general viscosity solutions to equations of the form

H(x,∇V ) = 0 (91)

may not be unique! For instance, in the context of the Bounded Real Lemma both the
available storage and required supply are viscosity solutions of equations of the type (91).
It turns out that comparison/uniqueness for HJ equation (20) for the distance function
can be proved, either directly using additional hypothesis (such as convexity [3, Theorem
II.5.9]), or via a transformation as we now show.

We use the Kruskov transformation, a useful trick. Define

W = Φ(V )
4
= 1− e−V , (92)

where V is the distance function (19). Then W is a viscosity solution of

W (x) + |∇V (x)| − 1 = 0 in Ω,
W = 0 on ∂Ω,

(93)

by the general properties of viscosity solutions mentioned above. By Theorem 2.3, we see
that W is the unique viscosity solution of (93), and hence

V = Ψ(W )
4
= Φ−1(W ) = − log(1−W ) (94)

is the unique viscosity solution of (20), (21). Comparison also follows in the same way.

2.3.2 Cauchy Problem

In this section we simply state without proof an example of a comparison/uniqueness
result, [3, Theorem III.3.15]. There are many results like this available, with various
kinds of structural assumptions (e.g. (95), (96)) which must be checked in order to apply
them.
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Theorem 2.4 Assume H is continuous and satisfies

|H(x, λ1)−H(x, λ2)| ≤ K(1 + |x|)|λ1 − λ2| (95)

for all x, λ1, λ2 ∈ Rn, and

|H(x1, λ)−H(x2, λ)| ≤ ω(|x1 − x2|, R) + ω(|x1 − x2||λ|, R) (96)

for all λ ∈ Rn, x1, x2 ∈ B(0, R), R > 0, where ω is a modulus (depending on R). Let
V1, V2 ∈ C([t0, t1]×Rn) be, respectively, viscosity sub- and supersolution of (7)’ satisfying

V1(t1, x) ≤ V2(t1, x) ∀ x ∈ Rn. (97)

Then
V1(t, x) ≤ V2(t, x) ∀ (t, x) ∈ [t0, t1]×Rn. (98)
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3 Stochastic Control

References on stochastic control and probability theory include [38], [17], [10], [22], [24],
[2], [9], [39], [1].

3.1 Some Probability Theory

While probability theory, especially quantum probability, will be covered by other speakers
at this workshop, we present in this subsection some basic definitions and ideas.

3.1.1 Basic Definitions

Classical probability theory considers events F , subsets of a sample space Ω, and assigns
a numerical value 0 ≤ P(F ) ≤ 1 to each event F indicating the probability of occurrence
of F . The collection of all allowed events is denoted F . The basic construct of classical
probability is the triple (Ω,F ,P), called a classical probability space.

To facilitate an adequate framework for integration (expectation), convergence, etc,
there are a number of technical requirements placed on probability spaces. While the set
Ω of outcomes can be arbitrary (e.g. colors of balls in an urn, the set of real numbers, etc),
the collection of allowed events F is required to be a σ-algebra. A σ-algebra F contains
the empty set (∅ ∈ F), is closed under complements (F ∈ F implies F c = {ω ∈ Ω : ω 6∈
F} ∈ F), and is closed under countable unions ({Fi}∞i=1 ⊂ F implies

⋃∞
i=1 Fi ∈ F). A

pair (Ω,F) is called a measurable space (on which one or more probability measures may
be defined).

A probability measure is a function P : F → [0, 1] such that (i) 0 ≤ P(F ) ≤ 1 for all
F ∈ F , (ii) P(Ω) = 1, and (iii) if F1, F2, . . . is a disjoint sequence of events in F , then
P(

⋃∞
i=1 Fi) =

∑∞
i=1 P(Fi).

In many cases, the set of outcomes Ω will be a topological space, i.e. a set Ω together
with a collection τ of subsets (the open sets), called a topology. A topology τ contains
the empty set, and is closed under arbitrary unions and intersections. If Ω is discrete,
then the set of all subsets defines the standard topology. If Ω = R or C (real or complex
numbers), the standard topology can be defined by considering all open intervals or discs
(and their arbitrary unions and intersections). Given a topological space (Ω, τ), the Borel
σ-algebra B(Ω) is the σ-algebra generated by the open sets (it is the smallest σ-algebra
containing all open sets). Events in a Borel σ-algebra are called Borel sets. Often, when
the topology or σ-algebra is clear, explicit mention of them is dropped from the notation.

Let (Ω1,F1) and (Ω2,F2) be two measurable spaces. A random variable or measurable
function is a function X : Ω1 → Ω2 such that X−1(F2) = {ω1 ∈ Ω1 : X(ω1) ∈ F2} ∈ F1

for all F2 ∈ F2. In particular, a real-valued random variable X defined on (Ω,F) is a
function X : Ω → R such that X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F for any Borel set
B ⊂ R. Similarly, we can consider complex-valued random variables. If P is a probability
measure on (Ω,F), the probability distribution induced by X is

PX(B) = P(X−1(B)),
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so that (R,B(R),PX) is a probability space. If X has a density pX(x), expectations of
functions f(X) (e.g. moments) can be calculated via

E[f(X)] =

∫
R

f(x)PX(dx) =

∫ ∞

−∞
f(x)pX(x)dx. (99)

Note that the cumulative distribution function is given by FX(x) = PX((−∞, x]), and
the density pX(x) = dFX(x)/dx (when it exists).

Let Y be a random variable, and Y = σ(Y ) be the σ-algebra generated by Y ; i.e.
the smallest σ-algebra with respect to which Y is measurable. In general Y ⊂ F . If
Z is a random variable that is also Y-measurable, then there is a function gZ such that
Z(ω) = gZ(Y (ω)). Thus, Z is a function of the values of Y .

For 0 < p < ∞, the set Lp(Ω,F ,P) is the vector space of complex-valued random
variables X such that E[|X|p] is finite. It is a Banach space with respect to the norm
‖ X ‖p= E[|X|p]1/p. The case p = 2 is of special interest, since L2(Ω,F ,P) is a Hilbert
space with inner product

〈X, Y 〉 = E[X∗Y ].

For p = ∞, the space of essentially bounded random variables L∞(Ω,F ,P) is a Banach
space with norm ‖ X ‖∞= ess.supω|X(ω)|.

Example 3.1 Consider the classical probability space (Ω,F ,P), where Ω = {1, 2}, F =
{∅,Ω, {1}, {2}}, and P = (p1, p2). A random variable X has the form X = (x1, x2), where
x1, x2 ∈ C, and in this example, the spaces L∞(Ω,F ,P) (equal to L2(Ω,F ,P) as a set)
consist of all such random variables. The expected value of X is given by

E[X] =

∫
Ω

X(ω)P(dω) = x1p1 + x2p2. (100)

�

3.1.2 Conditional Expectations

Let Y ⊂ F be a sub-σ-algebra. The conditional expectation E[f(X)|Y ] of f(X) given Y
is the unique Y-measurable function such that

E[f(X)IF ] = E[Ef(X)|Y ]IF ] for all F ∈ Y . (101)

Here, IF is the indicator function of the set F defined by IF (ω) = 1 if ω ∈ F , and
IF (ω) = 0 otherwise.

This definition may seem abstract, and so we attempt to clarify it by describing what
happens in the language of elementary probability and give examples.

Recall from elementary probability the notion of conditional density pX|Y (x|y) of a
random variable X given another random variable Y . It is given by

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
(102)
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where pX,Y (x, y) is the joint density of X and Y and pY (y) is the density of Y . Using this
conditional density, conditional expectations can be computed by

E[f(X)|Y ](y) =

∫ ∞

−∞
f(x)pX|Y (x|y)dx. (103)

Here, we have emphasized the fact that the conditional expectation is a function of the
values y of the random variable Y . If Y is the σ-algebra generated by Y , then we write
E[f(X)|Y ] = E[f(X)|Y ]. Property (101) can be checked as follows:

E[Ef([X)|Y ]IF ] =

∫
F

Ef([X)|Y ](y)pY (y)dy

=

∫
F

∫ ∞

−∞
f(x)pX|Y (x|y)pY (y)dxdy

=

∫
F

∫ ∞

−∞
f(x)pX,Y (x, y)dxdy

=

∫
F

f(x)pX(x)dx

= E[f(X)IF ].

Example 3.2 Let X and W be independent random variables with densities pX(x) and
pW (w), respectively. Let Y be a random variable defined by

Y = X +W. (104)

The joint density ofX and Y is pX,Y (x, y) = pX(x)pW (y−x), and this defines a probability
measure P(dx) = pX,Y (x, y)dx on the Borel subsets of Ω = R×R. The conditional density
is given explicitly by

pX|Y (x|y) =
pX(x)pW (y − x)∫
pX(x)pW (y − x)dx

,

which defines a conditional distribution π(y)(dx) = pX|Y (x|y)dx.
In the absence of measurement information, expectations of functions f(X) are eval-

uated by

〈P, f〉 = E[f ] =

∫
f(x)P(dx),

in accordance with (99). Measurement of Y provides information about X, allowing us to
revise expectations using a conditional probability measure. Suppose we know that the
values of Y occurred in a set F (F ∈ Y = σ(Y )). The revised or conditional probability
measure is

π(F )(dx) =

∫
IF (y)p(x, y)dy

p(F )
dx, (105)
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where p(F ) = Prob(Y ∈ F ). Then the conditional average of f(X) given F is

〈π(F ), f〉 =

∫
f(x)π(F )(dx)

=

∫ ∫
F

pX,Y (x, y)f(x)dydx

p(F )

=

∫
F

〈π(y), f〉dy

p(F )
(106)

Note that the last equality uses the invariance property (101). If A is a possible set of
values of X (i.e. X ∈ σ(X)), with f = IA, then (106) reduces to the familiar elementary
formula Prob(X ∈ A|Y ∈ F ) = Prob(X ∈ A, Y ∈ F )/Prob(Y ∈ F ). �

Example 3.3 Consider the (finite) discrete set Ω = {1, 2, 3}. Let F be the standard
discrete σ-algebra, namely all subsets F = {∅,Ω, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}, and
let P be the uniform distribution, P = (1

3
, 1

3
, 1

3
). Let X = (2, 4, 9), i.e. X(1) = 2,

X(2) = 4, X(3) = 9, and let Y = (1, 1, 4). Then Y = σ(Y ) = {∅,Ω, {1, 2}, {3}}. Using
the property (101) with F = {1, 2} we find that

E[X|Y ](ω) = 3 for ω ∈ {1, 2}

while F = {3} gives
E[X|Y ](ω) = 9 for ω ∈ {3}.

The random variable X has been averaged over the atoms {1, 2}, {3} of Y . The random
variables Y and E[X|Y ] are constant on these atoms (Y measurability). The conditional
expectation E[X|Y ] can be viewed as a function of the values y ∈ {1, 4} of Y . Indeed, let
g(1) = 3 and g(4) = 9. Then

E[X|Y ](ω) = g(Y (ω)).

We write simply E[X|Y ](y) for g(y) (a slight abuse of notation). �

3.1.3 Stochastic Processes

Heuristics. A stochastic process is a random function of time. e.g. Noise, Figure 3.

Definition 3.4 A stochastic process {Xn}∞n=0 is a sequence of random variables Xn

defined on (Ω,F , P ). For each ω ∈ Ω,

X(ω) = {X0(ω), X1(ω), . . .}

denotes a sample path.
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Figure 3: Sample paths of stochastic process X.

If {Xn}∞n=0 is real valued, then {Xn}∞n=0 can be viewed as a random variable with
values in RN (path space; here N is the set of integers).

It is important to quantify the information history or flow corresponding to a stochastic
process. This is achieved using filtration.

Definition 3.5 A filtration of a measurable space (Ω,F) is a family {Fn}∞n=0 of sub-σ-
algebra Fn ⊂ F such that

Fn ⊂ Fn+1 , ∀n = 0, 1, . . .

Example 3.6 If {Xn} is a stochastic process,

Gn
4
= σ(X0, X0, . . . , Xn)

defines a filtration {Gn}, Gn ⊂ F called the history of {Xn} or filtration generated by
{Xn}. �

Definition 3.7 A stochastic process {Xn} is adapted to a filtration {Fn} if Xn is Fn-
measurable for all n = 0, 1, 2, . . ..

Remark 3.8 We can consider Fn are events that have occurred up to time n.
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3.1.4 Martingales

Definition 3.9 A stochastic process {Xn} defined on (Ω,F , {Fn}, P ) is called a super-
martingale/martingale/submartingale if

1. {Xn} is adapted to {Fn}

2. E[|Xn|] < +∞

3. E[Xn+1|Fn] ≤ Xn / E[Xn+1|Fn] = Xn / E[Xn+1|Fn] ≥ Xn , ∀n.

A martingale corresponds intuitively to a fair game of chance.
Note: For m ≥ n,

E[Xm|Fn] = E[Xn+1|Fn]
= Xn

if {Xn} is a martingale. In general, ∀m ≥ n, E[Xm|Fn] is the predicted value of Xm given
the history Fn.

A supermartingale (submartingale) decreases (increases) in conditional mean.

Example 3.10 Let {Fn} be a filtration on (Ω,F) and define

F∞ = σ(Fn, n ∈ N)

Let
Y ∈ L1(Ω,F∞, P )

then
Xn

4
= E[Y |Fn]

is a martingale. �

Example 3.11 Consider i.i.d (independent identically distributed) r.v’s.

Wn =

{
1, w.p. 1

2
;

−1, w.p. 1
2
.

and

Xn =
n∑

k=0

Wk

= Xn−1 +Wn

.

X is a martingale w.r.t. Fn = σ(W0,W1, . . . ,Wn) since

E[Xn+1|Fn] = E[Xn +Wn+1|Fn]
= Xn + E[Wn+1|Fn] (since Xn is Fn-msble)
= Xn + E[Wn+1] (by independence)
= Xn (martingale)

�
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3.1.5 Semimartingales

Definition 3.12 A stochastic process A = {An} is said to be predictable with respect
to the filtration {Fn} if An is Fn−1-measurable.

Example 3.13 Suppose Fn = σ(Z0, Z1, . . . , Zn) for some stochastic process {Zn}. If A
is predictable w.r.t. {Fn}, then An is a function of Z0, Z1, . . . , Zn−1. i.e. the value of An

is determined by the values of Z0, Z1, . . . , Zn−1. �

Definition 3.14 Let X be a stochastic process adapted to {Fn}. If

X = A+M

where A is {Fn}-predictable and M is {Fn}-martingale, then X is called a semimartin-
gale.

Remark 3.15 Semimartingales are important in engineering and physics :

X = “signal” or “trend”︸ ︷︷ ︸
A

+ “noise”︸ ︷︷ ︸
M

A is sometimes called the “compensator” of X (relative to {Fn}).

Theorem 3.16 (Doob Decomposition). If X is an integrable adapted process, then
X is a semimartingale.

Proof. Define

An =
n∑

k=1

E[Xk −Xk−1|Fk−1]

Mn = Xn − An

By definition, A is {Fn}-predictable. Next,

E[Mn|Fn−1] = E[Xn|Fn−1]−
n∑

k=1

E[E[Xk −Xk−1|Fk−1]|Fn−1]

= E[Xn|Fn−1]− E[E[Xn −Xn−1|Fn−1]|Fn−1]−
n−1∑
k=1

E[Xk −Xk−1|Fk−1]

= Xn−1 − An−1

= Mn−1

M is a {Fn}-martingale. �
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Remark 3.17 Write ∆Xn = Xn −Xn−1 then

∆Xn = ∆An︸ ︷︷ ︸
prediction

+ ∆Mn︸ ︷︷ ︸
“innovations” or new information

∆An = E[∆Xn|Fn−1]
E[∆Mn|Fn−1] = 0

where ∆Mn is martingale increment. This is called the innovations representation.

Example 3.18 Let

Xn =
n∑

k=0

Wk

where {Wk} ∼ N(0, 1), i.i.d. By the innovation representation, ∆Xn = Wn,
∆An = E[∆Xn|Fn−1] = 0 so that ∆Xn = ∆Mn = Wn �

3.1.6 Markov Processes

Definition 3.19 Let X be a stochastic process defined on (Ω,F , P ) and taking values in
a measurable space (S,S) and adapted to {Fn}. X is called a Markov process if for
m ≥ n

P (Xm ∈ A|Fn) = P (Xm ∈ A|Xn) , ∀A ∈ S

That is, conditional probabilities of the future behavior of X given the whole past depend
only on the current value.

Example 3.20 Let S = R and S = B(R). W is i.i.d. process.

Xn+1 = b(Xn,Wn)

where b : R2 → R. X is a Markov process w.r.t. Fn = σ(W0,W1, . . . ,Wn−1).

E[φ(Xn+1)|Fn] = E[φ(b(Xn,Wn))|Fn]

=

∫ ∞

−∞
φ(b(Xn, w))PWn(dw)

= E[φ(Xn+1)|Xn]

Setting φ = IA we see that X is Markov. �

Definition 3.21 The (one step) transition probability of a Markov process X are
given by the transition kernel

PXn+1|Xn(A|x) = P (Xn+1 ∈ A|Xn = x)
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Example 3.22 In the last previous example,

PXn+1|Xn(A|x) =

∫ ∞

−∞
IA(b(x,w))PWn(dw)

�

Proposition 3.23 (Chapman-Kolmogorov).

PXn+1(A) =

∫
S

PXn+1|Xn(A|x)PXn(dx)

E[φ(Xn+1)] =

∫
S

φ(x′)PXn+1(dx
′)

=

∫
S

φ(x′)

∫
S

PXn+1|Xn(dx′|x)PXn(dx)

Proof.
PXn+1(A) = E[IA(Xn+1)]

= E[E[IA(Xn+1)|Fn]]
= E[E[IA(Xn+1)|Xn]]
= E[PXn+1|Xn(A|Xn)]

=

∫
S

PXn+1|Xn(A|x)PXn(dx)

�

Example 3.24 (Markov Chain). Now suppose S = {s1, s2, . . . , sN}. Let P = (Pij) be
an N ×N matrix such that

N∑
j=1

Pij = 1 , aij ≥ 0

Define the transition kernel
PXn+1|Xn(sj|si) = Pij

and the probabilities
pn(i) = PXn(si) = P (Xn = si)

Then, the Chapman-Kolmogorov equation reads

pn+1(j) =
N∑

i=1

Pijpn(i)

i.e.
pn+1 = P ∗pn

pn = (P ∗)np0
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where p0(si) = P (X0 = si) = ρ(i) is the initial distribution. Thus the probability
distribution of Xn satisfies the dynamics{

pn+1 = P ∗pn

p0 = ρ

Here we regard pn as a column vector. If, instead, we regard pn as a row vector, then

pn+1 = pnP

�

Remark 3.25 In general, suppose PXn+1|Xn is independent of time n. We write

p(A|x) = PXn+1|Xn(A|x)
ρ(A) = PX0(A)
pn(A) = PXn(A)

then {
pn+1 = P ∗pn

p0 = ρ,

where

(P ∗p)(A) =

∫
S

p(A|x)p(dx)

3.1.7 Observation Processes

Definition 3.26 Let X be a Markov process with values in S. An observation process
is an O valued process defined by the observation probabilities PY |X

P (Yn ∈ B) =

∫
S

PY |X(B|x)PXn(dx) , B ∈ B(R)

Note that for each x ∈ S, PY |X(·|x) is a probability measure on (O,B(O)).

Example 3.27 Let {Vn} be i.i.d. independent of X. Define

Yn = h(Xn, Vn)

then
PY |X(B|Xn) = P (Yn ∈ B|Xn)

= P (h(Xn, Vn) ∈ B|Xn)

=

∫
IB(h(Xn, Vn))PVn(dv)

�
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3.1.8 Linear Representation of a Markov Chain

Suppose we replace S by S ′ = {e1, e2, . . . , eN} where ei is the i-th unit vector in RN .
Then Xn = ei for some i = 1, 2, . . . , N

Lemma 3.28 Let Xn be a Markov chain with probability matrix P . Then

∆Mn+1
4
= Xn+1 − P ∗Xn

is a martingale increment.

Corollary 3.29 X has the semimartingale or innovations representation

Xn+1 = P ∗Xn + ∆Mn+1

or
∆Xn+1 = (P ∗ − I)Xn + ∆Mn+1

3.2 Controlled State Space Models

We will define controlled stochastic systems in terms of controlled transition probabilities
and output probabilities.

Definition 3.30 A stochastic system (S, U,O, P,Q, ρ) is specified by

• Borel spaces S, U,O
(state, control or input, observation or output)

• Transition probability P
P (·|x, u) is a probability measure on S , ∀(x, u) ∈ S × U .

• Output probability Q
Q(·|x) is a probability measure on O , ∀x ∈ S

• Initial distribution ρ of X0.

The evolution of the system is described as follows. If Xn = x ∈ S is the state at time
n and if Un = u ∈ U is the control input applied at the time n, then the system moves to
a new state Xn+1 according to the probability measure P (·|x, u) and produces an output
Yn according to Q(·|x).
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Example 3.31 Nonlinear Systems.
Let S = Rn, U = Rm and O = Rp. The processes {Wn} and {Vn} are i.i.d., independent,
and taking values in Rr and Rs respectively. X0 ∼ ρ is independent of W and V . Define

b : Rn ×Rm ×Rr → Rn

and
h : Rn ×Rs → Rp

such that {
Xn+1 = b(Xn, Un,Wn)
Yn = h(Xn, Vn)

The transition and output probability measures are

P (A|x, u) =

∫
Rr

IA(b(x, u, w))PWn(dw)

∀ A ∈ S = B(Rn) , (x,w) ∈ Rn × U

Q(B|x) =

∫
Rs

IB(h(x, v))PVn(dv)

∀ B ∈ O = B(Rp) , x ∈ S
�

Example 3.32 Linear Systems.
This is a special case of nonlinear systems with b, h are linear and W,V and ρ are Gaussian
: Wn ∼ N(0, Q), Vn ∼ N(0, R) and ρ ∼ N(x0,Σ0) :

Xn+1 = AXn +BUn +GWn

Yn = CXn +HVn

�

Example 3.33 Controlled Markov Chain (Finite State).
Consider S = {s1, s2, . . . , sN}, U = {u1, u2, . . . , uM} and O = {o1, o2, . . . , oP}. P (·|x, u)
is defined by a controlled transition matrix P (u) where

N∑
j=1

Pij(u) = 1 , Pij(u) ≥ 0 , ∀ u ∈ U , si ∈ S

P (sj|si, u) = Pij(u)

Q(·|x) is defined by an output probability matrix Q :

P (oj|si) = Qij
P∑

j=1

Qij = 1 , ∀ si ∈ S , Qij ≥ 0

�
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3.2.1 Feedback Control Laws or Policies

A deterministic sequence u = {u0, u1, u2, . . .} of control values is called an open loop
control. A feedback or closed loop control depends on the observations. More pre-
cisely, let g = {g0, g1, g2, . . .} be a sequence of functions

gn : On+1 → U

The value un of the control at time n is given by

un = gn(y0n)

where y0n = {y0, y1, . . . , yn}. Such a sequence g is called a feedback or closed loop
control policy or law. Note that an open loop control is a special case of a closed loop
policy.

A policy g determines a probability measure P g on the canonical sample or path space
(Ω,F),

Ω = (S × U × Y )∞

F = B(Ω)

Note ω ∈ Ω is of the form

ω = {x0, u0, y0, x1, u1, y1. . . .}

Let
Fn = σ(X0, Y0, X1, Y1, . . . , Xn, Yn)
Yn = σ(Y0, Y1, . . . , Yn)

Then Un = gn(Y0n) is adapted to Yn and Xn, Yn is adapted to Fn. Note that now
Yn = σ(Y0, Y1, . . . , Yn, U0, U1, . . . , Un) since g is used.

3.2.2 Partial and Full State Information

In general, the only information available to the controller is contained in the output or
observation process Y ; X is in general unavailable. This is the case of partial informa-
tion. If O = S and Q(·|x) = δx (Dirac measure), then Y ≡ X, and one has full state
information.

Control problems are much easier to solve when one has full state information. In the
general case of partial information, one must do some filtering as well.

3.3 Filtering

3.3.1 Introduction

Consider the (non-dynamic) filtering problem{
X = µ+W (signal)
Y = CX + V (observation)

(107)
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where W ∼ N(0, Q), V ∼ N(0, R) are independent. Let’s compute X̂ = E[X|Y ] using
two methods:

1. The “innovations” method. We will see that X̂ has the representation

X̂ = µ+ αỸ

where Ỹ
4
= Y − Cµ is the “innovation”.

Note: We use the following notation:
Means :

X
4
= E[X] = µ

Y
4
= E[Y ] = Cµ

Covariances :
ΣX = Cov(X) = E[(X − µ)(X − µ)′]

= Q
ΣY = Cov(Y ) = E[(Y − Cµ)(Y − Cµ)′]

= CQC ′ +R
ΣXY = Cov(X, Y ) = E[(X − µ)(Y − Cµ)′]

= QC ′

We claim
X̂ = µ+ ΣXY Σ−1

Y (Y − Cµ).

Proof. Write
ν̂ = µ+ ΣXY Σ−1

Y (Y − Cµ)
ν̃ = X − ν̂

then
E[ν̃] = 0
E[ν̃(Y − Y )′] = 0.

Then since these random variables are Gaussian, ν̃ and Y are independent (orthog-
onal). Then,

X̂ = E[X − ν̂ + ν̂|Y ]
= E[ν̃|Y ] + E[ν̂|Y ]
= 0 + ν̂

This gives the “Kalman Filter” for the problem :

X̂ = µ+QC ′(CQC ′ +R)−1(Y − Cµ).

�

Note that if we write error estimates by e = X−X̂, the conditional error covariance
is given by

Σe = ΣX − ΣXY Σ−1
Y Σ′XY

= Q−QC ′(CQC ′ +R)−1CQ
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Remark 3.34 X̂ − µ is the projection of X̃ = X − µ onto the subspace

Y = {αỸ : α ∈ R}

relative to the inner product E[X̃Ỹ ] = Cov(X, Y ), see Figure 4.
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Figure 4: Projection interpretation.

i.e. X̂ must satisfy X̃ − (X̂ − µ) ⊥ Ỹ

i.e. (X̃ − (X̂ − µ) , Ỹ ) = 0. Since X̂ − µ = αỸ , we get (X̃, Ỹ ) = α(Ỹ , Ỹ ). Thus,

α = (X̃, Ỹ )(Ỹ , Ỹ )−1

= ΣXY Σ−1
Y

2. Using the “reference probability” approach.
We consider the following processes are under a probability measure P ,{

X = µ+W
Y = CX + V

The joint density of X,Y is

pX,Y (x, y) = pX(x)pY |X(y|x)

in which

pX(x) = (2π|Q|)−
1
2 exp(−1

2
(x− µ)′Q−1(x− µ))

pY |X(y|x) = (2π|R|)−
1
2 exp(−1

2
(y − Cx)′R−1(y − Cx))

Using a new “reference” probability measure P+, we have the new processes{
X = µ+W
Y = V +
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where V + ∼ N(0, R), W ∼ N(0, Q), V + and W are independent. The joint density
of X, Y is now

p+
X,Y (x, y) = pX(x)pV (y)

where

pV (y) = (2π|R|)−
1
2 exp(−1

2
y′R−1y)

Write
dP

dP+
= Λ, where

Λ(x, y) = exp(−1
2
|R−1Cx|2 + y′R−1Cx)

By Bayes’ rule,1

E[X|Y ] =
E+[XΛ|Y ]

E+[Λ|Y ]

the conditional density is given by

pX|Y (x|y) =
Λ(x, y) pX(x)∫

Rn

Λ(x, y)pX(x) dx

=
qX|Y (x|y)∫

Rn

qX|Y (x|y) dx

We call qX|Y the “unnormalised conditional density”

qX|Y (x|y) = Λ(x, y)pX(x)

Now we compute,

X̂ = E[X|Y = y] =

∫
Rn

x pX|Y (x|y) dx

=

∫
Rn

x qX|Y (x|y) dx∫
Rn

qX|Y (x|y) dx

= µ+QC ′(CQC ′ +R)−1(Y − Cµ).

Remark : The main techniques for nonlinear filtering are the innovations approach and
the reference probability method.

1Prove this using the invariance property (101) by showing that E[X|Y ]E+[Λ|Y ] = E+[XΛ|Y ].
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3.3.2 The Kalman Filter

Consider the linear gaussian stochastic system :{
Xk+1 = AXk +GWk

Yk = CXk +HVk

where the initial condition X0 ∼ N(X0,Σ0), Wk ∼ N(0, Q)and Vk ∼ N(0, R) are all
mutually independent with Q > 0, R > 0 and Σ0 > 0.

Filtering problem : to compute conditional expectations of the type

φ̂k = E[φ(Xk)|Y0,k]

Since all the random variables are Gaussian, the conditional distribution

PXk|Y0,k
(A|Y0,k) = P (Xk ∈ A|Y0,k)

is Gaussian with density

pXk|Y0:k
(x|Y0:k)

4
= pk|k(x|Y0:k)

= (2π|Σk|k|)−
1
2 exp(−1

2
(x−Xk|k)

′Σ−1
k|k (x−Xk|k))

where
Xk|k = E[Xk|Y0,k]
Σk|k = E[(X −Xk|k)(X −Xk|k)

′|Y0,k]

Note that the conditional distribution is completely determined by the finite dimensional
quantities Xk|k ∈ Rn and Σk|k ∈ Rn2

.
The filtering problem will be solved if we can find simple recursion for these two

quantities. Thus

φ̂k =

∫
Rn

φ(x)pk|k(x|Y0,k) dx

Theorem 3.35 (Kalman Filter, [38, chapter 7], [1, chapter3]). The conditional den-
sity pk|k ∼ N(Xk|k,Σk|k) is obtained from

Xk+1|k+1 = AXk|k + Lk+1(Yk+1 − CAXk|k)

X0|0 = L0Ỹ0 +X0

Σk+1|k+1 = (I − Lk+1C)Σk+1|k
Σk+1|k = AΣk|kA

′ +GQG′

Σ0|0 = (I − L0C)Σ0

Lk
4
= Σk|k−1C

′(CΣk|k−1C
′ +HRH ′)−1

L0
4
= Σ0C

′(CΣ0C
′ +HRH ′)−1

Notation. pk+1|k(x|Y0,k) denotes the conditional density of Xk+1 given Y0,k.

Xk+1|k = E[Xk+1|Y0,k]
Σk+1|k = E[(Xk+1 −Xk+1|k)(Xk+1 −Xk+1|k)

′|Y0,k]
pk+1|k ∼ N(Xk+1|k,Σk+1|k)

38



3.3.3 The Kalman Filter for Controlled Linear Systems

Let g = {g0, g1, . . . , } be a feedback policy, possibly nonlinear. This determines :

Xg
k+1 = AXg

k +BU g
k +GWk

Y g
k = CXg

k +HVk

U g
k = gk(Y

g
0,k)

The processes Xg, Y g need not be Gaussian. However, the conditional densities pk+1|k, pk|k
are Gaussian.

Theorem 3.36 The conditional means Xg
k|k and Xg

k+1|k are given by

Xg
k+1|k+1 = AXg

k|k +BU g
k + Lk+1(Y

g
k+1 − C(AXg

k+1 +BU g
k+1))

Xg
k+1|k = AXg

k|k−1 +BU g
k + ALk(Y

g
k − CXg

k|k−1)

Xg
0|0 = X0 + L0(Y0 − CX0)

Xg
0|−1 = X0

Σk|k, Σk+1|k and Lk are given as before.

Proof. Write
Xg

k = X
g

k +Xk , Y g
k = Y

g

k + Yk

where
X

g

k+1 = AX
g

k +BU g
k , X

g

0 = X0

Y
g

k = CX
g

k

Xk+1 = AXk +GWk , X0 ∼ N(0,Σ0)
Yk = CXk +GVk

Then the conditional density of Xg
k given (Y g

0,k, U
g
0,k−1) is the conditional density of Xk

given Y0,k shifted by X
g

k. (See [38, page 102-3] for details.) �

3.3.4 The HMM Filter (Markov Chain)

Let X, Y be a HMM defined by a transition matrix P and an output probability matrix
Q :

P (Xk+1 = sj|Xk = si) = pij

P (Yk = oj|Xk = si) = qij

This determines a measure P on a measurable space (Ω,F) (canonical path space, say).
Filtering : We wish to compute the conditional probabilities

P (Xk = sj|Y0,k).

If we use the linear representation of Markov chain, we want to compute the (column)
vector

pk|k
4
= E[Xk|Y0,k]
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Recall that in the linear representation, Xk = P ∗Xk−1 +∆Mk where ∆Mk is a martingale
increment w.r.t. Fk = σ(X0,k, Y0,k).

Since Yk depends on ∆Mk, it is not clear how to proceed. We will use a reference
probability P+ under which Yk is independent of ∆Mk.

Under P , the joint density of X0,k, Y0,k is

pX0,k,Y0,k
(x0,k, y0,k) = pX0,k

(x0,k) pY0,k|X0,k
(y0,k|x0,k)

where

pX0,k
(x0,k) =

k−1∏
l=0

Pxl,xl+1
ρx0

pY0,k|X0,k
(y0,k|x0,k) =

k∏
l=0

Qxl,yl

ρx0 is initial distribution of X.
The new measure P+ corresponds to the joint density

p+
X0,k,Y0,k

(x0,k, y0,k) = pX0,k
(x0,k) p

+
Y0,k|X0,k

(y0,k|x0,k)

where
p+

Y0,k|X0,k
(y0,k|x0,k) = 1

pk+1

where p = #O is the number of output values. Then,

Λk =
dP

dP+

∣∣∣∣
Fk

= pk+1

k∏
l=0

Qxl,yl

Notation. We write Ψk for the diagonal matrix with entries pQi,yk
, i = 1, . . . , n. And we

write
σk = E+[XkΛk|Y0,k]

(an n-vector since Xk is an n-vector using the linear representation
Note: Under P+, X is a Markov chain with transition matrix P and initial distribution

ρ, Y is i.i.d. uniform and, X and Y are independent.
Bayes’ rule :

pk|k =
σk

〈σk, 1〉
where 〈σk, 1〉 =

∑n
i=1 σk(i) = E+[Λk|Y0,k]. 〈., .〉 = inner product in Rn.

Theorem 3.37 (HMM Filter)
pk|k = 1

ck
ΨkP

∗pk−1|k−1

p0|0 = ρ
ck = 〈ΨkP

∗pk−1|k−1, 1〉
c0 = 1
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Remark 3.38 In unnormalized form we have{
σk = ΨkP

∗σk−1

σ0 = ρ

which is a linear recursion.

Proof.

• Step 1
Recursion for σk.

σk(j) = E+[Xk(j)Λk|Y0,k]
= E+[(P ∗Xk−1 + ∆Mk)j pQj,yk

Λk−1|Y0,k]
= Ψk(j)

∑n
i=1 pij E

+[Xk−1(i) Λk−1|Y0,k−1]
(by independence).
= Ψk(j)

∑n
i=1 pij σk−1(i)

• Step 2
By induction,

〈σk, 1〉 =
k∏

l=0

cl

To see this,

pk|k =
σk

〈σk, 1〉

=
ΨkP

∗σk−1

〈σk, 1〉

=
ΨkP

∗pk−1|k−1〈σk−1, 1〉
〈σk, 1〉

This gives

ck =
〈σk, 1〉
〈σk−1, 1〉

and clearly
k∏

l=0

cl = 〈σk,1〉
〈σk−1,1〉

〈σk−1,1〉
〈σk−2,1〉 . . .

〈σ1,1〉
〈σ0,1〉

= 〈σk, 1〉

Note that the (nonlinear) recursion for pk|k is just formula (6.2) in [38, page 83]. �
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3.3.5 Filter for Controlled HMM

Consider a controlled Markov chain with transition matrix P (u) and output probability
matrix Q. Let g be a feedback policy

Uk = gk(Y0,k)

We want to compute the conditional expectation

P (Xk = sj|Y0,k, U0,k−1)

i.e.
pg

k|k = E[Xk|Y0,k, U0,k−1]

Theorem 3.39 ([38, page 81]). pg
k|k does not depend on g. It satisfies

pg
k|k = 1

ck
ΨkP

∗(uk−1) p
g
k−1|k−1

pg
0|0 = ρ

ck = 〈ΨkP
∗pk−1|k−1, 1〉

c0 = 1

as before.

Definition 3.40 A stochastic process ξ = {ξk} is called an information state if

• ξk is a function of Y0,k, U0,k−1

• ξk+1 can be determined from ξk, yk+1and uk.

Example 3.41 pk|k = pg
k|k is an information state. σk|k = σpg

k|k is also an information
state. For linear systems, Xk|k is an information state �

3.4 Dynamic Programming - Case I : Complete State Informa-
tion

The stochastic system is described by (S, U, P, ρ). A control policy g = {g0, g1, . . .}
determines control U and state X processes :

uk = gk(X0,k)
P (Xk+1 ∈ A|X0,k, U0,k) = P (A|Xk, Uk)

Let
G = {g : g is a state feedback policy}

denote the set of admissible controllers.
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Cost function :

J(g) = Eg[
M−1∑
l=0

L(Xl, Ul) + Φ(XM)]

where
L : S × U → R
Φ : S → R
L ≥ 0 , Φ ≥ 0

3.4.1 Optimal Control Problem

Find g∗ ∈ G minimizing J ; i.e.

J(g∗) ≤ J(g) , ∀g ∈ G

We solve this problem using dynamic programming.
To this end, we define the value function

Vk(x) = inf
g∈Gk,M−1

Eg
x,k[

M−1∑
l=k

L(Xl, Ul) + Φ(XM)]

for k = 0, 1, . . . ,M − 1
VM(x) = Φ(x)

where Gk,l denotes policies gk,l = {gk, gk+1, . . . , gl}
Vk(x) is the optimal “cost to go”, given that we start at x at time k; i.e. Xk = x.

Theorem 3.42 ([38, chapter 6]) V satisfies the dynamic programming equation :

(DPE)


Vk(x) = inf

u∈U
{L(x, u) +

∫
S

Vk+1(z)P (dz|x, u)}

for k = 0, 1, . . . ,M − 1
VM(x) = Φ(x)

Further, let u∗k(x) denotes a control value which achieves the minimum in (DPE), for
k = 0, 1, . . . ,M − 1. Then the policy g∗ defined by

uk = g∗k(X0,k) = u∗k(Xk)

is optimal, and J(g∗) =
∫

S
V0(z)ρ(dz).

Remark 3.43 Policies g for which gk is only a function of Xk (and not X0,k−1) are called
Markov policies. Then w.r.t. P g, when g is a Markov policy, X is a Markov process.

So the optimal policy g∗ above is Markov and the optimal state process Xk is Markov :

P g∗(Xk+1 ∈ A|X0,k, U0,k) = P (A|x, g∗k(x))
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Remark 3.44 Algorithm for finding the optimal state feedback controller :

1. Set k = M , VM(x) = Φ(x)

2. Set k = M − 1. Then solve (DPE) to get VM−1(x) and u∗M−1(x)

3. Set k = M − 2. Then solve (DPE) to get VM−2(x) and u∗M−2(x)

4. Continue, until k = 0

5. Set
g∗0(X0) = u∗0(X0)
g∗1(X0,1) = u∗1(X1)

...
g∗k(X0,k) = u∗k(Xk)

...
g∗M−1(X0,M−1) = u∗M−1(XM−1)

Proof. Define W by
Wk(x) = inf

u∈U
{L(x, u) +

∫
S

Wk+1(z)P (dz|x, u)}

for k = 0, 1, . . . ,M − 1
WM(x) = Φ(x)

Our goal is to prove Wk(x) = Vk(x), and g∗ optimal. Define

V k(x, g) = Eg
x,k[

M−1∑
l=k

L(Xl, Ul) + Φ(XM)]

Claim (∗):
Wk(x) = inf

g∈Gk,M−1

V k(x, g)
4
= Vk(x)

= V k(x, g
∗)

Assume (∗) true for k + 1, . . . ,M (trivial for k = M). Then for any g ∈ Gk,M−1

V k(x, g) = Eg
x,k[L(x, gk) +

∑M−1
l=k+1 L(Xl, Ul) + Φ(XM)]

= Eg
x,k[L(x, gk) + V k+1(Xk+1, gk+1,M−1)]

≥ Eg
x,k[L(x, gk) +Wk+1(Xk+1)]

≥ Wk(x)

by induction, with equality if g = g∗
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Example 3.45 Controlled Markov chain with transition matrix P (u).
The dynamic programming equation is :

Vk(si) = min
u∈U

{L(si, u) +
n∑

j=1

Vk+1(sj)Pij(u)}

for k = 0, 1, . . . ,M − 1
VM(si) = Φ(si)

If we regard Vk as a column vector in Rn, etc, this is just
Vk = min

u∈U
{Lu + P (u)Vk+1}

for k = 0, 1, . . . ,M − 1
VM = Φ

This is a nonlinear backward recursion. The optimal Markov policy g∗ is

g∗k(X0,k) = u∗k(Xk)

where u∗k(si) achieves min in (DPE) and u∗k can be viewed as a vector. �

Example 3.46 Nonlinear Systems

Xk+1 = b(Xk, Uk,Wk)

where W = {Wk} i.i.d., independent of X0 ∼ ρ. The DPE
Vk(x) = inf

u∈U
{L(x, u) +

∫
Rn

Vk+1(b(x, u, w))PW (dw)}

for k = 0, 1, . . . ,M − 1
VM(x) = Φ(x)

Vk is a function of x ∈ Rn. u∗k(x) is also a function of x ∈ Rn. �

Example 3.47 Linear Systems (LQG)

Xk+1 = AXk +BUk +GWk

Then the DPE
Vk(x) = inf

u∈Rm
{L(x, u) +

∫
Rn

Vk+1(Ax+Bu+Gw)(2π|Q|)−
1
2 exp(−1

2
w′Q−1w) dw}

for k = 0, 1, . . . ,M − 1
VM(x) = Φ(x)
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Quadratic cost :
L(x, u) = 1

2
x′Γx+ 1

2
u′Λu

Φ(x) = 1
2
x′Px

where Γ ≥ 0 , P ≥ 0 , Λ > 0. To simplify, assume

G = I , Q = I
Xk+1 = AXk +BUk +Wk

{Wk} i.i.d. ∼ N(0, I)

Theorem 3.48 (LQG)
Vk(x) = 1

2
x′Pkx+ αk

u∗k(x) = Lkx

where

(R)


Pk = Γ + A′Pk+1A− A′Pk+1B[Λ +B′Pk+1B]−1B′Pk+1A

for k = 0, 1, . . . ,M − 1
PM = P
Lk = −[Λ +B′Pk+1B]−1B′Pk+1A

αk = 1
2

∑M
l=k+1 TrPl , k = 0, 1, . . . ,M − 1 , αM = 0

Note that :

1. The Riccati equation (R) is a nonlinear backward matrix recursion.

2. The optimal Markov policy is

uk = g∗k(X0,k) = LkXk

which is linear.

Proof. By induction. It it true for k = M , (trivial). Assume true for k + 1, . . . ,M .
Plug Vk+1(z) = 1

2
z′Pk+1z+αk+1 into (DPE) and evaluate the Gaussian integral (do this).

Then minimize over u. This gives u∗k. Plug back in to evaluate Vk(x). This gives the
Riccati equation (do this!). �

With complete state information, the optimal controller is state feedback, Figure 5.

3.5 Dynamic Programming - Case II : Partial State Information

Consider general stochastic system

(S, U,O, P,Q, ρ)

Control policies g ∈ G are output feedback:

uk = gk(Y0,k)
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Figure 5: State feedback.

Cost function :

J(g) = Eg[
M−1∑
l=0

L(Xl, Ul) + Φ(XM)]

as before, except g is a function of Y only.
Partially observed optimal control :

Find an output feedback controller g∗ ∈ G such that

J(g∗) ≤ J(g) , ∀g ∈ G

Rather that treat the general case, we first do HMM’s, and then linear systems.

3.5.1 Optimal Control of HMM’s

Consider controlled HMM’s with transition matrix P (u) and output probability matrix
Q. To solve this problem, we could use any suitable information state. Here we will
use

πk = pk|k

Recall that

(IS)

{
πk = T (πk−1, Uk−1, Yk)
π0 = ρ

where

T (π, u, y) =
Ψ(y)P ∗(u)π

〈Ψ(y)P ∗(u)π, 1〉
.

We will show that optimal output feedback control of the HMM is equivalent to opti-
mal control of (IS), a problem with full state information (πk is the new state, which is
observed!).
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To see how this possible, write

J(g) = Eg[
∑M−1

i=0 L(Xi, Ui) + Φ(XM)]

= Eg[
∑M−1

i=0 Eg[L(Xi, Ui)|Y0,i] + Eg[Φ(XM)|Y0,M ]]

= Eg[
∑M−1

i=0 〈πi, L
ui〉+ 〈πM ,Φ〉]

where
Lu = L(., u)

〈π, f〉 =
∑n

i=1 π(i)f(i)

This J(g) has been expressed purely in terms of the information state πk.

Theorem 3.49 ([38, chapter 6]) Define
Vk(π) = inf

g∈Gk,M−1

Eg
π,k[

M−1∑
l=k

〈πl, L
ul〉+ 〈πM ,Φ〉]

for k = 0, 1, . . . ,M − 1
VM(π) = 〈π,Φ〉

Then Vk satisfies the dynamic programming equation

(DPE)


Vk(π) = min

u∈U
{〈π, Lu〉+

∑
y∈O

Vk+1(T (π, u, y))p(y|π, u)}

for k = 0, 1, . . . ,M − 1
VM(π) = 〈π,Φ〉

where

p(y|π, u) =
n∑

i,j=1

Qj,y Pij(u)π(i).

Further, if u∗k(π) achieves the minimum in (DPE), then the policy

uk = g∗k(Y0,k) = u∗k(πk)

is optimal.

Proof. See [38, page 85]. �
Note: The optimal controller depends on the observations Y0,k through the informa-

tion state πk. Such controllers are called separated, i.e. separated into a filter plus a
controller, Figure 6.

3.5.2 Optimal Control of Linear Systems (LQG)

Consider a linear system {
Xk+1 = AXk +BUk +GWk

Yk = CXk +HVk
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Figure 6: Separation structure for HMM controller.

with quadratic cost
L(x, u) = 1

2
x′Γx+ 1

2
u′Λu

Φ(x) = 1
2
x′Px

where Γ ≥ 0 , P ≥ 0 , Λ > 0. Assume for simplicity, G = I , H = I , Q = I , R = I.
The conditional density

πk = pk|k ∼ N(Xk|k,Σk|k)

is an information state. Since Σk|k is deterministic, Xk|k is itself an information state for
the linear system. Thus we expect the optimal policy g∗ to have the form

uk = g∗(Y0,k) = u∗k(Xk|k)

for a suitable function u∗k(x). It turns out that u∗k(x) is the complete state information
controller derived earlier.

Theorem 3.50 Let Xk|k be the conditional mean as determined by the Kalman filter. Let
Lk be the gain sequence determined by the state feedback linear quadratic problem. Then

uk = g∗(Y0,k) = LkXk|k

is the optimal policy for the partially observed LQG problem.

Note that this optimal controller is separated.
Proof. See [38, page 105]. �
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Figure 7: LQG separation structure.

3.6 Two Continuous Time Problems

3.6.1 System and Kalman Filter

Consider the (classical) system model

dxc = (Axc +Bu) dt+Gdw (108)

dy = Cxc dt+ dv (109)

where

1. xc(t) is the state of the system (a vector), given by a linear stochastic differential
equation driven by Gaussian white noise ẇ(t),

2. ẏ(t) represents the measured output variables, which are subject to additive Gaus-
sian white noise v̇(t),

3. u(t) is the control variable (a vector), which we take to be a function of the mea-
surement data y(s), 0 ≤ s ≤ t, which we write u(t) = K(y(s), 0 ≤ s ≤ t),

4. A, B, G and C are appropriately sized matrices, and

5. ẇ(t) and v̇(t) have zero mean, variance 1, and correlation α.

Throughout we interpret stochastic differential equations in the Ito sense, so that, e.g.
dw(t)dw(t) = dt, dv(t)dv(t) = dt, and dw(t)dv(t) = αdt.

The continuous time Kalman filter equations are

dx̌c = (Ax̌c +Bu)dt+ (YcC
T +GαT )(dy − Cx̌cdt) (110)
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and

Ẏc = AYc + YcA
T +GGT − (YcC

T +GαT )(CYc + αGT ) (111)

with initial conditions x̌c(0) = xc0, Yc(0) = Y0 (the initial Gaussian parameters), see [49,
section 4.5], [16, Theorem 4.4.1 (when α = 0)].

3.6.2 LQG Control

In continuous time, the classical linear quadratic Gaussian (CLQG) problem is to minimize
the cost function

J(K) = E[

∫ T

0

[1
2
xT

c (s)Pxc(s) + 1
2
uT (s)Qu(s)] ds+ 1

2
xT

c (T )Sxc(T )]. (112)

for the linear gaussian model (108), (109).
The optimal control is given in terms of the Kalman filter

u?(t) = −Q−1BTXc(t)x̌c(t), (113)

where

Ẋc + ATXc +XcA−XcBQ
−1BTXc + P = 0, (114)

and Xc(T ) = S, [49, Part I], [16, Theorem 5.3.3 (when α = 0)].

3.6.3 LEQG Control

Another important class of stochastic control problems are the so-called risk-sensitive
problems. The risk-sensitive cost functions attempt to give larger penalties for large
deviations from desired values and tend to lead to designs which are more robust than
LQG controllers. In this subsection we switch to continuous time.

The classical linear exponential quadratic Gaussian (CLEQG) problem (a type of risk-
sensitive problem) is specified by modifying the LQG cost using the exponential function
as follows:

Jµ(K) = E[expµ(

∫ T

0

[1
2
xT

c (s)Pxc(s) + 1
2
uT (s)Qu(s)] ds+ 1

2
xT

c (T )Sxc(T ))]. (115)

Here, µ is a parameter indicating the sensitivity to risk. If µ > 0, the problem is risk-
sensitive, and consequently gives greater weight to the size of the integral compared to the
LQG case. If µ < 0 is referred to as risk-seeking. The risk-neutral case µ→ 0 corresponds
to the LQG problem above,

1

µ
log Jµ(K) → J(K), (116)

see [8], [37].
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The CLEQG criterion is potentially infinite if µ > 0 is too large. However, when finite
the problem is solvable and the optimal solution is

u?(t) = −Q−1BTXµ
c (t)[I − µY µ

c (t)Xµ
c (t)]−1x̌µ

c (t), (117)

where

dx̌µ
c = ([A+ µY µ

c P ]x̌µ
c +Bu)dt+ (Y µ

c C
T +GαT )(dy − Cx̌µ

c dt), (118)

˙Y µ
c = AY µ

c + Y µ
c A

T +GGT + µY µ
c PY

µ
c − (Y µ

c C
T +GαT )(CY µ

c + αGT ), (119)

with initial conditions x̌µ
c (0) = xc0, Y

µ
c (0) = Y0, and

Ẋµ
c + ATXµ

c +Xµ
c A−Xµ

c [BQ−1BT − µGGT ]Xµ
c + P = 0, (120)

with terminal condition Xµ
c (T ) = S, see [8, Theorem 4.1 (when α = 0)], [49, section 8.5],

[14, Theorem 3.11].
It is important to note that the CLEQG filter (118), (119) is not the LQG Kalman

filter, but reduces to it when µ = 0. The CLEQG state x̌µ
c (t) can still be interpreted as a

state estimator for xc(t), but it is not the optimal minimum mean square error estimator:
in general x̌µ

c (t) 6= x̌c(t). However, x̌µ
c (t) does serve as an information state for the CLEQG

problem, since the cost function (115) can be expressed in terms of it, see [8, Theorem
3.2]:

Jµ(K) = E[

∫
exp(−µ

2
xTSx)πµ(x, t)dx] (121)

where πµ(x, t) is a gaussian density with mean x̌µ(t) and covariance Y µ
c (t). In general, it

does not seem possible to represent the CLEQG cost in terms of the Kalman filter state
x̌c(t).
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4 Robust Control

References for this section include [30], [54], [19], [26], [4], [46], [31].

4.1 Introduction and Background

As mentioned in the Introduction, section 1, robustness concerns the ability of a con-
troller to cope with uncertainty, disturbances, and model errors. Typically, a controller
is designed on the basis of an idealized model, which may neglect some features of the
real system. The parameters of the model may or may not be well known. Further-
more, the real system may be subject to disturbances, noise and dissipative effects. A
robust controller should have good performance under nominal conditions, and adequate
performance in other than nominal conditions.

Figure 8 illustrates a common setup for robust control design.

z

-

�

-

�

controller

physical system

uncertainty

w

u y

Figure 8: Setup for robust control.

Note that uncertainty has been explicitly included in the setup. The robust control
problem is to design a controller achieving the desired performance, explicitly taking into
account the presence of uncertainty. Robustness can be guaranteed only for the classes of
uncertainty that have been modeled.
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Standard approaches to robust control design include the use of H∞ methods, and
integral quadratic constraint (IQC) methods. In H∞, which originated in the frequency
domain [53] and gave rise to the (unwieldy) name, systems are regarded as possibly
nonlinear operators acting on signals, and stability and robustness are characterized in
terms of the boundedness of the operators. The controller is chosen to make the gain
or norm γ of the closed loop physical system-controller combination considered as an
operator from disturbance inputs w to disturbance outputs z “small”. In view of the small
gain theorem (see, e.g. [47, Theorem 6.1.1 (1)]), the design is capable of accommodating
uncertainties of gain less than 1/γ. Detailed knowledge of the uncertainty is not required,
save for the gain limitation and structural connections to the physical system. IQC
design is closely related, but here the uncertainty is characterized by an integral quadratic
constraint, and the controller is designed subject to this constraint. It is important to
know that not all robust control problems are feasible, for instance a designer may choose
too small a value of γ, and not be able to find a solution.

4.2 The Standard Problem of H∞ Control

Now we describe in more detail the standard problem of H∞ control. The problem entails
a description of the plant and controller models, and definitions of the control objectives.
The standard control problem corresponds to the Figure 9, which we now explain.

- -

-

�

G

K

w z

u y

Figure 9: The Closed-Loop System (G,K)

4.2.1 The Plant (Physical System Being Controlled)

Consider plants G with the following structure

G :


ẋ = A(x) +B1(x)w +B2(x)u

z = C1(x) +D12(x)u

y = C2(x) +D21(x)w

(122)

Here, x(t) ∈ Rn denotes the state of the system, and is not in general directly measurable;
instead an output y(t) ∈ Rp is observed. The additional output quantity z(t) ∈ Rr is a
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performance measure, depending on the particular problem at hand. The control input
is u(t) ∈ Rm, while w(t) ∈ Rs is regarded as an opposing disturbance input. Detailed
assumptions concerning the functions appearing in (122) are given in [31]. Here we note
that the origin 0 is assumed to be an equilibrium, and A(0) = 0, C1(0) = 0, C2(0) = 0.

4.2.2 The Class of Controllers

The plant G was described by an explicit state space model and is assumed given. How-
ever, in the spirit of optimal control theory, we do not prescribe a state space model for
the controller K, since it is an unknown to be determined from the control objectives.
Rather, we simply stipulate some basic input-output properties required of any admissible
controller, namely that the controller must be a causal function of the output

K : y(·) 7→ u(·)

and the resulting closed loop system be well-defined in the sense that trajectories and
signals exist and are unique. The controllerK will be said to be null-initialized ifK(0) = 0,
regardless of whether or not a state space realization of K is given.

4.2.3 Control Objectives

The H∞ control problem is commonly thought of as having two objectives: find a con-
troller K such that the closed loop system (G,K) is

1. dissipative, and

2. stable.

In §4.3 we define what is meant by these terms in the case of linear systems. We now
describe their meanings for nonlinear systems; this gives an extension of H∞ control to
nonlinear systems.2

The closed loop system (G,K) is γ-dissipative if there exist γ > 0 and a function
β(x0) ≥ 0 β(0) = 0, such that

1
2

∫ T

0

|z(s)|2 ds ≤ γ2 1
2

∫ T

0

|w(s)|2 ds+ β(x0)

for all w ∈ L2,T and all T ≥ 0.

(123)

This definition is saying that the nonlinear input-output map (G,K) : w 7→ z defined
by the closed loop system has finite L2 gain with a bias term due to the initial state x0

of the plant G. This inequality expresses the effect of the uncertainty w on the system
performance z.

2The term “nonlinear H∞ control” has no precise mathematical meaning, but it has come into common
use in the control engineering community and refers to nonlinear generalizations of H∞ control (which
has precise meaning for linear systems).
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While dissipation captures the notion of performance of a control system, another
issue with H∞ control is stability of the system. The closed loop system will be called
weakly internally stable provided that if G is initialized at any x0, then if w(·) ∈ L2[0,∞),
all signals u(·), y(·), z(·) in the loops as well as x(·) converge to 0 as t→∞. By internal
stability we mean that the closed loop is weakly internally stable and in addition if the
controller has a state space realization, then the controller state will converge to an
equilibrium as t→∞.

Dissipation and stability are closely related; see, e.g. [50], [32], [33], [46]. Indeed,
dissipative systems which enjoy a detectability or observability property also enjoy a
stability property. In our context, suppose the system (G,K) is z-detectable, that is, w(·)
and z(·) ∈ L2[0,∞) imply x(·) ∈ L2[0,∞) and x(t) → 0 as t → ∞. By z-observable we
mean that if w(·) = 0, (·) = 0, then x(·) = 0. If (G,K) is γ-dissipative and z-detectable,
then (G,K) is weakly internally stable (see [31, Theorem 2.1.3]).

Solutions to this problem are descrbed in [46], [4], [31].

4.3 The Solution for Linear Systems

We recall here the well-known solution to the H∞ control problem for linear systems, see
[19], [45], [30], etc. The class of linear systems considered are of the form

G :


ẋ = Ax+B1w +B2u

z = C1x+D12u

y = C2x+D21w.

(124)

4.3.1 Problem Formulation

The class of admissible controllers K are those with finite dimensional linear state space
realizations

K :


η̇ = AKη +B1Ky +B2Ku

u = CK +DKy

Given γ > 0, the H∞ control problem for G is to find, if possible, a controller K such
that the resulting closed loop system (G,K) : w 7→ z satisfies:

(i) Dissipation: The required dissipation property is expressed in the frequency domain
in terms of the H∞ norm of the closed loop transfer function (G,K)(s) as follows:

‖ (G,K) ‖H∞= sup
ω∈R

σmax[(G,K)(jω)] < γ.

(ii) Stability: We require that the closed loop system

(G,K) is internally stable.
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4.3.2 Background on Riccati Equations

Recall a few facts about Riccati equations. An algebraic Riccati equation

Σ A+ AΣ + Σ R Σ +Q = 0 (125)

with real matrix entries A,R,Q and R,Q selfadjoint, meeting suitable positivity and
technical conditions (see, e.g., [54, Chapter 13]), has upper and lower solutions Σa,Σr so
that any other self adjoint solution Σ lies between them

Σa ≤ Σ ≤ Σr.

The bottom solution is called the stabilizing solution because it has and is characterized
by the property

A+RΣa (126)

is asymptotically stable. Likewise Σr is antistabilizing in that

−(A+RΣr) (127)

is asymptotically stable.

4.3.3 Standard Assumptions

There are a number of “standard assumptions” that are needed for the necessity and
sufficiency theorems about H∞ control. These can be expressed in various ways and here
we follow [45].

The first two conditions concern the rank of the matrices D12 and D21:

D′12D12 = E1 > 0, (128)

D21D
′
21 = E2 > 0. (129)

Next are two important technical conditions which take the form

rank

A− jωI B2

C1 D12

 = n+m for all ω ≥ 0, (130)

and

rank

A− jωI B1

C2 D21

 = n+ l for all ω ≥ 0. (131)

These two conditions are commonly used in LQG control and filtering, and concern the
controllability and observability of underlying systems.
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4.3.4 Problem Solution

The necessary and sufficient conditions for solvability of the H∞ problem under the stan-
dard assumptions are:

Condition 1: State feedback Control. There existsXe ≥ 0 solving the control-type Riccati
equation

(A−B2E
−1
1 D′12C1)

′Xe +Xe(A−B2E
−1
1 D′12C1)

+Xe(
1
γ2B1B

′
1 −B2E

−1
1 B′2)Xe + C ′1(I −D12E

−1
1 D′12)C1 = 0

(132)

which is stabilizing, i.e.,

A−B2E
−1
1 D′12C1 + (γ−2B1B

′
1 −B2E

−1
1 B′2)Xe is asymptotically stable. (133)

Condition 2: State Estimation. There exists Ye ≥ 0 solving the filter-type Riccati
equation

(A−B1D
′
21E

−1
2 C2)Ye + Ye(A−B1D

′
21‘E

−1
2 C2)

′

+Ye(γ
−2C ′1C1 − C ′2E

−1
2 C2)Ye +B1[I −D′21E

−1
2 D21]B

′
1 = 0

(134)

which is stabilizing, i.e.,

A−B1D
′
21E

−1
2 C2 + Ye(γ

−2C ′1C1 − C ′2E
−1
2 C2) is asymptotically stable. (135)

Condition 3: Coupling. The matrix XeYe has spectral radius strictly less than γ.

Theorem 4.1 ([19], [45], [30]) The H∞ control problem for G, meeting certain techni-
cal conditions is solvable if and only if the above three conditions are satisfied. If these
conditions are met, one controller, called the central controller, is given by

˙̄x = (A−B2E
−1
1 D′21C1 + (γ−2B1B

′
1 −B2E

−1
1 B′1)Xe)x̄

+(I − γ−2YeXe)
−1(B1D

′
21 + YeC

′
2)E

−1
2 (y − [C2 +D21B

′
1Xe]x̄)

+(I − γ−2YeXe)
−1(B2 + γ−2YeC

′
1D12)(u+ E−1

1 [D′12C1 +B′2Xe]x̄),

u = −E−1
1 [D′12C1 +B′2Xe]x̄.

(136)

It is important to notice that the filter for the H∞ controller in (136) is not the Kalman
filter. This solution was first given in [29], [19].
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4.4 Risk-Sensitive Stochastic Control and Robustness

An important connection between the deterministicH∞ problem and the stochastic LEQG
problem was discovered by Glover and Doyle, [29]. This can be seen by comparing the
solutions to each problem: (136) and (117) with the identifications γ = 1/

√
µ,

B1 =
(
G 0

)
, B2 = B, (137)

C1 =

(
P 1/2

0

)
, D12 =

(
0

Q1/2

)
, (138)

C2 = C, D21 =
(

0 I
)
. (139)

Both problems are equivalent to dynamic games, [30], [4]. Connections with algebraic
Riccati equations and disturbance attenuation were discovered in [44].

Mathematically, what underlies this connection is the interpretation of the risk-sensitive
problem as an equivalent stochastic dynamic game. In general terms, this corresponds to
a general convex duality formula (e.g., see [20, Chapter 1.4]):

log EP[ef ] = sup
Q
{EQ[f ]−H(Q ‖ P)} (140)

where P and Q are probability distributions, and where the relative entropy is defined by
(e.g., see [42, Chapter 11])

H(Q ‖ P) = EQ[log
dQ

dP
].

The duality formula (140) implies

log EP[ef ] ≥ EQ[f ]−H(Q ‖ P) (141)

for any probability distribution Q which is absolutely continuous with respect to P.
We let f be an integral of quadratic function

f = µ

∫ T

0

[x′(t)Px(t) + u′(t)Qu(t)]dt,

and let P be a probability distribution corresponding to a nominal model used for con-
troller design. We also set Q to be probability distribution corresponding to the true
physical system, with deterministic disturbance w shifting the mean of the noise. Then

H(Q ‖ P) =

∫ T

0

|w(t)|2dt, (142)

and (141) implies the gain-type inequality [21], [11]:

Etrue[

∫ T

0

[x′(t)Px(t) + u′(t)Qu(t)]dt] ≤ 1

µ
{log Jµ +

∫ T

0

|w(t)|2dt}; (143)

cf. (123).
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This shows that the performance (evaluated as a LQG mean with respect to the the
true distribution Q) of the LEQG controller (designed assuming the distribution P) when
applied to a real system is bounded from above by the sum of two terms. The first term
is a constant determined by the optimal LEQG cost, while the second is a measure of the
size of the “uncertainty”. This second term is zero under nominal conditions (w = 0).
See [11], [21] for further details.
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5 Optimal Feedback Control of Quantum Systems

References for this section of the notes include [5], [35], [36], [42].

5.1 Preliminaries

An operator T on a Hilbert space H is positive if 〈ψ, Tψ〉 ≥ 0 for all ψ ∈ H. A
generalized measurement is defined as follows [42, section 2.2.3]. Let {Mn} be a collection
of operators such that ∑

n

M †
nMn = I. (144)

The probability of outcome n when the system is in state ρ is

Prob(n) = 〈ρ,M †
nMn〉, (145)

and the state of the system after the measurement outcome n is obtained is

ρ′(n) =
MnρM

†
n

Prob(n)
. (146)

A positive operator valued measure (POVM) [42, section 2.2.6] is a collection {Em} of
positive operators En such that ∑

n

En = I. (147)

A generalized measurement {Mn} defines a POVM {En} via En = M †
nMn. A POVM may

define many generalized measurements, one of which is obtained by taking square roots.
It is straightforward to see that an orthogonal projective measurement {Pn} (a PVM)

defines a POVM and a generalized measurement.
Let Mn denote the set of n× n complex matrices.
A linear map Γ mapping operators on H to operators is called positive map if Γ(A) is

positive for all positive operators A on H. Γ is completely positive (c.p.), i.e. (Γ⊗In)(A)
is positive for any positive operator A on H⊗Mn, for any n.

A quantum operation [34, section 3.1.2], [42, section 8.2.4] is a c.p. map Γ such
that 0 ≤ tr[Γ(A)] ≤ tr[A] for all positive operators A on H. A dynamic map or trace-
preserving operation is a quantum operation that satisfies tr[Γ(A)] = tr[A], [34, section
3.1.2].

Every c.p. map Γ can be expressed in operator-sum form

Γ(ρ) =
∑

n

MnρM
†
n (148)

for suitable operators {Mn}, [34, Corollary 3.1.1]. If Γ is an operation, then
∑

nM
†
nMn ≤

I, [42, Theorem 8.1], [34, page 74] and if it is a trace-preserving operation then
∑

nM
†
nMn =
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I. Note that if {Mn} is a generalized measurement, then the state reduction can be ex-
pressed as

ρ′(n) =
Γ(n)ρ

〈Γ(n)ρ, I〉
, (149)

where Γ(n) = MnρM
†
n is a quantum operation.

Please note that use of the above terminology varies somewhat in the literature, with
some differences in the definitions. For instance, some authors may defined all operations
to be normalized tr[Γ(A)] = tr[A].

Quantum operations and c.p. maps Γ are associated with adjoints Γ† via

〈Γρ,X〉 = 〈ρ,Γ†X〉 (150)

for states ρ and operators X. This is the basic Schrodinger-Heisenburg duality.

5.2 The Feedback Control Problem

We consider the optimal control of a quantum system using standard digital or analog
electronics, Figure 10.

feedback controller K

-

�

u y

input outputquantum system

(nanoscale physical device)

(digital or analog electronics)

Figure 10: Feedback control of a quantum system
.

The problem is formulated as follows:

1. We use a simple discrete time model, and we assume all variables are discrete-valued.
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2. Evolution of the quantum system is interleaved with measurements.

3. The controller is a causal function of the measurement data, so that

uk = Kk(y1, . . . , yk)

4. The quantum system dynamics are modelled by a controlled quantum operation
Γ(u, y). This can include the effects of measurement and an external environment.
For fixed u, y it is a completely positive map (preserves positivity) and satisfies the
normalization condition ∑

y∈Y

〈Γ(u, y)ω, I〉 = 〈ω, I〉 = 1 (151)

The quantity
p(y|u, ω) = 〈Γ(u, y)ω, I〉. (152)

is a conditional probability distribution on the measurement values (depends on
current input value and state).

5. The performance objective J(K) can be expressed in terms of the conditional states.
The objective is to be minimized to obtain the desired optimal controller K∗.

5.3 Conditional Dynamics

5.3.1 Controlled State Transfer

The idea is that if the quantum system is in state ωk at time k, and at this time the
control value uk is applied, a measurement outcome yk+1 will be recorded, and the system
will transfer to a new state ωk+1. The probability of yk+1 is p(yk+1|uk, ωk).

Selective or conditional evolution means that the new state ωk+1 depends on the value
of the measurement yk+1, and we write this dependance as follows:

ωk+1 = ΛΓ(uk, yk+1)ωk, (153)

where

ΛΓ(u, y)ω =
Γ(u, y)ω

p(y|u, ω)
. (154)

Equation (153) is a discrete time stochastic master equation (SME), or quantum filtering
equation.

Example 5.1 Consider the operator Γ(u, y) is given by

Γ(u, y)ω =
∑
a,b

q(y|a)PaE
u
b ωE

u†
b Pa (155)
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where ω is a state, and the adjoint is given by

Γ†(u, y)B =
∑
a,b

q(y|a)Eu†
b PaBPaE

u
b (156)

where B is an observable. Here:

1. Eu
b are controlled operators that satisfy

∑
bE

u †
b Eu

b = I. They can be used to model
the influence of an environment on the system via

Euω =
∑

b

Eu
b ωE

u †
b (157)

The simplest case is Eu
b = T u for all b, which corresponds simply to closed unitary

evolution with no environmental influence:

Euω = T u †ωT u.

2. An observable A is measured. It is assumed to have a discrete non-degenerate
spectrum {a}. The normalized eigenvectors are |a〉, with projections Pa = |a〉〈a|
(Pa|ψ〉 = 〈a|ψ〉|a〉).

3. The measurement of A is imperfect; instead values y are measured with probabilities
q(y|a). The kernels satisfy

∑
y q(y|a) = 1 for all a.

�

Example 5.2 (Two-state system.) We now describe a specific instance of Example 5.1,
viz. a two-state system and measurement device, where it is desired to use feedback
control to put the system into a given state.

A particle beam is passed through a Stern-Gerlach device, which results in one beam
of particles in the up state, and one beam in the down state. It is desired to put all
particles into the up state. In the absence of measurement noise, the following simple
feedback scheme [52] achieves this objective: the beam of particles in the up state is
subsequently left alone, while the beam in the down state is subject to a further device
which will result in a change of spin direction from down to up. The final outcome of this
feedback arrangement is that all particles are in the up state.

We extend this example by accommodating repeated noisy measurements. Physically,
the noisy measurements might arise from imperfectly separated beams, where a proportion
of each beam contaminates the other, and/or from interference or noise affecting sensors.

The pure states of the system are of the form

|ψ〉 = c−1| − 1〉+ c1|1〉 ≡
(
c−1

c1

)
.
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The states | − 1〉 and |1〉 are eigenstates of the observable

A =

(
−1 0
0 1

)
(158)

corresponding to ideal measurement values a = −1 and a = 1. It is desired to put the
system into the state

|1〉 =

(
0
1

)
, or |1〉〈1| =

(
0 0
0 1

)
.

- -

6

?

-

ωk

Tu

uk

M-α

yk+1

ωk+1

Figure 11: Two-state system example showing the controlled unitary operator T u and the
noisy measurement device M-α with error probability α.

In this example we do not consider the effects on an external environment. We define
a controlled transfer operator Γ(u, y) as the following physical process, Figure 11. First
apply a unitary transformation T u, where the control value u = 0 means do nothing,
while u = 1 means to flip the states (quantum not gate), i.e.

T u =


(

1 0
0 1

)
if u = 0(

0 1
1 0

)
if u = 1.

We then make an imperfect measurement corresponding to the observable A. We model
this by an ideal device (e.g. Stern-Gerlach) with projection operators

P−1 =

(
1 0
0 0

)
, P1 =

(
0 0
0 1

)
followed by a memoryless channel with error probability kernels

q(−1| − 1) = 1− α
q(−1|1) = α
q(1| − 1) = α
q(1|1) = 1− α
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where 0 ≤ α ≤ 1 is the probability of a measurement error (cf. [42, Figure 8.1]).
The controlled transfer operator is therefore (from (155))

Γ(u, y)ω = q(y| − 1)P−1T
uωT u †P−1 + q(y|1)P1T

uωT u †P1.

In this example, the control u can take the values 0 or 1, and output y has values −1 or
1 (U = {0, 1}), Y = {−1, 1}).

If we write a general density matrix as

ω =

(
ω11 ω12

ω∗12 ω22

)
, (159)

then the controlled operators Γ(u, y) are given explicitly by

Γ(0,−1)ω =

(
(1− α)ω11 0

0 αω22

)
Γ(0, 1)ω =

(
αω11 0

0 (1− α)ω22

)
Γ(1,−1)ω =

(
(1− α)ω22 0

0 αω11

)
Γ(1, 1)ω =

(
αω22 0

0 (1− α)ω11

)
�

5.3.2 Feedback Control

In the above description of the quantum system (153), we have not described how the
controls uk are determined by the measurements yk via a feedback controller K. We now
do this.

Feedback controllers should be causal, i.e., the current control value uk cannot depend
on future values of the measurements yk+1, yk+2, . . .. On a time interval 0 ≤ k ≤ M − 1
this is expressed as follows:

K = {K0, K1, . . . , KM−1}

where
u0 = K0

u1 = K1(y1)
u2 = K2(y1, y2)

etc.

To simplify notation, we often write sequences uk1 , uk1+1, . . . , uk2 as uk1,k2 . Then we
can write uk = Kk(y1,k). A controller K can be restricted to subintervals k ≤ j ≤ M by
fixing (or omitting) the first arguments in the obvious way. We denote by K the class of
all such feedback controllers.
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ω0 p1 ω1 p2 ω2

2α(1− α) ω
(0,−1),(1,−1)
2

ω0
1
2
ω

(0,−1)
1 α2 + (1− α)2 ω

(0,−1),(1,1)
2

1
2

ω
(0,1)
1 2α(1− α) ω

(0,1),(0,−1)
2

α2 + (1− α)2 ω
(0,1),(0,1)
2

ρ0 = ω0 ρ1 ρ2

Table 1: State evolution under the controller K̄.

A feedback controller K in closed loop with the quantum system, Figure 10, operates
as follows. The given initial state ω0 and controller K are sufficient to define random
sequences of states ω0,M , inputs u0,M−1 and outputs y1,M over a given time interval 0 ≤
k ≤ M iteratively as follows. The control value u0 is determined by K0 (no observations
are involved yet), and it is applied to the quantum system, which responds by selecting
y1 at random according to the distribution p(y1|u0, ω0). This then determines the next
state ω1 via (153). Next u1 is given by K1(y1), and applied to the system. This process
is repeated until the final time.

The controller K therefore determines controlled stochastic processes ωk, uk and yk

on the interval 0 ≤ k ≤ M . Expectation with respect to the associated probability
distribution is denoted EK

ω0,0. The state sequence ωk is a controlled Markov process.
One way a controller K can be constructed is using a function

uk = u(ωk, k)

where ωk is given by (153) with initial state ω0. This controller is denoted Ku
ω0

. The SME
equation (153) forms part of this controller, viz. its dynamics, and must be implemented
with suitable technology (e.g. digital computer). Controllers of this type are said to have
a separation structure, where the controller can be decomposed into an estimation part
(i.e. filtering via (153)) and a control part (i.e. the function u). The separation structure
arises naturally from the dynamic programming techniques, as we shall see.

Example 5.3 (Two-state system with feedback, Example 5.2 continued.) We consider a
particular feedback controller K̄ for a time horizon M = 2 defined by

u0 = K̄0 = 0, u1 = K̄1(y1) =

{
0 if y1 = 1
1 if y1 = −1.

(160)

We apply K̄ to the system with initial pure state

|ψ0〉 =
1√
2
| − 1〉+

1√
2
|1〉, or ω0 = 1

2

(
1 1
1 1

)
. (161)

The result is shown in Table 1, which displays the resulting conditional states

ω
(u0,y1)
1 = ΛΓ(u0, y1)ω0,

ω
(u0,y1),(u1,y2)
2 = ΛΓ(u1, y2)ω

(u0,y1)
1
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and the associated probabilities. Explicitly, the terms shown in Table 1 are:

p1 = p(y1|u0, ω0), p2 = p(y2|u1, ω1)

ω
(0,−1)
1 =

(
(1− α) 0

0 α

)
, ω

(0,1)
1 =

(
α 0
0 (1− α)

)
ω

(0,−1),(1,−1)
2 = ω

(0,1),(0,−1)
2 = 1

2

(
1 0
0 1

)
,

ω
(0,−1),(1,1)
2 = ω

(0,1),(0,1)
2

=
1

α2 + (1− α)2

(
α2 0
0 (1− α)2

)
.

Also shown are the non-selective states:

ρ0 = ω0

ρ1 = p(−1|u0, ω0)ω
(0,−1)
1 + p(1|u0, ω0)ω

(0,1)
1

= 1
2

(
1 0
0 1

)
ρ2 = p(−1|1, ω(0,−1)

1 )ω
(0,−1),(1,−1)
2

+p(1|1, ω(0,−1)
1 )ω

(0,−1),(1,1)
2

+p(−1|0, ω(0,1)
1 )ω

(0,1),(0,−1)
2

+p(1|0, ω(0,1)
1 )ω

(0,1),(0,1)
2

= 1
2

(
α2 + α(1− α) 0

0 α(1− α) + (1− α)2

)
.

(162)

At time k = 0 the control u = 0 is applied. If y1 = −1 is observed, as a result of
the imperfect measurement, the system moves to the state ω

(0,−1)
1 . Since y1 = −1, the

controller K̄ (160) gives u1 = 1. This results in the states ω
(0,−1),(1,−1)
2 or ω

(0,−1),(1,1)
2 ,

depending on the outcome of the second measurement y2. If, on the other hand, y1 = 1 is
observed, the system moves to the state ω

(0,1)
1 . Since y1 = 1, the controller K̄ (160) gives

u1 = 0, and hence ω
(0,1),(0,−1)
2 or ω

(0,1),(0,1)
2 , again depending on the outcome of the second

measurement y2. This is illustrated in Figure 12.
Note that when α = 0 (perfect measurements), the feedback system terminates in the

desired pure state ρ2 = |1〉〈1|, as discussed above. The role of feedback control is clearly
demonstrated here. With imperfect measurements, 0 < α < 1, the system terminates
in the mixed state ρ2 given by (162), with the degree of mixing (indicating the expected
degradation in performance) depending on the measurement error probability parameter
α:

trρ2
2 = (α2 + α(1− α))2 + (α(1− α) + (1− α)2)2

< 1 if 0 < α < 1
= 1 if α = 0.

�
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−1 −1

ω0 ρ2ω̃2

Figure 12: Physical realization of the two stages of the two-state system with feedback
using controller K̄. Due to the merging of the beams in the second stage, we have the
intermediate state ω̃2 = 1

2
ω

(0,−1),(1,−1)
2 + 1

2
ω

(0,1),(0,−1)
2 if y2 = −1 (with probability 2α(1−α)),

or ω̃2 = 1
2
ω

(0,−1),(1,1)
2 + 1

2
ω

(0,1),(0,1)
2 if y2 = 1 (with probability α2 + (1− α)2).

5.4 Optimal Control

In this section we summarize dynamic programming results for a well-known type of finite
time horizon optimal control problem, [5, 38]. The optimal control problem discussed here
can be considered to be a prototype problem illustrating measurement feedback in the
quantum context. The dynamic programming methods used in this paper for solving the
optimal control problems are standard.

We define a cost function to be a non-negative observable L(u) that can depend on
the control u. The cost function encodes the designer’s control objective. We also use a
non-negative observable N to define a cost for the final state.

Example 5.4 (Two-state system with feedback, Example 5.3 continued.) To set up the
cost function L(u) to reflect our objective of regulating the system to the desired pure
state |1〉, we define

X =
1

2
(A− 1.I) =

(
−1 0
0 0

)
where A is the observable corresponding to the projective measurement (158). We note
that the expected value of X2 is

〈1|X2|1〉 = tr[X2|1〉〈1|] = 0
〈 − 1|X2| − 1〉 = tr[X2| − 1〉〈 − 1|] = 1

which gives zero cost to the desired state, and nonzero cost to the undesired state. We
shall also introduce a cost of control action, as follows:

c(u) =

{
0 if u = 0
p if u = 1

where p > 0. This gives zero cost for doing nothing, and a nonzero cost for the flip
operation. Thus we define the cost function to be

L(u) = X2 + c(u)I (163)
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and the cost for the final state is defined to be

N = X2.

This modifies our earlier objective of putting the system into the desired state by including
a penalty for control action. �

Let M > 0 be a positive integer indicating a finite time interval k = 0, . . . ,M . Given
a sequence of control values u0,M−1 = u0, . . . , uM−1 and measurements y1,M = y1, . . . , yM ,
define the risk-neutral cost functional

Jω,0(K) = EK
ω,0[

M−1∑
i=0

〈ωi, L(ui)〉+ 〈ωM , N〉], (164)

where ωi, i = 0, . . . ,M is the solution of the system dynamics (153) with initial state
ω0 = ω under the action of a controller K. This is an appropriate quantum generalization
of the classical LQG type cost. The objective is to minimize this functional over all
measurement feedback controllers K ∈ K.

Following [5] it is convenient to rewrite the cost functional (164). For each k, given a se-
quence of control values uk,M−1 = uk, . . . , uM−1 and measurements yk+1,M = yk+1, . . . , yM ,
define a random sequence of observables Qk by the recursion ([5, equation (3.1)])

Qk = Γ†(uk, yk+1)Qk+1 + L(uk), 0 ≤ k ≤M − 1
QM = N

(165)

When useful, we write
Qk = Qk(uk,M−1, yk+1,M)

to indicate dependence on the input and outputs. Qk may be called a cost observable.
The cost functional (164) is given by

Jω,0(K) =
∑

y1,M∈YM

〈ω,Q0(K(y1,M)0,M−1, y1,M)〉 (166)

Here and elsewhere we use abbreviations of the form

K(y1,M)0,M−1 = (K0, K1(y1), . . . , KM−1(y1,M−1))

Remark 5.5 The cost observable Qk given by (165) and the expression in (166) is anal-
ogous to the familiar Heisenberg picture used in quantum physics. It is very natural from
the point of view of dynamic programming, and indeed (164) and (166) are related by
iterating (165). Here is the first step:

〈ω0, Q0〉 = 〈ω0,Γ
†(u0, y1)Q1 + L(u0)〉

= 〈ω0, L(u0)〉+ 〈Γ(u0, y1)ω0, Q1〉
= 〈ω0, L(u0)〉+ 〈ω1, Q1〉p(y1|u0, ω0)

where ω1 = ΛΓ(u0, y1)ω0 and p(y1|u0, ω0) is given by (152). �
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The key idea of dynamic programming is to look at the current state at a current time
0 ≤ k ≤ M − 1 and to optimize the remaining cost from the current time to the final
time. This leads to an iterative solution. Accordingly, we define, for each 0 ≤ k ≤ M ,
the cost to go incurred by a controller K (restricted to k ≤ l ≤M − 1) to be

Jω,k(K) =
∑

yk+1,M∈YM−k

〈ω,Qk(K(yk+1,M)k,M−1, yk+1,M)〉 (167)

The dynamic programming equation associated with this risk-neutral problem is

V (ω, k) = inf
u∈U

{〈ω,L(u)〉 +
∑
y∈Y

V (ΛΓ(u, y)ω, k + 1)p(y|u, ω)},

V (ω,M) = 〈ω,N〉
(168)

where 0 ≤ k ≤ M − 1. This is the fundamental equation from which optimality or
otherwise of a controller can be determined.

Let V be the solution to the dynamic programming equation (168). Then for any
controller K ∈ K we have

V (ω, k) ≤ Jω,k(K). (169)

If we assume in addition that a minimizer

u∗(ω, k) ∈ argmin
u∈U

{〈ω,L(u)〉+
∑
y∈Y

V (ΛΓ(u, y)ω, k + 1)p(y|u, ω))} (170)

exists3 for all ω, 0 ≤ k ≤M − 1, then the separation structure controller Ku∗
ω0

defined by
(170) is optimal, i.e.

Jω0,0(K
u∗

ω0
) = V (ω0, 0) ≤ Jω0,0(K) (171)

for all K ∈ K.

Example 5.6 (Two-state system with feedback, Example 5.4 continued.) We solve the
dynamic programming equation (168) and determine the optimal feedback controls as
follows. For k = M = 2 we have

V (ω, 2) = 〈ω,X2〉 = ω11

and hence for k = 1
V (ω, 1) = ω11 + min[V0(ω, 1), V1(ω, 1)]

where where V0(ω, 1), V1(ω, 1) are given in Appendix 5.5. Hence we obtain

u∗(ω, 1) =

{
0 if V0(ω, 1) ≤ V1(ω, 1)
1 if V0(ω, 1) > V1(ω, 1).

At time k = 0 we have

V (ω, 0) = ω11 + min[V0(ω, 0), V1(ω, 0)]

3The notation argminu∈U f(u) means the subset of values from U minimizing f .
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where V0(ω, 0), V1(ω, 0) are given in Appendix 5.5, which gives

u∗(ω, 0) =

{
0 if V0(ω, 0) ≤ V1(ω, 0)
1 if V0(ω, 0) > V1(ω, 0).

The optimal risk-neutral feedback controller is given by

u0 = Ku∗

ω0,0 = u∗(ω0, 0), u1 = Ku∗

ω0,1(y1) = u∗(ω1, 1)

where ω1 = ΛΓ(u0, y1)ω0. Note that the control u1 depends on y1 through the conditional
state ω1 (separation structure). A physical implementation of the quantum system with
optimal risk-neutral feedback is shown in Figure 13.

cc --
6
?-

-

- 6
?

-
?

6

-

6

?

M-αM-α 1 1

−1 −1

ω0 ρ2ω̃2ω1

Tu1

Tu1

physical system

u∗(ω1, 1)ω0 → ω
(0,−1)
1

u∗(ω1, 1)ω0 → ω
(0,1)
1

filter control

y1 = 1 u1

u1y1 = −1

filter control

Figure 13: Physical realization of the two stages of the two-state system with feedback
using the optimal risk-neutral controller Ku∗

ω0
(with ω0 given by (161), we have u0 =

u∗(ω0, 0) = 0, u1 = u∗(ω1, 1)).

Let’s consider the special case α = 0 and p = 0, with initial state (161). We then find
that V0(ω0, 0) = V1(ω0, 0) = 0.5, and hence we take u∗(ω0, 0) = 0; i.e. u0 = 0.

Next, if y1 = −1 is observed, we have ω1 = |−1〉〈−1|, V0(ω1, 1) = 1 and V1(ω1, 1) = 0.
Hence we take u∗(ω1, 1) = 1, i.e. u1 = 1. However, if y1 = 1 is observed, we have
ω1 = |1〉〈1|, V0(ω1, 1) = 0 and V1(ω1, 1) = 1; and hence we take u∗(ω1, 1) = 0, i.e. u1 = 0.
In either case we achieve the desired state ρ2 = ω2 = |1〉〈1|.

This action is the same as that seen before for the controller K̄. The same controller
is obtained for 0 < α < 0.5 and p = 0, but ω2 will be a mixed state. If p 6= 0 the optimal
controller Ku∗

ω0
will result in control actions that in general differ from those of K̄. �
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eqn. (153)
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physical system

control

u∗(ωk, k)

filter
state ωk

eqn. (153)

feedback controller Ku∗

ω0

Figure 14: Optimal risk-neutral controller Ku∗
ω0

showing separation structure and states
of the physical system ωk and filter ωk.

5.5 Appendix: Formulas for the Two-State System with Feed-
back Example

The following quantities were used in the solution of the risk-neutral problem, Example
5.6:

V0(ω, 1) = ω11, V1(ω, 1) = ω22 + p

V0(ω, 0) = ω11 + min[αω11, p+ ω22 − αω22]
+ min[ω11 − αω11, p+ αω22]

V1(ω, 0) = p+ αω11 + ω22 − αω22

+ min[αω11, p+ ω22 − αω22]
+ min[p+ αω11, ω22 − αω22]
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6 Optimal Risk-Sensitive Feedback Control of Quan-

tum Systems

References for this section include [36], [7], [12], [41], [43], [34], [13].

6.1 System Model

We consider the problem of controlling an open quantum system S (e.g. an atom) that
interacts with an electromagnetic field B. We suppose that the evolution can be influenced
by control variables u that enter the system HamiltonianH(u). The field B is continuously
monitored, providing weak measurements of the system S, the results y of which are
available to the controller K, which processes this information to produce the control
actions u. The control in general is allowed to be a causal function of the measurement
trajectory. The problem is to find a controller K so that it minimizes a risk-sensitive cost
function Jµ(K), which will be defined below.

In order to describe the quantum model for this problem, we need to consider how sys-
tem variables evolve with time. System variables (e.g. position, momentum) are operators
X defined on the Hilbert space underlying the system S. The evolution is determined by
interaction with the electromagnetic field, the influence of which is modelled by quantum
white noise. The quantum equations analogous to classical models (e.g. (108), (109)) are

dX(t) = (−X(t)K(t)−K†(t)X(t) +M †(t)X(t)M(t))dt

+[X(t),M(t)]dB†(t)− [X(t),M †(t)]dB(t)

and

dY (t) = (M(t) +M †(t))dt+ dQ(t). (172)

We now explain these equations which use the framework of quantum stochastic differen-
tial equations, [28], [43].

Let u = u(·) be a control signal (a function of time t with values u(t) ∈ U). The
quantum model we use considers the system plus field as a total closed system with
unitary operator U(t) = Uu(t) (interaction picture), which solves the quantum stochastic
differential equation (QSDE) [28, eq. (11.2.7)], [43, sec. 26],

dU(t) = {−K(u(t))dt+MdB†(t)−M †dB(t)}U(t) (173)

with initial condition U(0) = I, where

K(u) =
i

~
H(u) +

1

2
M †M.

Here, M is a system operator which together with the field operator b(t) = Ḃ(t), model
the interaction of the system with the channel. We denote adjoints with the symbol †.
Note that equation (173) is written in Ito form (see, e.g. [27, Chapter 4]), as will all
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stochastic differential equations in these notes. With vacuum initialization of the field
channel, the non-zero Ito product is, [28, eq. (11.2.6)], dB(t)dB†(t) = dt. Then system
operators X evolve according to

X(t) = jt(u,X) = U †(t)XU(t),

and satisfy the quantum Langevin equation (QLE) (172), where M(t) = jt(u,M), and
K(t) = jt(u,K(u(t))).

Let v denote the vacuum state for the field, and let π0 be an arbitrary initial system
state. The initial state of the total system is ρ0 = π0 ⊗ vv†. We write, for operators A
and B,

〈A,B〉 = tr[A†B].

We regard the field operator B(t) as an input field [28, Section 11.3.2], with corre-
sponding output field A(t) = jt(u,B(t)). The self adjoint real quadratures of the input
field is defined by Q(t) = B(t) + B†(t). For the output field real quadrature we write
Y (t) = jt(u,Q(t)), also self adjoint. This process satisfies the QSDE (172). The input
quadrature is self commutative [Q(t), Q(s)] = 0 for all s, t, and corresponds to quan-
tum Brownian motion when the field is initialized in the vacuum state. Indeed, if ΩT

denotes the set of all Wiener paths, the probability of a subset F ⊂ ΩT of paths is
P0(F ) = 〈vv†, PQ

T (F )〉, where PQ
T (F ) is the projection operator associated with F and

Q(s), 0 ≤ s ≤ T . The probability distribution P0 is the Wiener distribution, under which
the increments q(t)−q(s), 0 ≤ s ≤ t ≤ T , are independent, Gaussian, with zero mean and
covariance (t− s). The output fields Y (t) are also self commutative, and define a proba-
bility measure P by P(F ) = 〈ρ0, P

Y
T (F )〉, where P Y

T (F ) is the corresponding projection
operator.

The input and output fields satisfy the non-demolition conditions [Q(t), X] = 0, for
all t ≥ 0, and [Y (s), X(t)] = 0 for all s ≤ t. This means that we can continuously monitor
the output field Y (t) without demolishing the system, say by homodyne detection. The
results of the measurement is a real record y(·) ∈ ΩT , which is used by a (classical)
controller K to produce the input control signal u(t) by u(t) = K(t, y[0,t]). The notation
used here is meant to indicate the causal dependence of the control on the measurements;
y[0,t] indicates the segment of the measurement signal on the time interval [0, t], so in effect
the controller K = {K(t, ·)} is a family of functions. The measurement record is given by
the SDE

dy(t) = tr[(M +M †)πt]dt+ dw(t), (174)

where w(t) is a Wiener process under P and

dπt = − i

~
[H(u(t)), πt]dt+D[M ]πtdt +H[M ]πtdw(t), (175)

where D[c]ρ = cρc†− 1
2
(c†cρ+ ρc†c), and H[c]ρ = cρ+ ρc†− ρtr(cρ+ ρc†). Equation (175)

stochastic master equation or Belavkin quantum filtering equation (e.g. [34, Chapter
5.2.5]).
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In unnormalised form, the Belavkin filter is

dσt = (−K(u(t))σt − σtK
†(u(t)) +MσtM

†)dt+ (Mσt + σtM
†)dy(t). (176)

Here, y is a standard Wiener process under the reference distribution P0. The normalized
conditional state an be recovered by

πt =
σt

〈σt, 1〉
. (177)

6.2 Risk-Neutral Optimal Control

In this section we briefly discuss a risk-neutral problem of the type that has been studied
by [5], [6], [18], [13].

Let C1(u) be a non-negative self-adjoint system operator depending on the control
value u, and let C2 be a non-negative self-adjoint system operator. These so-called cost
operators are chosen to reflect the performance objectives, and explicitly include the
control so that a balance between performance and control cost can be achieved. The
quantity ∫ T

0

C1(t)dt+ C2(T ), (178)

where C1(t) = jt(u,C1(u(t)), C2(t) = jt(u,C2), accumulates cost over the given time
interval and provides a penalty for the final time. The risk-neutral problem defined by
the quantum expectation

J(K) = 〈ρ0,

∫ T

0

C1(t)dt+ C2(T )〉, (179)

where ρ0 = π0 ⊗ v ⊗ v†.
The key step in solving the optimal control problem specified by (179) is a stochastic

representation followed by classical conditional expectation, which results in (recall section
3.5.1)

J(K) = E[

∫ T

0

〈πt, C1(u(t))〉dt+ 〈πT , C2〉]

= E0[

∫ T

0

〈σt, C1(u(t))〉dt+ 〈σT , C2〉] (180)

where πt and σt are the conditional states, assuming interchanges of expectations and
integrals are justified.

Dynamic programming. The risk-neutral value function is defined by

W (σ, t) = inf
K

E0
σ,t[

∫ T

t

〈σs, C1〉ds+ 〈σT , C2〉] (181)
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and the corresponding dynamic programming equation reads

∂
∂t
W (σ, t) + inf

u∈U
{LuW (σ, t) + C1(u)} = 0, 0 ≤ t < T,

W (σ, T ) = 〈σ,C2〉.
(182)

We explain the meaning of the operator Lu following classical stochastic control meth-
ods [23]. For a fixed constant control value u (i.e. u(t) = u ∈ U for all t), σt is a Markov
process with generator Lu, which is defined, when it exists, by

Luf(σ) = lim
t↓0

E0
σ,0[f(σt)]− f(σ)

t
(183)

for suitably smooth functions f(·). In fact, Luf(σ) can be calculated explicitly for f of
the form

f(σ) = g(〈σ,X1〉, . . . , 〈σ,XJ〉), (184)

where g is a smooth bounded function of vectors of length J , and X1, . . . , XJ are system
operators. It is given by

Luf(σ) = (185)

1

2

J∑
j,k=1

gjk(〈σ,X1〉, . . . , 〈σ,XJ〉)〈σ,M †Xj +XjM〉〈σ,M †Xk +XkM〉

+
J∑

j=1

gj(〈σ,X1〉, . . . , 〈σ,XJ〉)〈σ,−K(u)Xj −XjK(u) +M †XjM〉

for functions f of the form (184). Here gj and gjk denote first and second order partial
derivatives of g.

If the dynamic programming equation (182) has a sufficiently smooth solution W (σ, t),
then the optimal controller K? is given by

K? :
dσt = (−K(u(t))σt − σtK

†(u(t)) +MσtM
†)dt+ (Mσt + σtM

†)dy(t)
u(t) = u?(σµ

t , t).
(186)

where u?(σ, t) attains the minimum in (182). The dynamical part of this controller is the
Belavkin quantum filter, (176).

6.3 Risk-Sensitive Optimal Control

Instead of using the expected value of the quantity (178) as a cost function as in (179),
we consider the average of the exponential of (178) in the following way, since we wish to
generalize the LEQG cost (115). Define R(t) to be the solution of the operator differential
equation

dR(t)

dt
=
µ

2
C1(t)R(t) (187)
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with initial condition R(0) = I. Here, µ > 0 is a positive (risk) parameter. The solution
of (187) can be expressed as the time-ordered exponential

R(t) =
←

exp

(
µ

2

∫ t

0

C1(s)ds

)
.

We then define the risk-sensitive cost function to be the quantum expectation

Jµ(K) = 〈ρ0, R
†(T )eµC2(T )R(T )〉. (188)

Here, ρ0 = π0 ⊗ vv†, as above.
It is shown in [36] that the quantum expectation can be replaced by an equivalent

classical expectation, viz.
Jµ(K) = E0[〈σµ

T , e
µC2〉], (189)

where the unnormalized state σµ
t (a density operator, or information state) is the solution

of the SDE

dσµ
t = (−Kµ(u(t))σµ

t − σµ
t K

µ†(u(t)) +Mσµ
t M

†)dt+ (Mσµ
t + σµ

t M
†)dy2(t), (190)

or

dσµ
t = − i

~
[H(u(t)), σµ

t ]dt+D[M ]σµ
t dt+

µ

2
H̃[C1(u(t))]σ

µ
t dt+ H̃[M ]σµ

t dy2(t), (191)

where H̃[c]ρ = cρ+ρc†, and Kµ(u) = K(u)−µ1
2
C1(u). The initial condition is σµ(0) = π0.

The expression (189) is similar to the classical forms [8, eq. (3.4)], [37, eq. (2.10)]. Another
useful representation is given in terms of the following normalized risk-sensitive state

πµ
t =

σµ
t

〈σµ
t , 1〉

,

namely

Jµ(K) = Eµ[exp(µ

∫ T

0

tr(C1(u(t))π
µ
t )dt)〈πµ

T , e
µC2〉] (192)

where Eµ denotes expectation with respect to the probability distribution Pµ defined by
dPµ = Λµ

TdP
0, where

Λµ
T = exp(−1

2

∫ T

0

|tr[(M +M †)πµ
t ]|2dt+

∫ T

0

tr[(M +M †)πµ
t ]dy(t)).

The SDE satisfied by πµ
t is

dπµ
t = − i

~
[H(u(t)), πµ

t ]dt+D[M ]πµ
t dt+

µ

2
H[C1(u(t))]π

µ
t dt+H[M ]πµ

t dw
µ(t), (193)

where wµ(t) is a standard Wiener process with respect to Pµ defined by

dy(t) = tr[(M +M †)πµ
t ]dt+ dwµ(t). (194)
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Dynamic programming. Define the risk-sensitive value function Sµ(σ, t) for an
arbitrary initial unnormalized state σ and initial time 0 ≤ t ≤ T by

Sµ(σ, t) = inf
K

E0
σ,t[〈σ

µ
T , e

µC2〉], (195)

where σµ
T denotes the solution of (190) at time T with initial condition σµ

t = σ (we have
made explicit the dependence on the initial state and time in the expectation notation).
Note that the cost (188) is given by

Jµ(K) = E0
π0,0[〈σ

µ
T , e

µC2〉]

so that the optimal controller Kµ,? is determined by

Jµ(Kµ,?) = Sµ(π0, 0).

The method of dynamic programming in this context relates the value function at
time t and at a later time t ≤ s ≤ T along optimal trajectories via the relation

Sµ(σ, t) = inf
K

E0
σ,t[S

µ(σµ
s , s)]. (196)

This is the principle of optimality, [24, Chapter VI], [38, Chapter 6]. Note that by
definition Sµ(σ, T ) = 〈σ, eµC2〉. The dynamic programming equation is

∂
∂t
Sµ(σ, t) + inf

u∈U
Lµ;uSµ(σ, t) = 0, 0 ≤ t < T,

Sµ(σ, T ) = 〈σ, eµC2〉.
(197)

Note that in the dynamic programming PDE (197), the minimization is over the con-
trol values u, whereas in the definitions of the cost (188) and value function (195) the
minimizations are over the controllers K.

For fixed u ∈ U and for f of the form (184), we have

Lµ;uf(σ) =
1

2

J∑
j,k=1

gjk(〈σ,X1〉, . . . , 〈σ,XJ〉)〈σ,M †Xj +XjM〉〈σ,M †Xk +XkM〉

+
J∑

j=1

gj(〈σ,X1〉, . . . , 〈σ,XJ〉)〈σ,−Kµ(u)Xj −XjK
µ(u) +M †XjM〉(198)

If the dynamic programming PDE has a sufficiently smooth solution Sµ(σ, t), then the
optimal controller Kµ,? can be obtained as follows. Let uµ,?(σ, t) denote the control value
that attains the minimum in (197) for each σ, t. The optimal controller is obtained by
combining this function with the dynamics (190):

Kµ,? :
dσµ

t = (−Kµ(u(t))σµ
t − σµ

t K
µ†(u(t)) +Mσµ

t M
†)dt+ (Mσµ

t + σµ
t M

†)dy(t)
u(t) = uµ,∗(σµ

t , t).
(199)
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6.4 Control of a Two Level Atom

In this section we consider the application of the risk-sensitive control problem to the
example studied in [13], namely the feedback control of a two-level atom using a laser.

6.4.1 Setup

The amplitude and phase of the input laser can be adjusted, so via the interaction with
the laser the atom can be controlled. The real quadrature of a second field channel is
continuously monitored, say by homodyne detection, providing an indirect measurement
of the atom. The control input is complex, u = ur + iui = |u|eiargu ∈ C (the control field
channel becomes a coherent state corresponding to u). The measurement signal y2(t) is
real. It is desired to regulate the system in the σz up state | ↑ 〉 = (1, 0)T (the down state

is | ↓ 〉 = (0, 1)T , and σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
are the Pauli

matrices).
To model this example we use an additional unmeasured channel which interacts with

the atom via an operator L. The corresponding risk-sensitive filter is [36]

dσµ
t = (−Kµ(u(t))σµ

t − σµ
t K

µ†(u(t)) + Lσµ
t L
† +Mσµ

t M
†)dt

+(Mσµ
t + σµ

t M
†)dy2(t), (200)

where Kµ = i
~H(u) + 1

2
M †M + 1

2
L†L− µ

2
C1(u).

In terms of the notation used in these notes, we have

L = κfσ−, M = κsσ−, H(u) = i(u?L− uL†),

κ2
f + κ2

s = 1, σ− =

(
0 0
1 0

)
,

U = C, C1(u) = a

(
0 0
0 1

)
+ 1

2
b|u|2

(
1 0
0 1

)
,

C2 = c

(
0 0
0 1

)
, a ≥ 0, b ≥ 0, c ≥ 0.

Here, κ2
f and κ2

s are the decay rates into the control and measurement channels. The
parameters a, b and c are weights for the components of the cost. Note that 〈 ↓ |C1(u)| ↓
〉 > 0 and 〈 ↓ |C2| ↓ 〉 > 0 (if a > 0 and c > 0), while 〈 ↑ |C1(0)| ↑ 〉 = 0 and
〈 ↑ |C2| ↑ 〉 = 0, reflecting the control objective.

6.4.2 Information State

We use the framework described in previous sections to solve the optimal risk-sensitive
control problem. Since the second (u-dependent) part of C1(u) is proportional to the iden-
tity, that part commutes with all operators and it is convenient to factor its contribution
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to the risk-sensitive state by writing

σµ
t = 1

2
(n(t)I + x(t)σx + y(t)σy + z(t)σz) exp

(
1
2
µb

∫ t

0

|u(s)|2ds
)

= 1
2

(
n(t) + z(t) x(t)− iy(t)
x(t) + iy(t) n(t)− z(t)

)
exp

(
1
2
µb

∫ t

0

|u(s)|2ds
)
.

Then substitution into the SDE (190) shows that the coefficients satisfy the SDEs

dn(t) = 1
2
µa(n(t)− z(t))dt+ κsx(t)dy2(t) (201)

dx(t) = −1
2
(1− µa)x(t)dt+ 2κfur(t)z(t)dt

+κs(n(t) + z(t))dy2(t)

dy(t) = −1
2
(1− µa)y(t)dt− 2κfui(t)z(t)dt

dz(t) = −(1− 1
2
µa)z(t)dt− (1 + 1

2
µa)n(t)dt

−2κf (ur(t)x(t)− ui(t)y(t))dt− κsx(t)dy2(t).

The representation (189) reads

Jµ(K) = E0[exp

(
1
2
µ

∫ T

0

b|u(s)|2ds
)

1
2
(n(T )− z(T ))eµc]. (202)

6.4.3 Dynamic Programming

We consider the value function (195) as a function of the coefficients, i.e. Sµ(n, x, y, z, t).
In terms of these parameters, the dynamic programming equation is

∂
∂t
Sµ(n, x, y, z, t) + inf

u∈C
{Lµ;uSµ(n, x, y, z, t) + 1

2
µb|u|2Sµ(n, x, y, z, t)} = 0, 0 ≤ t < T,

Sµ(n, x, y, z, T ) = 1
2
(n− z)eµc,

(203)
where the operator Lµ;u is given, for sufficiently smooth functions f(n, z, y, z), by

Lµ;uf = 1
2
κ2

sx
2fnn + 1

2
κ2

s(n+ z)2fxx + 1
2
κ2

sx
2fzz

+κ2
sx(n+ z)fnx − κ2

sx
2fnz − κ2

s(n+ z)xfxz

+fn(1
2
µa(n− z)) + fx(−1

2
(1− µa)x+ 2κfurz)

+fy(−1
2
(1− µa)y − 2κfuiz)

+fz(−(1− 1
2
µa)z − (1 + 1

2
µa)n

−2κf (urx− uiy).

Here, the subscripts fnx, etc, refer to partial derivatives, and the arguments n, x, y, z have
been omitted.

To construct the optimal risk-sensitive controller Kµ,?, we suppose that (203) has a
smooth solution, which we write as

Sµ(n, x, y, z, t) = n exp
(µ
n
W µ(n, x, y, z, t)

)
. (204)
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The minimum over u in (203) can be explicitly evaluated by setting the derivatives of the
expression in the parentheses (it is concave) with respect to ur and ui to zero. The result
is

uµ,?
r (n, x, y, z, t) =

2κf

bn
(xW µ

z (n, x, y, z, t)− zW µ
x (n, x, y, z, t))

uµ,?
i (n, x, y, z, t) =

2κf

bn
(zW µ

y (n, x, y, z, t)− yW µ
z (n, x, y, z, t)). (205)

The optimal risk-sensitive controller is then

Kµ,? : u(t) = uµ,?
r (n(t), x(t), y(t), z(t), t) + iuµ,?

i (n(t), x(t), y(t), z(t), t), (206)

where n(t), x(t), y(t) and z(t) are given by (201).
Note that the dynamic programming equation (203) (which is a partial differential

equation of parabolic type) is solved backwards in time, using the terminal condition
specified: Sµ(n, x, y, z, T ) = 1

2
(n − z)eµc. The infimum in (203) can be removed by

substituting in the optimal control values given by the explicit formulas (205), if desired.
However, the form (203) is better suited to numerical computation, since the optimal
control structure is preserved, [40]. Note that in this example, the risk-sensitive filter
(190) is replaced by the finite-dimensional SDE (201); this fact is important for practical
computational reasons.

6.4.4 Risk-Neutral Control

For comparison, consider the risk-neutral cost for this problem. Write

σt = 1
2
(n(t)I + x(t)σx + y(t)σy + z(t)σz) . (207)

Then from the SDE (176), we find that

dn(t) = κsx(t)dy2(t) (208)

dx(t) = −1
2
x(t)dt+ 2κfur(t)z(t)dt+ κs(n(t) + z(t))dy2(t)

dy(t) = −1
2
y(t)dt− 2κfui(t)z(t)dt

dz(t) = −z(t)dt− n(t)dt− 2κf (ur(t)x(t)− ui(t)y(t))dt− κsx(t)dy2(t).

The risk-neutral representation (180) becomes

J(K) = E0[1
2

∫ T

0

(a(n(t)− z(t) + b|u(t)|2)dt

+1
2
(n(T )− z(T ))c], (209)

and the dynamic programming equation is

∂
∂t
W (n, x, y, z, t) + inf

u∈C
{LuW (n, x, y, z, t)1

2
(a(n− z) + b|u|2)} = 0, 0 ≤ t < T,

W (n, x, y, z, T ) = 1
2
(n− z)ec,

(210)
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where

Luf = 1
2
κ2

sx
2fnn + 1

2
κ2

s(n+ z)2fxx + 1
2
κ2

sx
2fzz

+κ2
sx(n+ z)fnx − κ2

sx
2fnz − κ2

s(n+ z)xfxz

+fx(−1
2
x+ 2κfurz)

+fy(−1
2
y − 2κfuiz)

+fz(−z − n− 2κf (urx− uiy)

Evaluating the minimum in (210) gives

u?
r(n, x, y, z, t) =

2κf

bn
(xWz(n, x, y, z, t)− zWx(n, x, y, z, t))

u?
i (n, x, y, z, t) =

2κf

bn
(zWy(n, x, y, z, t)− yWz(n, x, y, z, t)), (211)

cf. [13, eq. (15)]. The optimal risk-neutral controller is

K? : u(t) = u?
r(n(t), x(t), y(t), z(t), t) + iu?

i (n(t), x(t), y(t), z(t), t), (212)

where n(t), x(t), y(t) and z(t) are given by (208). Note that normalization of (208) results
in [13, eq. (7)].

Note that the expressions for the both the risk-sensitive and risk-neutral controllers
are similar, and involve a similar level of complexity for implementation. When a = 0,
the risk-sensitive SDEs (201) reduces to the risk-neutral or standard SDEs (208), though
the controllers will be different in general.

6.5 Control of a Trapped Atom

6.5.1 Setup

We now apply risk-sensitive optimal control to the problem of cooling and confinement
of a quantum mechanical oscillator undergoing position measurement considered in the
context of the linear quadratic Gaussian optimal control problem in [18]. As discussed
there, this model corresponds in an appropriate limit to an atom trapped in an optical
cavity, where the atom imparts a phase shift on the light that depends on its position and
may be detected outside the cavity, see Figure 15.

In suitable coordinates, it is desired to keep the position q near zero (confinement),
and the momentum p also near zero (cooling). A homodyne detection scheme on the light
reflected from the cavity (assumed perfect) provides information about the position q.
The Hamiltonian and measurement operators are

H =
p2

2m
+ 1

2
mω2q2 + b1u1p− b2u2q, M =

√
2kq.

Here, q and p are considered as operators. The mass of the atom is m, and ω is the angular
frequency of the harmonic motion in of the atom in its confining potential. The parameter
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Figure 15: Atom in cavity feedback control.

k describes the sensitivity of the resulting measurement of position, larger values of k
corresponding to better measurement sensitivity. This parameter can in principle be
tuned by varying the power of the laser driving the cavity. The control input is u =
(u1, u2)

T , with real coefficients b1, b2. The cost observables C1 and C2 are given by C1(u) =
1
2
(q, p)P (q, p)T + 1

2
uTQu, C2 = 0, where P and Q are positive definite symmetric matrices.

6.5.2 Information State

It is shown in [18] that the conditional state πt is Gaussian if π0 is Gaussian. It also turns
out that the risk-sensitive states σµ

t and πµ
t are Gaussian, as can be shown by lengthy

calculations. Indeed, the mean and covariance parameters of πµ
t are given by

qµ(t) = tr[qπµ
t ], pµ(t) = tr[pπµ

t ]

and

Y µ
q = tr[q2πµ

t ]− (tr[qπµ
t ])2, Y µ

p = tr[p2πµ
t ]− (tr[pπµ

t ])2,

Y µ
qp = tr[(qp+ pq)πµ

t ]− tr[qπµ
t ]tr[pπµ

t ].

It is important to realize that these are not the conditional means and covariances for
position and momentum, which correspond to the conditional state πt and are given by
[18, eqs. (55), (48)-(50)].

The differential equations satisfied by these parameters are (when P12 = 0)

dqµ = (pµ/m+ µ[P11Y
µ
q q

µ + P22Y
µ
qpp

µ] + b1u)dt+ 2Y µ
q dw

µ

dpµ = (−mω2qµ + b2u2)dt+ µ[P11Y
µ
qpq

µ + P22Y
µ
p p

µ] + 2Y µ
qpdw

µ (213)

and

Ẏ µ
q = (2/m)Y µ

qp − 8k(Y µ
q )2 + µ[P11(Y

µ
q )2 + P22(Y

µ
qp)

2 − (µ~2/4)P22]

Ẏ µ
p = −2mω2Y µ

qp − 8k(Y µ
qp)

2 + 2k~2 + µ[P22(Y
µ
p )2 + P11(Y

µ
qp)

2]− (µ~2/4)P11

Ẏ µ
qp = Y µ

p /m−mω2Y µ
q − 8kY µ

qpY
µ
q + µ[Y µ

qp(P11Y
µ
q + P22Y

µ
p )].
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The initial conditions are qµ(0) = q0, p
µ(0) = p0, Y

µ
q (0) = Yq0, Y

µ
p (0) = Yp0, and Y µ

qp(0) =
Yqp0, where q0, p0, Yq0, Yp0 and Yqp0 are the Gaussian parameters for π0.

To facilitate more compact and general notation, we write

xµ =

(
qµ

pµ

)
, Y µ =

(
Y µ

q Y µ
qp

Y µ
qp Y

µ
p

)
.

Then the above equations take the form

dxµ = ([A+ µY µP ]xµ +Bu)dt+ Y µHT (dy −Hxµdt) (214)

where dwµ = dy −Hxµdt and

˙Y µ = AY µ + Y µAT − Y µ[HTH − µP ]Y µ +GGT − (µ~2/4)ΣPΣT (215)

where

A =

(
0 1/m

−mω2 0

)
, B =

(
b1 0
0 b2

)
,

G =

(
0
~

)
, H = 2

√
2k

(
1 0

)
, Σ =

(
0 1
−1 0

)

6.5.3 Optimal LEQG Control

We consider now how the optimal control is determined. In terms of the Gaussian pa-
rameters, the cost representation (192) takes the form (omitting some immaterial terms)

Jµ(K) = Eµ[exp(
µ

2

∫ T

0

(xµ T (t)Pxµ(t) + uT (t)Qu(t))dt)] (216)

Consequently, the problem becomes a standard state feedback LEQG problem for the
system (214), (215). The solution is [8], [49], [51]:

u∗(t) = −Q−1BTXµ(t)[I − µY µ(t)Xµ(t)]−1xµ(t), (217)

where

Ẋµ + ATXµ +XµA−Xµ[BQ−1BT − µ(GGT − (µ~2/4))ΣPΣT ]Xµ + P = 0. (218)

It is important to note that this solution (217) differs from the classical LEQG solution
(117) via the µ~2 terms.

6.5.4 Robustness

Robustness of the QLEQG controller has been investigated in [51]. It can be seen from
the simulation results in Figure 16 that the QLEQG controller provides a more graceful
decline in performance (increase in average cost) than the LQG control controller as the
nominal model/phyiscal model discrepancy, β, increases. This is typical of the robust
properties of a general LEQG controller, recall section 4.4.
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