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Abstract: The last few years have seen a number of exciting developments
in the area known as nonlinear H,, control. The aim of work in this area is
to design robust controllers for nonlinear systems using generalizations of the
highly successful H, methods used in linear systems theory. An interesting
and important feature of the Ho, problem is that it has close connections with
differential games, risk-sensitive stochastic control, and dissipative systems, and
as a consequence these subjects have enjoyed renewed interest in recent years.
Indeed, these topics have a lot to contribute to the understanding of robust
control.

In this talk I will discuss some recent developments in robust control from a
“stochastic” perspective. Results to be presented include (i) singular informa-
tion states and stability, (ii) semigroups and generators, and (iii) a robustness
interpretation of the risk-sensitive performance index.
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1.1 INTRODUCTION

Consider the following standard generalized regulator arrangement with non-
linear plant G and nonlinear controller K shown in Figure 1.1.1. The problem
is to find a controller K : y(cot) — u(-) for which the resulting closed-loop
system (G, K) enjoys the following two properties:

(i) Dissipation. Given gain v > 0 dissipation means that there exists a non-
negative function 8 with 8(0) = 0 for which the dissipation inequality
holds:

T T
! / () ds < 77 / lw(s)[? ds + f(zo)
0 0 (1.1.1)

forall we Ly and all T > 0.

(ii) Stability. By stability of the closed-loop system we mean that if G is
initialized at any g, then if w(-) € L»[0,00), then in the closed-loop
defined by u = K (y) the signals u(-), y(-), 2(-) belong to Ly and the plant
state z(t) converges to 0 as t — 0.

w—>
G
u y

Figure 1.1.1 Closed-loop system (G, K)

The problem just specified is a generalization of basic problems from classical
control engineering, and may at first sight have little to do with stochastic con-
trol, nor is any stochastic-like interpretation immediately apparent. Indeed, no
probability was used in the problem definition. Background to a consideration
of stochastic interpretations are the following facts.

(i) The Hy control problem was originally formulated in the frequency do-
main for linear systems. The problem can also be interpreted in the time
domain (as above) as one involving Lo gains using the dissipative systems
framework developed by [31], [15].

(ii) It was shown in [12] that the linear H, problem is equivalent to a stochas-
tic risk-sensitive optimal control problem, in the sense that the solutions
are the same (via the same Riccati equation). Further, it has been shown
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[16] that the risk-sensitive solution is equivalent to a deterministic differ-
ential game (see also [29], [3]).

(iii) Except for the frequency domain formulation, all of the above control
concepts and optimization problems have natural interpretations for non-
linear systems. Investigation of these concepts has been the subject of
a considerable amount of research activity over the last decade (see, e.g.
[28] and the references contained therein). In particular, the Hy, control
problem posed above can be solved by viewing it as a minimazr game
problem, where the controller K attempts to minimize a worst-case cost
function defined by maximizing over the disturbance w, [2].

(iv) The so-called maz-plus algebra provides an elegant framework for treating
deterministic optimal control problems, see [1], [24], [26], etc. In the
max-plus algebra, ordinary addition is replaced by the maximum binary
operator, and so optimal control problems involving maximization over a
control variable have natural stochastic analogs where the maximization
is interpreted as an integration. There are also very close connections
with the theory of large deviations, see [6], [22].

So since the nonlinear H,, control problem can be formulated as a minimax
game, it lends itself to interpretation using the max-plus algbebra, with it’s
strong stochastic analogs. Moreover, the minimax formulation is directly re-
lated to risk-sensitive stochastic optimal control via small noise limits (large
deviations), see [30], [9], [19], [17], etc.

The information state approach to solving partially observed stochastic op-
timal control problems has been well known since at least the 1960’s, [27], [23].
Recently this approach has proved very fruitful for solving output feedback
risk-sensitive optimal control problems and minimax differential games, [17],
and from this an information state theory for nonlinear H, control is being
developed [20], [14]. Interestingly, the “stochastic” concept of information state
is the key to a general solution of the nonlinear H, control problem.

Development of the information state approach is nontrivial; indeed new and
deep mathematical questions have arisen. Key issues include:

(i) Dynamic programming PDE. The dynamic progrogramming PDE is de-
fined on an infinite dimensional space. There is little mathematical the-
ory available, and questions concerning the correct definition of solution,
uniqueness theorems, etc, are unanswered, [21].

(if) Stability. The stability or asymptotic behavior of the information state
dynamical system is only just beginning to be understood, [13], [14]. The
max-plus framework appears to be essential for interpreting information
state convergence in general.

In this paper we will discuss aspects of these and related issues. Section 1.2
reviews the basic information state solution (see [20], [14] for full details). Then
is section 1.3 singular information states are introduced, and stability of the
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information state system is considered in a max-plus framework. A semigroup

associated with the nonlinear H, control problem is defined in section 1.4, and
its generator is calculated on a class of test functions.

1.2 INFORMATION STATE SOLUTION

We consider nonlinear plants G of the form
& = A(z) + Bi(2)w + Bz (z)u
G: z = Cl (3&') + D12($)u (121)

Cz (IIJ) + D21 (a:)w

<
I

Here, z(t) € R™ denotes the state of the system, and is not in general directly
measurable; instead an output y(t) € R? is observed. The additional output
quantity z(t) € R™ is a performance measure, depending on the particular
problem at hand. The control input is u(t) € R™, while w(t) € RP? is re-
garded as an opposing disturbance input. We assume that all of the functions
appearing in (1.2.1) are as smooth and bounded as necessary, and that zero
is an equilibrium: A(0) = 0, C1(0) = 0 and C>(0) = 0. In order to simplify
the notation as much as possible, we take Di2(z) = I, and Dy;(z) = I,; this
is known as the “one block problem” (this includes some important problems
from classical control, such as the mixed sensitivity problem).

The following signal spaces will be used: Ly = Ly([0,00),R?), Lo =
Ly([0,T],RY), and L9 joc = UrsoLo,7, where the dimension of the range space
will not be stated explicity but infered from the context.

A controller K is a causal mapping K : L joc — L2, taking outputs y
to inputs u. Such a controller will be termed admissible if the closed loop
equations for G (1.2.1) with u = K (y) are well defined in the sense that unique
solutions exist in Ly jo.. We will assume K (0) = 0.

For p: R™ - RU {—o0} (more will be said about p later) and a controller
K define the cost functional

T
Jpo(K) = sup sup  sup {Po(m(o))Jr% / [l2()P = fw(s) ] ds}.

T>0weL2 T xoER™

This can be interpreted as a requirement that a max-plus expectation be nega-
tive. Further, this captures the notion of dissipation, since (G, K) is dissipative
if and only if

J_p(K) <0, some g >0, 3(0) =0. (1.2.2)
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A system G is obtained from G by reversing the w and y arrows; the equa-
tions defining G are as follows:

£ = Al6) + Bi(O)(y — C2() + Ba(§)u
G: z = Ci1(&) +u (1.2.3)

w = —C3(&) +y.

For fixed u,y € Ly j,., the information state p; is defined by

pe(r) = po(£(0)) + %/0 [IC1(&()) + u(s)]* — ly(s) — C2(&(s))*1ds,  (1.2.4)

where £(+) is the solution of (1.2.3) with terminal condition £(t) = z. Using the
information state, the dissipative property can be characterized as:

Jpo (K) = sup sup {(p)} <0, (1.2.5)
T>0yeL2,T

for some po, where {(p) = (p + 0) and

(p+q) = sup {p(z) + q(x)}
zER™

is the maz-plus inner product (called “sup-pairing”in [17]).
The dynamics for p; when smooth is a partial differential equation: for fixed
u € Ly joc and y € Ly 0. we have

pt = F(ptau(t)ay(t))a (126)
where F(p,u,y) is the differential operator
F(pauay) = _vmp ) (A + Bl(y - 02) + BQU)

(1.2.7)
+%|C1 +U| — %klj — Cg|2.

The central controller is obtained by finding the controller which minimizes
J(K). If the Hy, problem for G is solvable, then the function

W (p) = inf J,(K) (1.2.8)

is finite on a certain domain domW. By dynamic programming, W formally
satisfies the (infinite dimensional) PDE

ir&f sgp{V,,W(p)[F(p,u, )]} =0. (1.2.9)
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Let u*(p) and y*(p) denote the values of u and y which attain the infimum and
supremum in (1.2.9). Indeed, a direct calculation gives

u*(p) = V,W(p)[-C1 + B3V p]
(1.2.10)
y*(p) = V,W(p)[C2 — B1 V.p]

These formulas define the optimal information state controller K* by

K*[y](t) = u*(pe[y)), (1.2.11)

where po is suitably chosen in domW (the particular choice of py is a very
important issue.) In [20] it is shown for discrete-time problems that under
suitable hypotheses, K* solves the Hy, control problem for G if and only if the
H, control problem for G is solvable. These and more detailed results have
been obtained for continuous time problems in [14].

p=F(p,u,y)

A
A

Figure 1.2.1 Optimal information state controller K*.

Regarding this solution, we make the following remarks.

(i) In the general case, with Dy; # I, the differential operator F(p,u,y) is
nonlinear, and so the information state p; is not smooth in general. So
the PDE (1.2.6) governing the information state dynamics needs to be
interpreted in a weak (e.g. viscosity) sense.

(ii) Information states need not be everywhere finite (these are called singular
information states in [14]).

(iii) A framework is needed which will permit interpretation of the dynamic
programming PDE (1.2.9), and the formulas (1.2.10) for the optimal con-
trol and observation as well as for convergence of information states (and
hence stability).

These points are discussed in detail in [14].

1.3 SINGULAR INFORMATION STATES AND STABILITY

A crucial issue in the information state solution is initialization of the controller
K, and this in turn is very closely related to equilibrium solutions p. of the
information state equation:

0 = F(p,,0,0). (1.3.1)
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By stability of the information state system (1.2.6) we will mean convergence,
in a sense to be described, to a particular stable equilibrium (modulo additive
constants):

Pt = pe +cast — oo,

where ¢ € R and the equilibrium p, is defined by

pe) = Jim (4 [ [CUEGDE - [OaEDPIs),  (182)
where £(-) is the solution of (1.2.3) with u =0, y = 0, and £(0) = z:
£ =A%), (1.2.3)’
where the vector field A* is defined by

A2 A—B,Cs. (1.3.3)

The nature of the equilibrium p. depends on the stability properties of A*.
If A% is Ly exponentially stable, i.e.

t 1
|8} 5(2)| < Clale==2/2 1+ O( / e |u(r) 2dr) 2, (1.3.4)

where v = (u,y) is input to (1.2.3), then
Pe = 0o, (1.3.5)
where dg is a singular information state of the form

0 ifzx e M,
—o0 ifx & M,

where M C R"™. On the other hand, if —A* is Ly exponentially stable, then p,
is a function which is everywhere finite. If A* is hyperbolic, with stable and
antistable directions, then

Pe(x) = Om,, + D (1.3.7)

where M, is the antistable manifold for A*, and p is a finite function on M.
In [14], it is shown that the choice py = p, is a natural and correct initial-
ization of the information state controller. Thus it is important to make use of
singular information states in the theory of nonlinear H, control.
Let’s consider the convergence

pr —> 0o +c
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in the case where A* is Lo exponentially stable, with initialization pg = do and
inputs u,y € Lo. By [14], p; is given by
Pt = O¢p) + c(t),

where £(+) is the trajectory of the system (1.2.3) with initial condition £(0) = 0
and inputs u,y, and ¢(t) is the integral accummulated long this trajectory:

c(t) = %/Ot[lcl (&(s) +u(s)” = ly(s) — Ca(&(s)) "] ds.
The stability assumption ensures that
&) = 0 and c(t) = c(u,y) ast — oo,
with ¢(u,y) € R. However,
d¢(ry does not converge pointwise to dp as t — oo.

To see this, consider the generic situation so that £(t) # 0 for ¢ > 0 (recall
£(0) = 0). Then

(55(,5)(0) =—00<d(0)=0forallt>0

implies that
tllglo (55(,5) (O) = -0 75 50(0) =0.

Therefore it is necessary to relax the mode of convergence. We do this by
making use of weak convergence in the max-plus sense. Here, the information
states are interpreted as maz-plus measures.

Let X, denote the space of u.s.c. functions p: R® -+ R U {—o0} which are
bounded above: (p) < +oo. This is the natural state space for the information
state system. Given a subset A C R"™, the maz-plus p-measure of A, denoted
p(A), is defined by

p(A) = sup p(z). (1.3.8)
TEA
This p-measure has many properies analogous to the usual measures. The
maz-plus integral of f with respect to p is defined by

p(f) = sup {p(z) + f(2)} = (p+ f). (1.3.9)

zER™

Note that p(d4) = p(A), just as in usual measure theory.
A sequence {p,} C X, is said to converge weakly to poo € X, if

(i) liminf, o0 Pn(G) > Peo(G) for all open subsets G C R™, and
(if) lim sup,,_,oo Pn(F) < poo(F') for all closed subsets F' C R™.

Weak convergence is denoted p, = poo-
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Theorem 1 Let p,, poo € Xe. Then p, = poo if and only if

Pu(f) = Poo(f)
in Re for all f € Cy(R™) (continuous, bounded).

For a proof of this and related theorems, see [22], [6], [14].
In the next theorem we apply this concept of weak convergence to obtain a
stability result for the information state.

Theorem 2 Assume A* is Ly exponentially stable. Let u,y € Ls[0,00) and
po = pe given by (1.3.5). Then

Pt = Pe +c(u,y) as t — o0 (1.3.10)
where c(u,y) is a real number depending on u, y.

PROOF. Given the above discussion, it remains to prove d¢;) = do as
t — oo. Select a test function f € Cy(R™), as in Theorem 1. Then for any
z € R",
0z(f) = (0 + f) = f(=),
and so
bty (f) = F(&(t)) = f(0) = do(f) as t — oo.
O
In summary, we see that information states have natural and useful interpre-

tation as max-plus measures, and using max-plus weak convergence, stability
of the information state system can be addressed.

1.4 SEMIGROUPS AND GENERATORS

We turn now to the dynamic programming PDE

inf sgp{VpW(p)[F (p,u,y)] =0, (1.2.9)

and the formula for the optimal control
u*(p) = V,W(p)[-C1 + ByV.p]. (1.2.10)’

Both of these expressions present serious difficulties since one would like to
interpret them for p in the space X,. The main difficulties are the interpretation
of the gradient V,W (since X, is not a standard space of functional analysis
such as a Banach or Hilbert space) if we are fortunate enough for a derivative to
exist, the definition of weak solution since in general W will not be differentiable
in a classical sense, and interpretation of the terms in (1.2.9) and (1.2.10)
involving V,p when p is not differentiable, and in particular, when p is singular.

An initial attempt at formulating a definition of viscosity solution for the
PDE (1.2.9) was made in [21]. However, no uniqueness results have been ob-
tained and it is likely that this definition will be eventually superceded. Even
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if a satisfactory viscosity theory is developed, there remains the basic issue of
synthesis of optimal controls.

We now present a theory of semigroups and generators for the nonlinear
H,, control problem that has recently been developed in [14], [18]. This theory
was inspired by the Nisio semigroup as studied in the case of partially observed
stochastic control in [8]. The idea is to define the semigroup associated with the
H, problem and describe it generator on a class of test functions. As we shall
see, this leads to an interpretation of V¢ (p)[F(p,u,y)] which is well defined
for non-differentiable and even singular p, for a certain class of test functions
).

Let S;"Y denote the operator which maps an initial information state pp = p
to the information state at time ¢ determined by the inputs u,y. By dynamic
programming, S;"Y satisfies the semigroup property. The semigroup S;"? in-
duces a semigroup S;"? in the space

FX.)={p|p: X. = R}
of real valued functions defined on X,. For ¢ € F(X,), write

Si"¥(p) = ¥(S;"*p) (1.4.1)

whenever the RHS is defined. In general there will be a domain of functions
¥ and points p for which the RHS is defined. Indeed, if ¢(p) is defined for all
p € X,, then §;"Y1)(p) is defined for all p € P,*Y, where

PP ={pe X, : S"pe X.}.

Using this semigroup, we can express the value function W defined by (1.2.8)
as

. K(y),

W(p) =inf sup Sr @y (p)

K T>0,y€Ls r

(the semigroup is applied to the function ¢ (p) = (p)).
We shall say that an operator £*¥ is a “generator” for the transition op-

erator S*¥ if there exists a nonempty set domL*¥ C F(X.) such that for
1 € domL*¥, and each constant pair (u,y) € R™ x R? the limit

L¥Y9)(p) = lim w (1.4.2)

exists for p belonging to a nonempty set domL%¥) C X.

In general it will be difficult or impossible to evaluate £*¥) for arbitrary 1.
However, it is possible to evaluate £*¥ for certain types of functions . Let us
define the following class of test functions:

Go={veG : v®) = glp+ fi),..., P+ fr)),

for some k > 1, g € CL(R¥), f1,..., fr € CL(R™)}
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The next theorem provides explicit evaluation of £L*¥ for ¢ € Gy. Write

[lp + f]] = argmax{p(z) + f(z)}.

zeER™

Theorem 3 Let ¢ € Gy and let p € X, be tight. Then for each constant pair
(u,y) € R™ x RP

Luh(p) = S5 8ig(p+ fi),-.., 0+ fi)):

sup {Vofi(z) - (A" (2) + B1(2)y + Bz (2)u)
z€(lp+£ill

+3/C1(Z) + Draul> —v* Ly — Ca(7)[*]}

=Y 0+ fi) 0+ f1)) - sup {F(=fi,u,y)(3)}
z€[[p+1£il]
(1.4.3)

Thus L*Y is a “generator” for the semigroup S“¥ in the above sense.

A remarkable feature of the expression (1.4.3) is that it does not involve any
derivatives of p; the derivatives have been “transfered” to the test functions f;.
Thus (1.4.3) provides a “weak-sense” interpretation of the formal expression
V,0(D)[F (p,u,y)] (recall from the definition (1.2.7) that F(p, u,y) involves the
gradient V;p, which may not exist, whereas F'(— f;, u,y) involves V, f;, which
does exist).

PROOF. (SKETCH). The complete proof is given in [14], and we give here
the main idea.

Assume k = 1, so that ¥ (p) = g({p + f)). Due to the smoothness of g, it is
enough to show that

im 2D =PIy (9,76) - (4% (@) + Bu@)y + Ba(@)w)
=0 ¢ zellp+£1] (1.4.4)

+5|C1(Z) + Draul® — v 5|y — Co(Z)*}

Fix (u,y) € R™ x R? and write {(s) = ®,,(z) = @/ (z) for the transition
operator of (1.2.3) with end point £() = x. So the solution at time s is
£(s) = @5/ (x). By the definition (1.2.4) we have

p(f) = St;p{p(‘l’o,t(w)H/o [51C1(&()) +Diaul* ~7* 5y —Ca(&(s)) [Pl ds+ £ (2)},
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where &£(t) = z, for any t > 0. Next, subtract p(f) = (p + f), divide by ¢, and
add-subtract f(®o:(z))/t, to get

2 =p) _ o ) = F(@o,(x))
t z t
11y 2 21 2
41 [ BICHE) + Do = 24ly = Ca(e(e)) Pl
+ —p(f) + p(Po,t(2)) + f(Po,s(z)) )
! (1.4.5)
Let
L = lim sup pi(f) —p(f)
t—0 t
and let ¢; be a subsequence such that
lim ¢; =0, and lim IM =L.

i—00 1—00 t;

Select Z; € argmax{p,(-) + f(-)}. By the tightness of p, and lim; ,op; =
p weakly, we can assume (by selecting a further subsequence if necessary)

lim; oo Z; = T € [[p+ f]] = argmax,{p(z) + f(z)}.
Then since
—p(f) + p(®o,(2)) + f(®o,i(z)) <O
for any z, we have, setting z = &; in (1.4.5),

pi(f) =p(f) _ f(&i) = [(®Ro,:(Ti))

t;
1y 2 _ .21 2
+o | [BlCLEE) + Diaul” —775ly — C2(&(s)) "] ds,
iJo
where £(t;) = #;. Sending ¢ — oo gives

lim suppti (f) = p(f)

i—00 t;
<V f(Z) - (A*(Z) + B1(Z)y + B2(Z)u)

+35|C1(Z) + Draul® — 25|y — Co(T)]*.

Therefore
limsupP P ZPY) G 0L 5 @) - (A + Bu@)y + Ba(@)u)
t—0 t &' €llp+11]

+3(C1(@") + Drauf’ — 7?3y — C2(2")%}.
(1.4.6)
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This proves the upper half of (1.4.4). The reverse inequality can also be
proven. O
In the important special case of certainty equivalence [2], the value function
turns out to be W(p) = (p + V) (for some p), where V is the state feedback
H,, value function, and one assumes that [[p+ V]] = Z is unique. Then we can

evaluate
u*(p) = argminsupL“Y{p + V)
u y

= —C1(Z) - B2(T)'V.V(z)’

which makes sense for singular p (provided V is smooth). The p dependence is
via T = Z(p).

In terms of the operator £L*¥, the dynamic programming PDE (1.2.9) takes
the form

inf sup {L“YW (p)} = 0. (1.2.9)'
ueR™ yERP

This is a “weak-sense” view of the dynamic programming PDE of nonlinear
H, control. It is analogous to simlar equations in stochastic control.
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