RECENT DEVELOPMENTS IN NONLINEAR

H, CONTROL*

Matthew R. JAMES*~

* Paper presented at IFAC NOLCOS, Lake Tahoe, June 1995.
Research supported in part by the Cooperative Research Centre for Robust and Adaptive Systems.

** Department of Engineering, Faculty of Engineering and Information Technology, Australian
National University, Canberra ACT 0200, Australia.

Abstract. The last few years have seen a number of exciting developments in the area known as
nonlinear Ho, control. The aim of work in this area is to design robust controllers for nonlinear
systems using generalizations of the highly successful H,, methods used in linear systems theory.
In this paper we give an overview of the problems and methods of nonlinear Ho. control, including
the Ho norm (L2 gain), stability, information state methods, and factorization. The development
of this area has involved important contributions from a number of researchers using a variety of
techniques. In addition, H,, control has spurred renewed interest in some traditional areas such as
differential games, dissipative systems, and stochastic (risk-sensitive) control.
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1. INTRODUCTION

Consider the closed loop system (G, K) : w — z
depicted in the following diagram.
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u Y

K

Here, G is the plant to be controlled, K is the
controller, w is a disturbance input, v is the con-
trolled input, z is a performance output and y is
the observed or measured outputs.

The basic problem of H,, control is the following.
Given a plant G find a controller K such that the
closed loop system (G, K) is

(1) internally stable, and
(ii) v-dissipative, i.e.,

T
L[ e as
0

T 1.1
< 774 [ oo+ )
0
for all w € Ly and all T > 0.

for some B(z) > 0 with 4(0) = 0 (the function
[ depends on K, and is a bias term account-

ing for the initial states zo of G).

The H, problem originated in the work of
(Zames, 1981) on robust control, which focused
on frequency domain ideas (this is where the Hoo
terminology comes from). This work sparked a lot
of interest, and eventually an elegant and funda-
mentally important state space solution was ob-
tained by (Doyle et al, 1989). Let us recall the
solution to a particular linear H., problem, see
(Petersen et al, 1991), (Green & Limebeer, 1994).
The plant G is described by the model

T Az + Biw + Byu

G: z = Ciz+u (1.2)

y = Chz+ w.

Under standard assumptions, the H, control
problem for G is solvable if and only if

(1) there exists X > 0 solving

(A - BzCl)IX + X(A - BZCI)
(1.3)
+X(5B1B] — BaBy)X =0

with A— ByCy + (4B, B} — By B})X stable,
(i) there exists Y > 0 solving

(A — Bng)Y + Y(A - Blc2)l
(1.4)
+Y(,Yl—20101 — CéCz)Y =0



withh A= D1b2 7T {52101 = Lol 5table,
and

(i) XY <.

The (central) controller is given by

& =(A=Bi1Cy+Y(HC(C1 — CiCs))i+

(B1 +YCy)y+ (B2 + 5z YC)u

u =—(Ci+ (B + HYC)X(1- 5YX) )i

In this paper we are interested in the H,, prob-
lem for nonlinear systems, a problem which has
attracted much interest in recent years, and it is
our purpose to review some of the main develop-
ments. For illustration, we consider the following
particular nonlinear system:

& = A(z)+ Bi(z)w + Ba(z)u
G: z = Ci(z)+u (1.5)
y = Cy(z)+w.

We assume A(0) = 0, C1(0) =0, C>(0) = 0. The

controller K is a causal map
K:ym—u, (1.6)

the structure of which is in general unspecified.
The key task is to obtain necessary and sufficient
conditions from appropriate nonlinear generaliza-
tions of the Riccati equations (1.3), (1.4). As we
shall see, these involve partial differential equa-
tions and inequalities (even infinite dimensional
ones).

An interesting and important feature of the Hy
problem is that it has close connections with dif-
ferential games, risk-sensitive stochastic control,
and dissipative systems, and as a consequence
these subjects have enjoyed renewed interest. In-
deed, they have a lot to contribute to the under-
standing of robust control.

We begin in §2 with a discussion of the H,, norm
and dissipative systems, and present some of the
main partial differential inequalities and equa-
tions. In §3 we describe the risk-sensitive index
and its relationship to the H,, and Hs norms.
The state feedback H., control problem is dis-
cussed in §4, while the output feedback problem
is treated in §5. This paper is written in a heuris-
tic, tutorial style, and mathematical technicalities
are kept to a minimum. Also, we confine our at-
tention to the so-called one block problem. For
full details, readers should consult the references.
The book (Basar & Bernhard, 1991) presents the
game theoretic approach in detail, while the book
(van der Schaft, 1996) covers a number of aspects

Ol the LICOoTy, alld tle 10ILtIICOINIE DOOK {L1CILOIL
& James, 1997) presents the information state ap-
proach in detail.

2. THE H,. NORM

Consider a nonlinear system ¥ with input w and
output z:

z = f(z)+g(z)w ‘
(2.1)
z = h(z).

We assume that f(0) = 0 and h(0) = 0.

One measure of the size of X, i.e., of the amount
of influence of w on z, is the “H,, norm”, or more
properly, the Lo gain. By definition, let us say
that || ¥ ||g. < 7 if and only if we have

T T ‘
s ROPa <ot [ P+ san) (22)

for all w € Ly, T > 0, for some 3 > 0, 5(0) =
0. Here, Lo 7 is the space of square integrable
functions on [0,T]. Then || ¥ ||, is the smallest
number v for which || X ||g_< 7.

The property (2.2) (a generalization of a time do-
main analog of the frequency domain definition of
H, norm for linear systems) can be treated effi-

ciently with the theory of dissipative systems, see
(Willems, 1972), (Hill & Moylan, 1976). Indeed,
we say that ¥ is y-dissipative (with respect to the
supply rate v*|w|* — |z|*) iff there exists a non-
negative function V(z) (called a storage function)
such that V(0) = 0 and

V(z) > SupTZO,weLg‘T{V(m(T))
(2.3)

— L [T lw(r))? — |2(r)P)dr : 2(0) = ).

Now || & ||lg.< 7 iff ¥ is y-dissipative. To see
this, if | ¥ ||g.< 7 then define (the available
storage)
Va(z) = SUPT>0,weLy 7
(2.4)

{= [T P ()P = |2(r)Pldr : 2(0) = ).

In view of (2.2) and the definition, it follows
that 0 < V,(z) < B(z), Vo(0) = 0, and by dy-
namic programming, V, satisfies (2.3); hence X
is y-dissipative. Conversely, if X is y-dissipative,

then (2.3) implies (2.2) with 8 = V.

Storage functions can be characterized by a PDI
(an infinitesimal version of (2.3)), see (Willems,



iJi4), (11l & MOylall, 1J70 ), {Jalll€s, 1LJJJ ).
supy { Va2V - (f(2) + g()w)

=3[ [wf? = |n(z)P]} <0

(2.5)

A version of the Bounded Real Lemma then says
that ¥ is y-dissipative iff || ||z < v iff there
exists a non-negative solution V(z) of (2.5) with
V(0) = 0. In general, V need not be globally
differentiable, but (2.5) can be interpreted in the
viscosity sense, see (James, 1993), (Ball & Helton,
1993), (Soravia, 1994), (Fleming & Soner, 1993).

The utility of the PDI (2.5) is that it can be
used to determine or compute storage functions
V', and thereby evaluate the H, norm of a sys-
tem. Indeed, if the PDI (2.5) is solvable, then
|| £ ||z.< 7; conversely, if the PDI is not solv-
able, then | X ||g_> 7. This leads to the well
known iterative search for v* =|| 2 ||z,

In general, (2.5) cannot be solved explicitly, and so
one is forced to use approximations, see (James &
Yuliar, 1995). The finite difference discretization

sup, {32, p° (2, 2"sw) VO (2)
—At(z)(Ylw? — |h(z)]?)} < V(z)

is an approximation to (2.5) as the discretiza-
tion parameter § — 0 (for suitable p°(z,z’;w),
At(z); see (James & Yuliar, 1995)). For example,
consider the one dimensional linear system, with
transfer function X(s) = 1/(s+ 0.5), and minimal
realization

z=—0.5z+u
y=x

Now || £ ||co= 2, and the numerical scheme con-
verges for v > 2 and diverges for v < 2, as shown
in the graphs.

In the case of linear systems the PDI can be solved
in terms of a matrix X > 0 satisfying a matrix
inequality. Indeed, if f(z) = Az, g(z) = B, and

e ) = Lo, tlienl VL) = 54 AL, WICle

AX+XA+5XBBX+C'C<0. (26)

A v-dissipative system is often also asymptotically
stable, with Lyapunov function V(z). Indeed, if
Y is, say, zero-state observable (meaning that if
w(t) = 0 and z(¢) = 0 for all ¢ > 0 then z(0) = 0),
then V(z) > 0 if z # 0 and X is locally asymptot-
ically stable; and if also V has compact level sets
(proper), then X is globally asymptotically stable.
This is because the PDI (2.5) implies that

FV (@) = VaV(a(t) - f(a(t))

< —zlh(z ()P <0.

Geometrical interpretation. An interesting
geometrical interpretation of the PDI (2.5) is
given in (van der Schaft, 1991), (van der Schaft,
1992), (van der Schaft, 1993), (van der Schaft,
1996), which, together with the local lineariza-
tion of ¥ at z = 0, Xy, = (4,B,C) =
%(0), Z—Z(O), %(0)), can be used to prove local
results. In particular, storage functions can be
produced which are smooth at least in a neigh-
borhood of z = 0.

The Hamiltonian associated with the PDI (2.5) is
H(z, \)

= sup{)- f(z) +g(w)w) — [ lwl — |h(z) 1}

=X f(z)+ #)\g(z)g(w)')\' + %h(w)'h(m),

and the corresponding Hamiltonian vector field
X g~ is given by the equations

& =2 H(z,)\)
_ (2.7)
X =—Z2H"(z,).

(These are the characteristic equations for (2.5).)
X g~ is called hyperbolic iff the Jacobian

6—2H7(0 0) 3_2H'V(0 0)

DX‘Y(O’ 0) = BngA v 8)\322 s

—2:7H7(0,0)  —555;H7(0,0)

_ A P:—ZBB'

N [ -c'c -4 ]
has no purely imaginary eigenvalues. Now if X g~
is hyperbolic, there exists (at least locally) a stable
invariant submanifold N~ through (0,0) consist-
ing of trajectories of X g~ attracted to (0,0). It
turns out that if A is asymptotically stable and

X g~ is hyperbolic, then there exists a neighbor-
hood U of z = 0 and a smooth non-negative func-



tion v (&) solving ulie uUh
HY(2,V,V)=0 (2.8)

(i.e. the PDI (2.5) with equality) in U with
V=(0)=0, f+ ,Yl—zgg'(VzV_)’ asymptotically sta-
ble in U, and that locally N~ is determined by
V—:

N™ ={(z,A): A=V, V (z),z€U}. (29)

Also, V™ equals the available storage V, in U,
under appropriate stability assumptions.

These results depend on the corresponding results
for the linear system X;;,, relating to the existence
of a solution X > 0 of (2.6) with equality and
A+ ,Yl—zBB'X asymptotically stable.

If || 2 ||z, < 7, then | Zin ||z, < 7- Conversely,
it || Zun ||, < 7, then (2.2) holds for all w for
which the corresponding trajectory stays near x =
0. For further details, see (van der Schaft, 1991),
(van der Schaft, 1992), (van der Schaft, 1993).

Summarizing, we see that while storage functions
need not be smooth globally, there often exist stor-
age functions which are smooth locally and can
be used to study the local H,, behavior, and this
is tied to an explicit geometrical structure of a
Hamiltonian system. To make global statements
regarding storage functions and the PDI (2.5), one
can appeal to the theory of viscosity solutions
which does not require smoothness. Of course,
much stronger results are available when the stor-
age functions are in fact globally smooth, as in the
linear case.

We will see generalizations and variants of the
PDI (2.5) and the corresponding PDE (2.8) in the
sequel—they are the key mathematical equations
needed for H,, control.

3. THE RISK-SENSITIVE INDEX

The paper (Jacobson, 1973) introduced a new
type of performance index for stochastic optimal
control. This index is the average-of-exponential
type. When a parameter multiplying the cost
in the exponential is positive, this index is com-
monly called risk-sensitive. Jacobson solved this
problem for linear systems, and showed that the
solution also solved a deterministic differential
game. Later, (Glover & Doyle, 1988) established
a link between risk-sensitive control and H., con-
trol. Interestingly, risk-sensitive control, which is
stochastic, is closely related to game theory and
H control, which is deterministic. Recently, this
relationship has been explored in the nonlinear
context by a number of authors, and further in-

SIFHLS lave DECIL ODlallled, 5€C { I'1CININEG & VICL-
neaney, 1991), (Fleming & McEneaney, 1993),
(Fleming & James, 1995), (James, 1992), (Runolf-
sson, 1991), (Whittle, 1990a). In particular, using
asymptotic methods, it was shown that the risk-
sensitive index includes both Hy and H,, terms.

Counsider once more the system X (2.1), but this
time replace w by scaled white noise: /ev (here,
€ > 0 is the noise variance and v is the for-
mal derivative of a standard Wiener process).
The risk-sensitive index for ¥ is a real number
I > 0 (Fleming & McEneaney, 1993), (Fleming
& James, 1995) defined by

2 T
I«s:limsup"’—jflong[exph;zE/ |z(t)|?dt] (3.1)
0

T— oo

This is a particular case of a large deviations for-

mula, (Donsker & Varadhan, 1975). The number
= 1/9%> 0 is called the risk-sensitive parame-
ter.

Associated with this index is a function V¢ solv-
ing the PDE

e = gtr(gg'DzV'y’e) + H(z,V,V7€) (3.2)

and V7¢(0) = 0. This PDE arises as follows
(Fleming & McEneaney, 1993). If S(z,T') denotes
the expectation in (3.1), then S(z,T) satisfies a
parabolic PDE by the Feynman-Kac formula. If,
for large T,

S(z,T) =< exp[ﬁ([’y’eT + Ve (z))], (3.3)
then one is led to (3.2).

Interestingly, and importantly, the PDE (3.2) has
an interpretation as the HJB equation for an er-
godic stochastic control problem, giving a differ-
ent interpretation for I7¢:

T . \

e = suplimsup%Ez[/ (lh(g((t)“Z

w  T—oo 0 (
—hu(e)

where £ is the solution of the auxiliary stochastic
differential equation

£=F(&) +9(&)w + Veg(E)v,

where w is the control and /ev is the noise.

As mentioned above, the risk-sensitive index con-
tains information about both the H,, and H,
norms. This is indicated in the following diagram.
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e—0 v — 00

H., H,
Fix v > 0 and send ¢ — 0, so that (at least for-
mally) I — 7, V7 - V7, and

I = H'(z,V,V"). (3.5)

If I = 0, we expect that V7 will be a storage
function (given stability), so that ¥ will be -
dissipative, and conversely. Thus the H,, norm is
determined from the small noise limit of the risk-
sensitive index. The Hs norm is obtained by fix-
ing € > 0 and sending v — oo, so that I"* — I¢,
Ve Ve and

T
I¢ = limsup %Em[/ |z(t)|2dt]
T—00 0

(3.6)

N
=l % {la, -

In the linear case, where f(z) = Az, g(z) = B,
and h(z) = Cz, we have (provided A is stable and

I E a<)

e = %tr(B’X”B), Ve (z) =

Also,
IF = gtr(B’XB), Ve(z) = L' Xz,
where X > 0 is solution of the Lyapunov equation

AX+XA+C'C=0.

4. STATE FEEDBACK H,, CONTROL

It is much easier to solve control problems if com-
plete state information is available. This is be-
cause the state of a system summarises the past
history of the system and together with the in-
puts the future evolution can be determined. Ac-
cordingly, we consider first the state feedback H
control problem, where the controller K is a mem-
oryless function of the state z, so that u = K (z);
see (van der Schaft, 1991), (van der Schaft, 1992),
(van der Schaft, 1993), (van der Schaft, 1996),
(Ball & Helton, 1989), (Ball & Helton, 1992),
(James & Baras, 1995), (McEneaney, 1995), (So-
ravia, 1994).

111€ ClOosed 100P SYSULCI (&, A ) 15 LIICTCIOTIC

z = A(z)+ Bi(z)w + B2(z)K(z)
(4.1)
z = Ci(z)+ K(z).

If we assume that (G, K) is +y-dissipative, then
from §2 we know that there exists a storage func-
tion V(z) > 0, with V(0) = 0, and solving the
PDI

sg}p{VzV - (A(z) + By (z)w + By(z)K(x))

=3[Vl = [Cy (=) + K ()P} < 0.
Taking the min over u = K (z) gives

iI&f sup{V,V - (A(L) + By (L)w + B (*L)”‘)
w (4.2)
3 lol? — [Cs() + ]} < 0.

This is the key PDI for state feedback H,, control.
Evaluating the min and max gives

V.V (A= ByCy)
(4.3)
+LV, V(& B1B] — BoB})V,V' <0,

with the optimizing control and disturbance (if
they exist) given by

u*(m) — _Cl(;p) — Bz(l)leV(m)/
w*(z) = 7—1231 (z)'VaV(z)'.

In the linear case, V(z) = %m'Xm, where X > 0
is a solution of (1.3) with inequality.

Conversely, if there exists a smooth solution
V(z) > 0, V(0) = 0 of the PDI (4.2), then the

controller
K*(z) £ =Ci(z) — By(z)'V,V (z) (4.4)

renders the closed loop system «-dissipative. Sta-
bility follows if (A — By K*,C1 + K*) is zero state
observable. Notice that the controller depends ex-
plicitly on the gradient of the storage function,
and consequently the existence of such controllers
depends critically on the smoothness of the stor-
age function. As discussed in §2, it follows that
it is too much to expect that such controllers will
exists globally.

These results can be refined to obtain a PDE,
viz.:

V.V (A— ByCy)

(4.5)
+%VEV(71—ZBlBi — BBV, V' = 0.

Additionally, geometrical and local results can be
obtained. Indeed, if the H control problem for
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problem for the nonlinear system is solvable lo-
cally near z = 0; see (van der Schaft, 1991),
(van der Schaft, 1992), (van der Schaft, 1993),
(van der Schaft, 1996). In particular, a controller
of the form (4.4) can be constructed near z = 0
using a storage function which is locally smooth.

Differential games. The PDE (4.5) is
a Hamilton-Jacobi-Isaacs (HJI) equation corre-
sponding to a min-max differential game, viz.

it 7. (K.
inf Js (K),
where
Jz(K) = sup
T>0,wELy, 1

(L TN = Vlo(®)Pldt : 2(0) = =}

The two players are the controller v = K (z) (min-
imizing), and the competing disturbance w (max-
imizing). Note that (G, K) is y-dissipative iff

Jo(K) < B(z),
for some 3 > 0, 3(0) = 0. Also, the value function

V(z) = ir;{sz(K)

solves the PDE (4.5).

The game theoretic approach to H control is
discussed in detail in (Basar & Bernhard, 1991);
see also (James & Baras, 1995).

Risk-sensitive stochastic control. Consider
the following risk-sensitive control problem with
stochastic dynamics

i = A(z) + VeBi(z)v + Ba(z) K (z), (4.6)

and cost

2

I"*(K) = limsup
T— o0

which is to be minimised (see (Fleming & McE-
neaney, 1993)):

I = inf I (K).
K

We won’t go through the details of the solution
to this problem, but rather discuss its connection
with game theory, H.,, and Hy control. In fact,
by exploiting the parameters v and ¢, all of these
problems can be regarded as perturbations of a
simple deterministic optimal control problem, re-
vealing stochastic and deterministic methods for
modelling disturbances.

T
vTe 10gEm[exp2+2€/0 |2(t)|2dt],

UBSLILE LIIE allClllatC Iepresclitatlioll {o.x), We 5CC
that the risk-sensitive stochastic control problem
is equivalent to a stochastic differential game:

= T . .
ipf sup lim sup %Em[/() (l2(O)]* = 2?fw(t)|)dt].
Here, z(t) = C1(£(t)) + K (&(t)) where £ is the so-

lution of the auxiliary stochastic differential equa-
tion

£ = A(&) + Bi(§)w + VEB1(§)v + Bo () K (£).

Note that here there is a controller v =

K(x)
(minimizing), a competing disturbance input w
(maximizing), and a white noise input /cv (aver-
aging).

Sending ¢ — 0 and v — oo yields the relationships
depicted in the following diagram.

e € 0 I

_—

v —+ ¥ — o0

[E— [*

e—=0

In this diagram, the performance indices have the
following interpretations.

Deterministic differential game and Hy, control:
I =

inf sup hm sup
w

/ (=0 = 72 lw(t))de
with dynamics (1.5).
H, or risk-neutral optimal control:

*E 2

I Héf lim qup ?T m[/ (t)|*dt]
with dynamics (4.6).

Deterministic optimal control:

I mfhmsup / |2(t)|*dt

with dynamics
= A(z) + Ba(z)K (). (4.7)

Formally, the optimal risk-sensitive controller has
an expansion (for large v and small ¢)

K*W’E(Z) = K*(w)+ ,YLZKHOQ(:E)-F&KHZ(Z)—F...,
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for the limit deterministic optimal control prob-
lem

K*(z) = —Cy(z) — Ba(z)'V,V(z)'
where V (z) solves the PDE
I" =V,V - (A= ByCy) — V., VBBV, V',

and

KH@O (I) = —Bz (I),Vm VvHoc ($)l,
Ky, (z) = —B(2)'VyVa, ().
Here, V"¢ =V + %VHOQ + eV, + ..., where
Vi, (z) =
3 Jo VaV(2(t))Bi(a(t)Bi(x(t)'VaV (x(t)) dt,
and

VHz (m) =
3 Jo ltr(Ba((t))Bu((t))' DV (x(t))
—tr(B1(0)B1(0)' D2V (0))]dt,

where z(t) is the optimal (asymptotically stable,
with K(z) = K*(z)) trajectory of (4.7).

These asymptotic calculations are only formal; see
(Campi & James, 1996), (James, 1992), (Fleming
& McEneaney, 1993), (Fleming & James, 1995)
for precise theorems. The significance of these
formulas lies in the detail they reveal regarding
the structure of the risk-sensitive controller, and
its Hy, and H, components. The H., compo-
nent Kg_(z) depends on the disturbance energy,
whereas the Hy; component Ky, (z) depends on
the diffusion effects of the noise.

In the linear case, we have

V(z)= %m'Xm,I* =0,
where X > 0 is a solution of the Riccati equation
0= (A= ByC1)'X + X(A— ByC,) — XBy B} X,

and

Vi (z) = 32’ Pz, Vg, (z) = 0,
where P > 0 is given by

P= / eA"* X B, B, Xe* dt,
0
and A* = A — By(C; + B;X). Thus
K"(z) = —(C1 + By X + ;—7P)z +...

It is interesting to note that in the linear case the
H, term in the risk-sensitive controller is zero!

J. UULDUL o) AUNn 1y UVUINTIRUL

We turn now to the output feedback H,, control
problem, where the controller K is a causal map
y — u. A number of authors (Ball & Helton,
1989), (Ball et al, 1993), (Isidori & Astolfi, 1992),
(van der Schaft, 1991), (van der Schaft, 1992),
(van der Schaft, 1993), (van der Schaft, 1996) as-
sume that K has a specified form, namely a finite
dimensional realization whose state ¢ has the same
dimension as the state z of the plant G. In (James
& Baras, 1995) the structure of K was left un-
specified, and the information state approach was
used to determine the general nature of K (an
infinite dimensional system). Indeed, it is likely
that generically the H,, problem is solvable only
by an infinite dimensional controller (this is well
known to be the case in stochastic control).

Specified controller structure. Let’s begin by
assuming that K has the finite dimensional real-
ization:

(= a(Cu,y)
K: (5.1)
u = b((y),
where dim ¢ = dim z, for some functions a(-), b(-)

to be determined. The closed loop system (G, K)
(with state (z,()) is

i = A(z)+ Bi(z)w + Ba(z)b(¢,y)

A
[l

a(¢, (¢, y),y)

z

If (G, K) is y-dissipative, then there exists a stor-
age function e(z, () > 0, with €(0,0) = 0 satisfy-
ing the PDI

stilp{Vxe - (A(z) + Bi(z)w

+B;(2)b((, Ca () + w))
+Vee - (a(¢ (¢, y), Ca () + w)) (5.2)
—1[?|wl? = |Ci(x) + b((, Ca () + w) ]

<.

The goal is to find functions a(-), b(-) for which
there does exist a storage function satisfying (5.2).
In (Ball et al, 1993), the authors minimize the
LHS of (5.2) over a(-), b(-) and obtain some in-
teresting formulas for the resulting optimal a*(-),
b*(-). This gives a controller K* of the form
(5.1) solving the H. control problem under cer-
tain conditions. A different approach was used in
(Isidori & Astolfi, 1992), where K is obtained by
assuming the existence of an observer-type gain,
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cal part of K is essentially an observer.

In (van der Schaft, 1993) (and also in (Ball et al,
1993)), nonlinear analogs of the Riccati equations
(1.3), (1.4) were obtained. To see this, suppose

a(C,u,y) = k() + £(¢)y and b(¢,y) = m({). Sub-
stitution of these expressions in (5.2) and evalu-
ating the max over w gives the PDI

( Ve )( A(z) + By (2)m(C) ) N
Vee k(Q) + 4(¢)Ca(w)

= () (%8 ) (%) (%)
277\ Vee £(¢) £(¢) Vee
+2|C1(z) + m())? <0

Now define

where ¢ is a smooth function such that ¢(0) = 0
and Vee(z, ¢(z)) = 0. Then substituting this into
the PDI with ¢ = ¢(z) and minimizing over m(()
shows that V solves the state feedback PDI (4.3).
Next, define

R(z)=V(z,0).

Then substituting this into the PDI with { = 0
and minimizing over £(0) shows that R solves the

(so-called dual) PDI

V.R-(A— B,C,)
(5.3)
+3(C1C1 = 7¥*C3C5) < 0.

It also follows that (at least locally) V(z) < R(z),
akin to the linear coupling condition, and it is pos-
sible to use these two storage functions to obtain
output feedback controllers, under certain condi-
tions.

In the linear case, V(z) = 32'Xz and R(z) =

72—2m'Y_1w, where X > 0 and Y > 0 correspond
to subsolutions of (1.3) and (1.4) respectively.
Also, e(z,¢) = 3[y2(z = )Y Mz — )+ ' X(1 -
LvX)i].

Information state solution. We now relax the
above restriction on the structure of the controller
K, and simply let K be any causal map y — u.
We employ the information state approach used in
(James et al, 1994), (James et al, 1993), (James &
Baras, 1995), (James & Baras, 1996), (Bernhard,
1994b), (Helton & James, 1997) for output feed-
back dynamic games and H., control. It is inter-
esting to note that this approach was motivated
by considering a related risk-sensitive stochastic
control problem; in stochastic control theory, the
idea of information state (or sufficient statistic) is
well known, see (Kumar & Varaiya, 1986).

LJCIIE LI1€ I11111-IIlaX COSUL 1UullCLlOollal

JPO (K) = SupTZU SupwELgiT SuszGR"

{po(w(0))+ 3 i [12(5) = 7?hu(s)P] ds}.

Here, po(z0) is a penalty term for the initial con-
dition z( of the plant G, much like an a prior
density in stochastic control. Clearly, (G, K) is
dissipative if and only if

J-p(K) <0, (5.4)

for some 3 > 0 with $(0) = 0. The min-max game
is to minimize this cost function over the class of
all causal maps K. To solve the game, we trans-
form it into an equivalent full state information
game by introducing an appropriate state, viz.,
the information state.

For fixed u(-), y(:), the information state p; is de-
fined by

(o) = (€0 +} G (€(5)) + u(s)P -

=7 ly(s) = C2(&(s)) ] ds,

where £(+) is the solution of

£=A(&) + Bi(§)(y — Co() + Bx(¢)u (5.6)

with terminal condition £(¢t) = x. This quantity
describes the worst-case performance up to time
t using the control v which is consistent with the
observed output y and the constraint z(t) = z;
in (Krener, 1994), this quantity is called a con-
ditional storage function. Using the information
state, the dissipative property can be represented
in terms of the new completely observed informa-
tion state, viz.

Jpo(K) =sup sup {(pr.0) : po given },(5.7)

T>0yELy T

where (p,q) 2 sup, (p(z) + ¢(x)) is the “sup-
pairing” (James et al, 1994). Thus (G, K) is dis-
sipative if and only if

sup sup {(p1,0): po given } <0, (5.8)
T>0yELy, T

where pyg = —f for some 8 > 0, 3(0) = 0. Note
that y is the disturbance for the transformed prob-
lem!

The dynamics for p; is a partial differential equa-
tion: for fixed u(-),y(-) we have

Pt = F(pt,u(t),y(t')), (5'9)
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F(p,u,y) = —Vup - (A+ Bi(y — C2) + Bau)

(5.10)

+3[C1 +u? — 2y — C2 7).

This is the nonlinear analog of the Riccati equa-
tion (1.4). The dual PDI (5.3) (with equality) is
just a stationary version the the information state
dynamics (5.9), (with v =0, y = 0).

The central controller is obtained by finding the
controller which minimizes J,(K). If the H
problem for G is solvable, then the function

W (p) = inf J,(K) (5.11)
is finite on a domain domW. By dynamic pro-
gramming, W satisfies the (infinite dimensional)

PDE

infy sup, (V,W(p), F(p, u,y)) = 0,
(5.12)
(p,O) < W(p), W(—ﬁ) =0.

(For the purpose of this paper, we treat this equa-
tion in a formal sense; for more details, see (James
& Baras, 1996), (Helton & James, 1997).) This
is the fundamental PDE for output feedback H.,
control (rather than (4.3)). Let u*(p) and y*(p)
denote the values of u and y which attain the in-
fimum and supremum in (5.12). Indeed, a direct
calculation gives (when they exist)

u” (p) = <va(p)7 -Ci + Bévzp>
(5.13)
¥ (5) = (VW (), Cs — 3B,V 1),

These formulas define the central controller K*
by

K [yl(t) = u™(pe[y]),

where py is suitably chosen in domW . Of course,
the existence of the central controller depends on
the smoothness of W(p), in an approriate sense.

(5.14)

The particular choice of py is a very important
issue (see (Helton & James, 1994), (Helton &
James, 1997)). In (James & Baras, 1995) it is
shown (in discrete-time) that under suitable hy-
potheses, K~ solves the H,, control problem for
G if and only if the H,, control problem for G is
solvable. Stability depends on observability con-
ditions. A block diagram of the central controller

|

¥

is as follows.

P |.
u p = F(p,u,y

This is the general structure of the output feed-
back controller.

L1116 U (0.14) 15 PCLllaps ulllallllllal’ 111 L1E COll-
text of H, control. However, a storage func-
tion for the closed loop system (G, K) can be de-
rived from it, (Helton & James, 1994), (Helton &
James, 1997). Indeed, the non-negative function
e(z,p) defined by the simple formula

e(z,p) = —p(z) + W(p) (5.15)

is a storage function. This follows because
e(z,p) > 0, €(0,8) = 0, Vye(z,p) = —Vp(z)
and Vye(z,p) = —E; + V,W(p) (where E, is the
evaluation operator (Eg, f) = f(z)), which impies
that e(z,p) satisfies the dissipation PDE

inf sup{V.e- (A + Bi(y — C2) + Bau)
vy

+<Vpe,F(p, u,y)) (5-16)

+3[C1 +ul* = 7ly = C2P’I} = 0,

where the infinum and supremum are attained at
u = u*(p) and y = y*(p) respectively. The op-
timal disturbance is w*(z,p) = —Cs(z) + y*(p).
Integrating the PDE (5.16) yields the dissipation
inequality

e(x(t),p(t)) + 3 [y |2(s)]* ds
(5.17)

< e(zo,p0) + 57* fy lw(s)[? ds
for any w € Ly, for all £ > 0.

In general, the information state solution to the
(nonlinear) Hy control problem is infinite dimen-
stonal, since in general it is not possible to com-
pute p;(z) using a finite set of ODE’s. Thus
in general, p; evolves in the infinite dimensional
space. Moreover, computing u*(p) requires the
solution of an infinite dimensional PDE—a very
difficult task in general! However, the informa-
tion state is finite dimensional in some cases, see

(James & Yuliar, 1995), (Teolis et al, 1994).

In the case of linear systems, the information state
is given (James & Yuliar, 1995) explicitly by

72

pi(e) = =5 (z = &)Y () (@ — #(1)) + 4(1),

where

&= (A= BiCy + Y (1)(HCIC1 — C4Cs))i
+(B1 + Y Ca)y(t) + (B2 + 57 Y Cr)u(t),
Y =(A-B,C,)Y +Y(A— B, C,)
+Y (5C{C1 — C4Ch)Y,

¢ = L[|Cra +uf’ — y*ly — C2i[7],
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¢o = 0. Consequently, the infinite dimensional
state variable p can be replaced by the finite di-
mensional state (Z,Y,¢). Note that we are using
a Riccati differential equation for Y'(t), where Yy
is chosen in the domain of attraction of the stabi-
lizing solution of the corresponding algebraic Ric-
cati equation (1.4), and should satisfy Yo X < %I,
where X > 0is a stabilizing solution of the Riccati
equation (1.3). The value function is:

W(2,Y,¢) = 33'X(1 - HYX)7'é + ¢,

Note that domW contains points (Z,Y,¢) for
which YX < %I whenever & # 0. The optimal
control and observation are:

W (#,Y,$) = ~(Cr(Bat55Y C) X (1-5: Y X) )2,

¥y (2 Y,9) = (Co+(Bi+YCo) X (1 -5 Y X) 1)z
The storage function is
e(z,%,Y,9) = 3[¥2(x — &)Yz — &)

+i' X (I — 5V X) 1],

In summary, the solution to the nonlinear output
feedback H, control problem involves:

(i) the existence of a solution W (p) to the infinite
dimensional PDE (5.12),
(ii) the existence of a solution p; to the informa-
tion state dynamics (5.9), and
(iii) correct choice of the initial condition po €

domW.

An appropriate choice for pgy is the stabilizing
equilibrium solution p. of (5.9). For further
details, see (James & Baras, 1995), (Helton &
James, 1994), (Helton & James, 1997). Note that
the information state framework is quite general,
and applies in other contexts, see (Baras & James,

1994).

Certainty equivalence. An approach to out-
put feedback games building on a certainty equiv-
alence principle was been developed by (Bernhard,
1990), (Basar & Bernhard, 1991), and is similar
to the framework of (Whittle, 1981). In this ap-
proach, the key assumption is that the maximum
of

pi(z) +V(z)

is attained at a unique point Z(¢), called the mini-
mum stress estimate. When this is true (assuming
adequate smoothness), the output feedback con-
troller is

u”(t) = u™(Z(t)),

where u*(z) is the optimal state feedback con-
troller (4.4). This principle is discussed further

11l {Jalles, 1JJx), (Jallles & balas, 1JJ0), WLCEIC
it is placed in the information state framework.

Risk-sensitive stochastic control. Histori-
cally, the output feedback risk-sensitive stochas-
tic optimal control problem was first solved by
(Whittle, 1981) (for discrete-time linear systems),
by (Bensoussan & van Schuppen, 1985) (for
continuous-time linear systems), and by (James
et al, 1994) (for discrete-time nonlinear systems).
Significantly, the conditional density is not a suf-
ficient statistic for the risk-sensitive problem, and
a new information state was needed. This ob-
servation by Whittle was fundamental to stochas-
tic control and to Hy control, (Glover & Doyle,
1988). An interesting example of risk-sensitive
control not directly related to H,, control is being
investigated by (Fernandez-Gaucherland & Mar-
cus, 1994).

As mentioned above, the definition of information
state p; for the output feedback game problem was
motivated (in fact originally derived) from an in-
formation state o; for a related output feedback
risk-sensitive problem, see (James et al, 1994),
(James et al, 1993). Indeed, one has

. 2 ; _ \
lim ey”log 04(x) = p(z)

(up to a constant). If S(o,T) denotes the value
function for a finite horizon output feedback risk-
sensitive problem (c.f. (3.3)), then

lil’l’(l) e’ log ,5'(eva‘2 ,T)=W(p,T)
e—r

is the value function for a finite horizon output
feedback game.

Factorization. The information state framework
can be applied to solve the J-inner outer factor-
ization problem for the plant G obtined from G
by reversing the w and y arrows. The problem
is to find a factorization G = OR, where 0 is J-
inner (J-dissipative and lossless), and R is outer
(R and R™! stable). These factors can be ob-
tained by augmenting the information state cen-
tral controller. For preliminary results, see (Hel-

ton & James, 1994).

6. CONCLUSION

In this paper we have attempted to summarize
some of the key recent developments in nonlinear
H,, control theory. As we have shown, partial
differential equations and inequalities of various
types related to the theory of dissipative systems
are the fundamental mathematical equations of
H,, control. These equations are also related to
the equations of dynamic game theory and risk-
sensitive stochastic control. The main technical



\alld practical) dlllculty COILCCTILS S01VI1NE LLEsSC
PDI's and PDE’s, which in general have solutions
which are not smooth. Further, one is faced with
Bellman’s “curse of dimensionality” in general. In
spite of this, considerable insight into the nonlin-
ear H., control problem has been attained, and
in future, much work needs to be done to obtain
approximate solutions, and to produce controllers
which are in fact robust.
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