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1 Introduction

These notes (extracted from another ot my notes) provide some basic information about
manifolds and Lie groups, and Lie algebras. Enjoy!

2 Multivariable Calculus

A function f : IR® — IR™ is said to be differentiable at p € IR™ if there exists a linear map
f«p o IR™ — IR™ such that

o ot A0 = 1)~ fa Brl
Ap—0 | Ap|

The matrix representation of f., is the Jacobian [%(p)], i=1,....m; 7=1,...,n.

J

Suppose f : IR"* — IR, and v a vector in IR". The directional derivative of f in direction v

at p is given by

2 3
vp(f) = fopv = vl‘a%(P) 4+t vné;{:(p).

Chain rule. Suppose f : IR* — IR™, g : IR™ — IR? are differentiable at p, f(p) respectively.
Then g o f : IR™ — IR? is differentiable at p and

(g0 flep = 9« f(p) © fep-



We say that f is smooth (or C*) if you can differentiate f as many times as you like.

Let U CIR™, V C IR™ open. Say f: U — V is a diffeomorphism if
i.  f is smooth,
ii. f has a smooth inverse f~!:V — U.
[ is a local diffeomorphism at p if there exists a neighbourhood U of p such that
i.  f(U) is open,
ii. f:U — f(U) is a diffeomorphism.

Inverse Function Theorem Suppose f : IR* — IR™ is smooth. Then f is a local diffeo-

morphism at p if only if f., : IR* — IR™ is an isomorphism. (So n = m.)
A tangent vector to IR™ at p is a pair v, = (p,v) € IR" X IR", p is the point of attachment,

and v is the vector part. Think of the arrow from p to v + p:

R" L

A’

For all p € IR", we define the tangent space to IR™ at p to be the set
T,(R") = {vp, : v € R"}.
This is an n-dimensional vector space.
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A smooth curve is a smooth map « : I — IR", t — «(t) where I C IR is an interval.



The velocity vector at ¢ is the derivative o/(t) € Ty (IR™).
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This is the tangent vector to « at ¢.
An algebra A is a vector space together with a multiplication e under which A is a ring.

Scalar multiplication and e are related via:
a(zey) = (az)ey =z o (ay)
For any algebra A, a linear map T : A — A satisfying
T(zy) = T(z)y + 2T (y)

is called a derivation.
Here, let A = {f : IR® — IR such that f smooth}. e is pointwise multiplication.

Every tangent vector v, € T,(IR") defines a differential operator A — IR by
I — v(f). (directional derivative)
This satisfies (product rule)
vp(f9) = vp(f)9(p) + S (P)vs(9)-

A smooth vector field is a map V : p — V, € T,(IR").
The vector part depends smoothly on p.
Let f : IR® — IR™ be differentiable at p. We think of f., as a map between tangent spaces:

fop  Tp(IR") — Ty (IR™).



A vector field V defines a derivation A — A
f=VIf]

where
Vif]: R*"— IR
p= Vp(f) = f*P(VP)
So V acts on real valued functions, and when V|[f] is evaluated at a point p, we get the

directional derivative of f in the direction V.

3 Smooth Manifolds

3.1 Definition

An n-dimensional coordinate system on a set M is a pair U,¢p where UC M and ¢: U —
IR™ is injective and ¢(U) is open in IR". (U, ¢) is also called a chart on M.

Two coordinate systems (U, ¢) and (V, 1)) are C®-related (or compatible) if the maps pop™!
and ¢ o ¢! are smooth (on ¢(U NV) and ¢(U N V) respectively). These maps “change

coordinates”.




An atlas on M is a collection of C*®-related n-dimensional coordinate systems whose do-
mains cover M. Two atlases are compatible if their union is an atlas. Compatability defines

an equivalence relation on atlases.

An equivalence class of compatible atlases is called a smooth structure on M.

A smooth n-dimensional manifold is a set M with a smooth structure.

This defines a topology on M such that all coordinate systems for the smooth structure
are homeomorphisms of open sets. Each point on the manifold has a neighbourhood
homeomorphic to an open subset of IR"®. So manifolds look locally like IR"™. The global
structure is in general very different.

Examples

1. IR", n-dimensional Fuclidean space.

2. S™, n-dimensional sphere.
St ={ze R |z|| =1}
Consider S! = {z € IR? : ||z|]| = 1}, the unit circle. (Also called the 1-dimensional

torus T1.)

Sl

We use the sine and cosine functions to define a smooth structure for S':

The charts ((—12'—,%), sin0)

are compatible and form an atlas.



3. T™, the n- dimensional torus.

Th=8'"x8'x---x S (n— times)

4. gl(n,IR), real n X n matrices. This is an n?-dimensional manifold homeomorphic to

2

IR™.

5. Gl(n,IR), general linear group, real n X n matrices with non-zero determinant. It is a
manifold as an open subset of IR™ =~ gl(n, IR); the complement of the inverse image

of 0 under det.

6. SO(n, IR), special orthogonal group, real n X n orthogonal matrices (AAT = I) with
det = 1.

Note There are topological manifolds that don’t admit a smooth structure (a 10-dimensional

one first found by Kervqire, 1960). Some topological manifolds admit more than one dis-
tinct smooth structure (e.g. S7, Milnor).
Charts are often abbreviated (z!,...,z"). Suppose p € M and (U, ) is a chart with

p € U. Then we could write ¢ = (z',...,z") so that

¢(p) = («'(p),-..,z"(p)) € IR™.

The z* are coordinate functions, and notation is often abused: z* = z*(p) mean the coor-

dinates of p.



3.2 Functions

Consider the function

f:M— N

where M and N are smooth manifolds of dimension » and m respectively. Let (¢,U) and

(¢¥,V) be charts on M, N. The map
Yofogp l: R —» IR™

is called a local representation for f.

4 ¥

R" R™
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This expresses f in terms of local coordinates.

We say that f is differentiable at p € M if there exists a local representation which is
differentiable at ¢(p). This definition is intrinsic, that is, independent of choice of local
representation.

A function f : M — N is smooth if it has a smooth representation at each point.

f is a local diffeomorphism at p if f has a local representation which is a local diffeomor-
phism at ¢(p).

We say that f is a diffeomorphism if f is smooth and has a smooth inverse f “1:N— M.

In such a case, M and N are said to be diffeomorphic.



3.3 Tangent Vectors and Tangent Spaces

We defined smooth manifolds without refering to any surrounding space. So we need
intrinsic definitions for tangent vectors and tangent spaces. There are several ways for
doing this. Perhaps the most obvious is to define a tangent vector in terms of charts and
vectors in IR". All the definitions are related in a more or less obvious way. We give two
definitions below.

Tangent Vectors as Equivalence Classes of Curves

Recall from Section 2 the notion of velocity vector. Many curves can have the same velocity
vector at a point. Tangent vectors can be defined in terms of such curves. In Section 3.4
these ideas will be related to differential equations on manifolds.
Let I C IR be an interval containing 0. A smooth curve is a smooth map a: I — M
t— aft).
Define
Cp(M) ={a:I - M :a smooth and «(0) = p}.

Curves in Cp(M) are equivalent if their derivatives at p agree i.e. «,8 € C,(M) are

equivalent if there exist a chart (¢,U); p € U, such that
(¢ 0 @)'(0) = (¢ 0 8)'(0).

Define a tangent vector to be an equivalence class [,.

M

eiufva lent

not equiva lent

The tangent space at p to M, T,(M), is the set of all equivalence classes Cy,(M)/[],.
The map 7, : T,(M) — IR"
[adp = (¢ 0 @) (0)

gives T,(M) a vector space structure, and is an isomorphism of vector spaces.



We can think of tangent spaces as n-dimensional vector spaces sitting at each p € M.

M

Let f : M — N be a smooth map in a neighbourhood of p. The derivative map is defined

to be
fio @ Tp(M) — Typ)(N)
]y — [f © as()
Chain rule. Suppose f : M — N, g : N — L are differentiable at p, f(p) respectively.
Then go f : M — L is differentiable at p and
(90 f)ep = Gs1(p) © fop-

Inverse Function Theorem Suppose f : M — N is smooth. Then f is a local diffeomor-

phism at p if and only if fuy : Tp(M) — Ty()(N) is an isomorphism.
Remark. As you can see, calculus on manifolds is imported locally from IR". Much can
be done in this more abstract setting.

Tangent Vectors as Differential Operators

Another very important way of viewing tangent vectors is as differential operators (recall

section 1). This interpretation is used in Lie Algebra computations in non-linear filtering

theory, see Marcus [2]. (Refer to Section 4).
Define A,(M) = {f : U — IR; f is smooth for some open U C M, p € M}
Take a € C,(M). Define A2 : 4,(M) — IR to be a directional derivative operator, by

A (f) = (f 0 0)'(0) = [f o e]sp) = Fup([et]y)-
Note that A2 = A? if 8 € [a],. X satisfies the product rule

A (fg) = X2(Ha(p) + F(P) A5 (9)-

9



We can define the tangent space at p to M, T,(M), to be the set of all X : A,(M) — IR
satisfying the product rule. Elements of T,(M) are called tangent vectors.

We have an isomorphism of vector spaces
T,(M) — Tp(M)
[a]p — ,\;‘

(This isomorphism fails if f in the definition of 4,(M) is not smooth).

Also, we can readily construct an isomorphism T,(M) ~ IR". If zl,...,z" is a basis for
IR™, we can use this isomorphism to get a basis for T,(M):
0 0
32l gn |p
where aiz" |, is the directional derivative in the direction z* evaluated at p. Hence if

v, € T,(M), and f: M — IR is differentiable at p, v, = A}, and

w() = 3801) = Forllely) = oL (p) + - + v m e (9).

Tangent Bundle

All the tangent spaces can be put together to form another manifold, called the tangent
bundle T(M).
T(M) = Upem T, (M)
Projection map mps: T(M) - M
(ledpsp) — P
Tt (p) = “fibre at p” = T,(M)

A 2n-dimensional smooth structure can be defined, under which T'(M) becomes a smooth

manifold. For details, refer to one of the standard references.

The derivative map can now be viewed in a simple way. Let f : M — N. Define the

derivate map
fo + T(M)— T(N)
(p, [adp) = (f(P), fup([edp))
Chain rule (go fls =guo fu

10



3.4 Vector Fields and Flows

We are now in a position to define vector fields, in a similar manner as for IR", and to
interpret trajectories (solution curves) of differential equations as curves whose tangents

are defined by a vector field.

Vector Fields

A smooth vector field on a smooth manifold M is a smooth map

V : M- T(M)
p= (p’VP)

assigning to each point a tangent vector at that point.
Define A(M) = UpepmAp(M). Then a smooth vector field V' can be interpreted as a
derivation on the algebra A(M), V : f — V|[f], where V[f]: M — IR

pV(f) = fin(Vp)-
This again gives directional derivatives. In terms of local coordinates, let (¢, U) be a chart
on M, pe M. Then
7] 3]
Vie= fl% +oeee +fn&;
where f; : U — IR are smooth and 5%7 are vector fields on U, giving directional derivatives

in the direction z*.

Flows
Suppose V is a smooth vector field on M, and I is an interval containing 0. We say

that a curve o : I — M is an integral curve (or trajectory) for V if o is smooth and
a'(t) = V(aft)), forall tel.

So the tangent to « at t is given by the vector field, in the same way that a differential

equation determines the rates of change of its solutions.
Briefly, a flow on M is a function F(t,p) defined on (possibly only a subset of) IR x M

with values in M, such that for each p,
ap it — F(t,p)

11



is a trajectory for V with initial value o, (0) = p. Think of a flow as a family of trajectories,

indexed by points in M.
A smooth vector field is complete if the domain of F is all of IR X M. Then for each ¢,

Fi:pw— F(t,p)

is a diffeomorphism M — M. The set {F; : ¢ € IR} is a group (under composition,

F,o F, = F,4,), called a 1-parameter group of diffeomorphisms on M.

Example (Simple Pendulum)

The state of the pendulum is given by position 6 € S!

velocity v € IR
The phase space (state space) is S* x IR, a cylinder which is a 2-dimensional surface:

'

S'xIR={(8,v): —m <8< m,—00<v< oo}

The differential equation describing the motion of the pendulum is



o(t) = —sinf(t)

The trajectories a are curves on the cylinder, and satisfy

(v(t), — sin 6(t))

where V(8,v) = (v, —sin8) is the vector field for the pendulum.

4 Lie Groups and Lie Algebras

In this section, Lie groups and Lie algebras are defined, and some basic relations discussed.
A Lie group is a smooth manifold which is also a group, and has associated with it an
algebra, called the Lie algebra, and there is a mapping between them, called the exponential
map.

Definitions

A Lie group G is a smooth manifold with a compatible group structure, that is, the maps

GxG—-G

(0,7) = o7 (multiplication)

G—-G

1

oo (inversion)

are smooth. (It is enough to show that the map (0,7) — o 77! is smooth). The identity

element of G is denoted by e.
Examples (see end of this section): IR", S',T", Gl(n, IR), SO(n, IR).

A Lie algebra g over IR is a real vector space of together with a bilinear operator (bracket,

commutator)

Ll:gxg—4g
such that Vz,y,z € ¢

[z,y] = —[y,z] (anti-commutativity)

13



[lz,y], 2] + [[v, 2], 2] + [[2,2],y] =0 (Jacobi identity)
We say that g is abelian if [z,y] = 0 V z,y € g. So in general Lie algebras are non-
associative, and the bracket [, | corresponds to the multiplication e discussed in Section
1.
Examples IR™,gl(n, IR), vector fields.
Lie Brackets

The Lie bracket of two matrices A, B € gl(n, IR) is the usual commutator
[A,B] = AB — BA,

making gl(n, IR) a Lie algebra.
Let A be an algebra, and D the algebra of derivations on A. Given two derivations S,T € D,
define their bracket

[S,T]=8SoT—ToS,

this is also a derivation. So D is a Lie algebra, called the derivation algebra of A.

Let A = A(M),D be the algebra of all smooth vector fields on M, viewed as derivations.

If V,W are smooth vector fields, so is their bracket [V, W]; meaning
[Va W]p(f) - Vp(Wf) - Wp(Vf)-

(Recall that V f = V|[f] is a smooth function M — IR; and W,(V f) = (V f).,(W}), the
directional derivative of V f in the direction W,.)

In terms of local coordinates, let V,W have representations with respect to a chart (¢, U)

0
oz’

V|U = Z’Uga—i—z and W|U Zw,-

Then the bracket [V, W] has a representation

Bw,- 6’(); a
V.Wilv =3 (Z <”:‘5§ - ”j'a—x?)) pys

i j

Application [2] (Non-linear control systems)

Consider a control system, expressed in local coordinates

B = fze) + D uigi(z)
1=1

14



(The RHS is the vector field) where z; € M, a smooth manifold; f,g; are smooth vector
fields on M; and u' are control functions.

The Lie algebra £ = (f,91,...,gm) generated by the vector fields is called the controllability
Lie algebra of the control system:.

If f(z) = Az, gi(z) = B;z, where A and B; are matrices, the control system is bilinear

T; = Az + zrn: u’;b;xt.
i=1
Suppose V,W are linear vector fields, locally,
V.=Az, W, = Bz
where A, B are matrices. Then [V,W] = [B, A], since

[V,W], = [As, Bz] = [BA — AB]x.

Left Invariant Vector Fields

Lie groups, Lie algebras and (left invariant) vector fields are now related.

Take 0 € G. Define left translation by o to be the diffeomorphism

Iy G—-G

T+ OT.
A vector field V is said to be left tnvariant if for each 0 € G,V is l,-related to itself, i.e.
(ls)s 0oV =V ol,, VYo€Q.

This means that
(16)sr(Vy) = Vor, Vo,7 €G.

So left invariance is equivalent to the property that

(la)*e(Ve) =V,, Vo € G.

15



Thus a left invariant vector field is determined by its value at the identity e, V,.

Denote by g the set of all left invariant vector fields on G. We have the following results

([3], page 25):

(i) g is a vector space, and the map
g — T.(G)
V =V,

is an isomorphism. So dimg = dimT,(G) = dimG.
(ii) Left invariant vector fields are smooth.
(iii) The Lie bracket of two left invariant vector fields is itself a left invariant vector field.
(iv) g forms a Lie algebra under the Lie bracket operation on vector fields.

Thus we can associate a Lie algebra to each Lie group - namely the tangent space at the
identity e, with the induced bracket. The converse is a difficult result; if g is a Lie algebra,

then there is a simply connected Lie group which has ¢ as its Lie algebra. (See [3], p.101).

Homomorphisms

If G, H are Lie groups, a map ¢ : G — H is said to be a (Lie group) homomorphism if ¢ is
smooth and a group homomorphism of the abstract groups. If ¢ is also a diffeomorphism,
say ¢ is an tsomorphism.

If g, h are Lie algebras, a map 1 : ¢ — h is said to be a (Lie algebra) homomorphism if ¢

is linear and

PV, W] = [$(V),$(W)] forall V,W €g.

If in addition % is bijective, say 1 is an isomorphism.

Let G, H be Lie groups with Lie algebras g,h, and ¢ : G — H a Lie group homomor-
phism. Then we can use the derivative map ¢.. : Te(G) — T.(H) to define a Lie algebra
homomorphism d¢ : g — h, with d¢(V)(e) = @se(Ve).

Note A connected Lie group is abelian if only if its Lie algebra is abelian.

Exponential Map

16



Take a left-invariant vector field V' € g, and consider the integral curve

o (t) =V (w(t)); aw(0) =e.
Left invariance implies o, (t + s) = a,(t)ay(s), so that a, : IR — G is a Lie group homo-

morphism.

We can now define the ezponential map
exp : ¢g—G
V = a,(1).

Properties of the exponential map include the following ([3], page 103).

(i) exp(tV) = oy(t), vVt € IR.
(ii) exp(ti +¢2)V =exp(t1V)exp(t: V), Vi, ty € IR..
(iii) exp(—tV) = (exp(tV))™, Vt € IR.

(iv) exp : ¢ — G is smooth, and exp, : T,(g) — T¢(G) is the identity map. Hence by the
inverse function theorem, exp gives a diffeomorphism of a neighbourhood of 0 in ¢

onto a neighbourhood e of G.

(v) If [V,W] =0 then
exp(V + W) = exp(V) exp(W).

(vi) If ¢ : H — G is a homomorphism, then the diagram commutes:

H ?__.

G
exP [ e.xp
b 9

a’¢>

Examples

17



1. IR" is an abelian Lie group, under vector addition, with Lie algebra just IR™.

2. S'is an abelian Lie group. The group structure is defined by considering S! as the

quotient group

R/27Z

under addition. An element § € S! is an equivalence class of real numbers, modulo

27. So we can represent 0 € Sl as a number, or an an le,
? g
b€ [—m,m)

This group structure is compatible with the smooth manifold structure, as follows.

1

We want to show that for o,7 € S! the map (o,7) — o7 ' is smooth. Using our

1

definition, o7~ " is given by

o — 71, mod 2.

In terms of coordinates, this is
(0,7) v+ cos(o —7) = cosocosT +sinosinT

or
(0,7) — sin(o — 7) =sinocosT —sin7cos g,
and is clearly smooth.

Note that the circle S! can be represented as
{zeC:|z|=1}={e’:0 € [-m,7)}.

Another representation is S* = SO(2, IR) = SO(2), as can be seen by the correspon-

dence (c.f. rotation)

[-m,7) — SO(@)
cosf siné

0 +—
—sinf cos#
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The Lie algebra of S* = SO(2) is 0(2, IR) ~ IR (see example 6 below). A basis is

0 1
R= :
-1 0

the infinitesimal rotation matrix.

The exponential map is given by

exp: IR — §?
0(2) — S0(2)

6 — exp(R0)
0 ¢ cosf siné
—
-8 0 —sinf cosé

Note S* and S* are the only spheres admitting a Lie group structure.

3. T" is an abelian Lie group, with group structure induced from S!. Lie algebra is

IR™.
4. Every connected abelian Lie group is of the form
IR xT™,
with Lie algebra IR™*™.

5. gl(n,IR) is a Lie algebra, with bracket given by the matrix commutator.
GL(n, IR) is a Lie group, under matrix multiplication.
gl(n, IR) is the Lie algebra of GL(n, IR).

The exponential map is given by expohentiation of matrices.

6. SO(n,IR) is a Lie group, under matrix multiplication. Its Lie algebra is o(n, IR);
the real skew-symmetric matrices, with the matrix commutator. exp is the matrix

exponential.
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