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Abstract: In this paper we generalize the Hill-Moylan-Willems framework for dissipa-
tive systems to accommodate L∞ criteria, and a mixture of L∞ and integral criteria.
The generalized dissipation property is completely characterized in terms of a partial
differential inequality, interpreted in the viscosity sense. These results are then applied
to derive a state feedback synthesis procedure using a minimax version of the PDI.
This gives a framework for mixed L∞-bounded/integral robust control design, and in
particular, for L∞-bounded robust control design. Copyright © 2001 IFAC
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1. INTRODUCTION

Techniques for the design of robust control sys-
tems and indeed for optimal control in general
have primarily made use of integral-type perfor-
mance criteria. These criteria are sometimes re-
ferred to as soft criteria, since a bound on the
performance integral need not guarantee that an
output quantity meets absolute bounds or con-
straints. In some applications it is important for
outputs to meet hard constraints, such as absolute
regulation error always less an a specified amount.
Such situations can be formulated in terms of L∞-
type criteria, which might be called hard crite-
ria. Techniques for analysis and design using such
criteria have begun to emerge, including Barron
and Ishii (1989), Barron (1990), Dahleh and Diaz-
Bobillo (1995), Fialho and Georgiou (1999).
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In this paper we generalize the Hill-Moylan-
Willems framework for dissipative systems to ac-
commodate L∞ criteria, and a mixture of L∞ and
integral criteria. This generalization builds on the
L∞ work of Fialho and Georgiou (1999). The gen-
eralized dissipation property is completely charac-
terized in terms of a partial differential inequality
(PDI), interpreted in the viscosity sense. These
results are then applied to derive a state feedback
synthesis procedure using a minimax version of
the PDI. This gives a framework for mixed L∞-
bounded/integral robust control design, and in
particular, for L∞-bounded robust control design.
The measurement feedback problem is considered
in the full paper James (2000).

2. ANALYSIS

Consider the following dynamical system



ξ̇ = f(ξ, w)
z1 = g1(ξ, w)
z2 = g2(ξ, w)

(2.1)

with “disturbance” input w(·) and real-valued per-
formance output quantities z1(·), z1(·). Here, ξ(·),
is the system state trajectory taking values in Rn,
and the input w(·) takes values in W ⊂ Rs, W
compact. Let Wt0,t1 = {measurable functions w :
[t0, t1] → W} denote the class of admissible in-
puts. The functions f : Rn × W → Rn and
gi : Rn ×W → R (i = 1, 2) are assumed bounded
and Lipschitz continuous.

2.1 L∞-Bounded/Integral Dissipation

The following definition is motivated by the dis-
turbance problem studied in Fialho and Georgiou
(1999), the �1 performance specification formu-
lated in Dahleh and Diaz-Bobillo (1995), and the
cost functions in Barron and Ishii (1989). It is
one possible definition of a mixture of dissipation-
like properties with L∞ and integral criteria. The
dissipative systems framework was introduced by
Willems (1972).

The system (2.1) is L∞-bounded/integral (LIB/I)
dissipative if there exists a finite real-valued func-
tion β (called a bias) such that

t∫

0

z1(r) dr + z2(t) ≤ β(x0), a.e. t ≥ 0,(2.2)

for all w ∈ W0,∞, where the performance quanti-
ties are evaluated along the corresponding trajec-
tory of (2.1) with initial condition ξ(0) = x0. This
could be viewed as an input-output (w �→ (z1, z2))
property of the system with initialization x0. Spe-
cial cases of this type of dissipation property will
be discussed in §2.3 below.

Following Willems (1972), we call a function V :
Rn → R a storage function for the system (2.1) if
it is finite valued and

V (x) ≥ max{V (ξ(t)) +

t∫

0

z1(r) dr,

ess.sups∈[0,t]{
s∫

0

z1(r) dr + z2(s)}}
(2.3)

for all w ∈ W0,t, and all t ≥ 0, where ξ(·) is the
state trajectory of (2.1) with initial state ξ(0) = x;
i.e.

V (x) ≥

sup
t≥0

sup
w∈W0,t

max{V (ξ(t)) +

t∫

0

z1(r) dr,

ess.sups∈[0,t]{
s∫

0

z1(r) dr + z2(s)}}.

(2.4)

Inequality (2.3) (or (2.4)) is called the LIB/I
dissipation inequality.

In the general theory of dissipative systems, two
particular storage functons are of special interest,
viz. the available storage and the required supply.
In our present context, the available storage is
defined by

Va(x)
�
= sup

t≥0
sup

w∈W0,t

ess.sups∈[0,t]{
s∫

0

z1(r) dr + z2(s)}.
(2.5)

The available storage Va is lower semicontinuous
(l.s.c.) and is a storage function for the system
(2.1); in fact, it is the minimal storage function;
i.e. V ≥ Va for any storage function.

Proposition 2.1. The system (2.1) is LIB/I dissi-
pative iff there exists a storage function.

Proof. If V is a storage function for the system
(2.1), then it follows directly from the definition
(2.3) that

V (x) ≥
t∫

0

z1(r) dr + z2(t) a.e. t ≥ 0, (2.6)

which says that the output quantity on the RHS is
essentially bounded by the initial stored “energy”
V (x). We can take β = V , and conclude that (2.1)
is LIB/I dissipative.

On the other hand, if (2.1) is LIB/I dissipative
the inequality (2.2) implies the finiteness of the
available storage Va (defined by (2.5)). �

Proposition 2.2. If a locally bounded function V
satisfies the dissipation inequality (2.4), then so
does its lower semicontinuous envelope V∗ defined
by

V∗(x) = lim inf
x′→x

V (x′); (2.7)

i.e.



V∗(x) ≥

sup
t≥0

sup
w∈W0,t

max{V∗(ξ(t)) +

t∫

0

z1(r) dr,

ess.sups∈[0,t]{
s∫

0

z1(r) dr + z2(s)}}

(2.8)

Proof. The proof is similar to that of (James,
1993, Proposition 2.3). �

2.2 Partial Differential Inequality

In the general theory of dissipative systems, stor-
age functions are characterized infinitesimally by a
partial differential inequality (PDI) (Bounded Real
Lemma), and storage functions can be obtained
by solving the PDI, e.g. van der Schaft (1996). In
Fialho and Georgiou (1999), the available storage
Va in the context of L∞-bounded gain was shown
to be a viscosity solution of a partial differential
equation (PDE) of the variational inequality type
(VI). In this section we extend this by giving a
complete characterization of the LIB/I dissipation
property using a PDI, following James (1993);
actually, there are at least two possible ways of
expressing it, following Barron and Ishii (1989),
Barron (1990), Fialho and Georgiou (1999). The
definition of viscosity solutions is given in Ap-
pendix 4.

Theorem 2.3. If the system (2.1) is LIB/I dissipa-
tive with locally bounded storage function V , then
V is a viscosity solution of the PDI

sup
w∈W

max{g2(x,w) − V (x),

∇V (x)f(x,w) + g1(x,w)} ≤ 0 in Rn.
(2.9)

Conversely, if a locally bounded function V is a
viscosity solution of the PDI (2.9), then the system
(2.1) is LIB/I dissipative with storage function V∗.

Proof. We give the proof for the case g1 = 0
only, without loss of generality (write g = 0,
g = g2, etc).

1. Let φ ∈ C1(Rn) and suppose that V∗−φ attains
a local minimum at x0 ∈ Rn. Then

V∗(x0) − φ(x0) ≤ V∗(x) − φ(x) (2.10)

for all |x − x0| < r, for some r > 0.

Fix w ∈ W and define a constant control w0(t) =
w for all t ≥ 0, and let ξ0(·) denote the correspond-

ing state trajectory of (2.1) with ξ0(0) = x0. Then
from the dissipation inequality (2.8) we have

V∗(x0)
≥ max{V∗(ξ0(t)), ess.sups∈[0,t]{g(ξ0(s), w)}},

and in particular,

V∗(x0) ≥ V∗(ξ0(t)), (2.11)

and

V∗(x0) ≥ ess.sups∈[0,t]{g(ξ0(s), w)}. (2.12)

Now for all t > 0 sufficiently small, we have |ξ0(t)−
x0| < r, and so combining (2.10) and (2.11) we get

φ(ξ0(t)) − φ(x0)
t

≤ 0,

and sending t ↓ 0 we obtain

∇φ(x0)f(x0, w) ≤ 0. (2.13)

Next, since s �→ g(ξ0(s), w) is continuous, (2.12)
implies

V∗(x0) ≥ (ξ0(s), w) ∀ 0 ≤ s ≤ t.

Send t ↓ 0 to get

V∗(x0) ≥ g(x0, w). (2.14)

This proves that V is a viscosity solution of (2.9).

2. Suppose V is a locally bounded viscosity solu-
tion of (2.9). We must prove that V∗ solves the
dissipation inequality.

To this end, let {ψi}∞i=1 ⊂ C(Rn) be such that
ψi ≤ V∗ and ψi ↑ V∗ as i → ∞. Fix t > 0 and
define for s ∈ [0, t] the two functions

Zi
1(x, s) = sup

w∈Ws,t

{ψi(ξ(t))} , (2.15)

and

Zi
2(x, s) = sup

w∈Ws,t

{
ess.supτ∈[s,t]{z(τ)}

}
,(2.16)

where ξ(·) is the trajectory of (2.1) on [s, t] with
initial state ξ(s) = x.

By Lemma 4.1, Zi
1 is the unique continuous vis-

cosity solution of the Cauchy problem

∂

∂s
Z(x, s) + sup

w∈W
{∇Z(x, s)f(x,w)} = 0(2.17)

in Rn × (0, t), Z(x, t) = ψ(x) (with ψ = ψi), and
Zi

2 unique continuous viscosity solution of

sup
w∈W

max{g(x,w) − Z(x, s),

∂

∂s
Z(x, s) + ∇Z(x, s)f(x,w)} = 0

(2.18)



in Rn × (0, t), Z(x, t) = max
w∈W

{g(x,w)} (with ψ =

ψi).

Now V∗ is a l.s.c. supersolution of both (2.17) and
(2.18), and again by Lemma 4.1, we have

V∗(x) ≥ max{Zi
1(x, s), Zi

2(x, s)}. (2.19)

However,

max{Zi
1(x, s), Zi

2(x, s)} =
sup

w∈Ws,t

max
{

ψi(ξ(t)), ess.supτ∈[s,t]{z(τ)}
}

, (2.20)

and sending i → ∞ we obtain the dissipation
inequality. �

2.3 Special Cases

Standard Hill-Moylan-Willems Dissipation.
Consider the case where g1(x,w) = S(g(x,w), w),
g2(x,w) = 0 ∀ w ∈ W, and the system (2.1) has an
equilibrium x = 0. This corresponds to the stan-
dard Hill-Moylan-Willems framework with supply
rate S(z, w), which of course includes Lp (p <
+∞) gain and passivity, see Willems (1972), van
der Schaft (1996). The LIB/I dissipation inequal-
ity (2.3) becomes

V (x) ≥ sup
t≥0

sup
w∈W0,t

{V (ξ(t))

+

t∫

0

S(g(ξ(r), w(r)), w(r)) dr},
(2.21)

and if, say, S(z, 0) = 0, this implies V ≥ 0. Hence
the mixed dissipation definition (2.3) is completely
equivalent to the standard definition in this case.

L∞-Bounded Dissipation. The L∞-bounded
case corresponds to g1(x,w) = 0, g2(x,w) =
|g(x,w)|, ∀ w ∈ W. We may take, e.g., W =
{w ∈ Rs : |w| ≤ α} for some α > 0. The LIB/I
dissipation inequality (2.4) reads in this case

V (x) ≥ sup
t≥0

sup
w∈W0,t

max{V (ξ(t)),

ess.sups∈[0,t]z2(s)}.
(2.22)

which we call the L∞-bounded (LIB) dissipation
inequality. This abstracts the approach to worst
case analysis in Fialho and Georgiou (1999); the
definition (2.5) of available storage corresponds
to the function defined by equations (2) and (3)
in Fialho and Georgiou (1999). Storage functions
for LIB dissipative systems can be used can be
used to analyse L∞-bounded gain functions and

induced L∞ gains over bounded signals Fialho and
Georgiou (1999).

3. STATE FEEDBACK SYNTHESIS

In this section we consider the problem of finding a
controller (determining the signal u) which results
in a mixed dissipative closed loop (relative to
w �→ z1, z2) for the system

ξ̇ = f(ξ, w, u)
z1 = g1(ξ, w, u)
z2 = g2(ξ, w, u)

(3.1)

This is similar in many ways to the problem of syn-
thesizing H∞ or L2-gain controllers, see van der
Schaft (1996), Helton and James (1999). These
problems can be addressed using methods from
game theory and/or dissipative systems theory.
Here we use a simplified approach using the LIB/I
dissipation inequality and static state feedback
controllers.

In (3.1), ξ ∈ Rn, w ∈ W ⊂ Rs, W compact, w ∈
U ⊂ Rm, U compact, z1 ∈ R, and z2 ∈ R. Write
Ut0,t1 = {measurable functions u : [t0, t1] → U}.
The functions f : Rn × W × U → Rn, gi : Rn ×
W × U → R (i = 1, 2) are assumed bounded and
Lipschitz continuous.

We consider static state feedback controllers

Ustate = {u : Rn → U | u admissible}
where admissible means here that u is Lipschitz
continuous. For any u ∈ Ustate, w ∈ W0,∞ and
initial condition x0 there exists unique solution
ξ(·) of (3.1) and the control trajectory t �→ u(ξ(t))
belongs to U0,∞, and the closed loop system obtain
from (3.1) is given explicity by

ξ̇ = f(ξ, w,u(ξ))
z1 = g1(ξ, w,u(ξ))
z2 = g2(ξ, w,u(ξ)).

(3.2)

Theorem 3.1. Assume there exists a controller
u0 ∈ Ustate for which the closed loop system (3.2)
(with u = u0) is LIB/I dissipative with locally
bounded storage function V0. Then there exists a
locally bounded viscosity solution of the PDI

inf
u∈U

sup
w∈W

max{g2(x,w, u) − V (x),

∇V (x)f(x,w, u) + g1(x,w, u)} ≤ 0.
(3.3)

Proof. By hypothesis and Theorem 2.3, the
function V0 is a viscosity solution of the PDI (2.9),
i.e.



sup
w∈W

max{g2(x,w,u0(x)) − V0(x),

∇V0(x)f(x,w,u0(x)) + g1(x,w,u0(x))} ≤ 0.

Therefore
inf

u∈U
sup

w∈W
max{g2(x,w, u) − V0(x),

∇V0(x)f(x,w, u) + g1(x,w, u)} ≤ 0,

which implies that V0 is a viscosity solution of the
PDI (3.3). �

Theorem 3.2. Assume there exists a classical so-
lution V ∈ C1(Rn) of the PDI (3.3), and assume
there exists u∗ ∈ Ustate such that

sup
w∈W

max{g2(x,w,u∗(x)) − V (x),

∇V (x)f(x,w,u∗(x)) + g1(x,w,u∗(x))}
= inf

u∈U
sup

w∈W
max{g2(x,w, u) − V (x),

∇V (x)f(x,w, u) + g1(x,w, u)} ≤ 0

(3.4)

for all x ∈ Rn. Then the closed loop system (3.2)
(with u = u∗) is LIB/I dissipative with storage
function V .

4. APPENDIX: VISCOSITY SOLUTIONS

A locally bounded function V is said to satisfy
the PDI (2.9) in the viscosity sense if for every
φ ∈ C1(Rn) and any local minimum x0 ∈ Rn of
V∗ − φ one has

sup
w∈W

max{g2(x0, w) − V∗(x0),

∇φ(x0)f(x0, w) + g1(x0, w)} ≤ 0.
(4.1)

A locally bounded function Z is said to be a
viscosity supersolution of the PDE (2.18) if for
every φ ∈ C1(Rn × (0, t)) and any local minimum
(x0, s0) ∈ Rn × (0, t) of Z∗ − φ the inequality

sup
w∈W

max{g2(x0, w) − Z∗(x0, s0),

∂

∂s
φ(x0, s0) + ∇φ(x0, s0)f(x0, w)

+g1(x0, w)} ≤ 0

(4.2)

A locally bounded function Z is said to be a
viscosity subsolution of the PDE (2.18) if for every
φ ∈ C1(Rn × (0, t)) and any local maximum
(x0, s0) ∈ Rn × (0, t) of Z∗ − φ the inequality

sup
w∈W

max{g2(x0, w) − Z∗(x0, s0),

∂

∂s
φ(x0, s0) + ∇φ(x0, s0)f(x0, w)

+g1(x0, w)} ≥ 0

(4.3)

A locally bounded function V is said to be a
viscosity solution of the PDE (2.18) if it is both
a supersolution and a subsolution.

Lemma 4.1. The function Z = Zi
1 defined by

(2.15) is the unique continuous viscosity solution
of the PDE (2.17) (with ψ = ψi ∈ C(Rn)), and
any l.s.c. supersolution V of (2.17) with V (x, t) ≥
ψ(x) satisfies

V (x, s) ≥ Z(x, s) for all x ∈ Rn, s ∈ [0, t].(4.4)

Similarly, the function Z = Zi
2 defined by (2.16)

is the unique continuous viscosity solution of the
PDE (2.18) (with ψ = ψi ∈ C(Rn)), and any
l.s.c. supersolution V of (2.18) with V (x, t) ≥
maxw∈W g2(x,w) satisfies (4.4).
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