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Measurement Feedback Controller Design to
Achieve
Input to State Stability

S. Huang, M.R. James, D. Bié and P.M. Dower

Abstract—An approach for design of measurement feed- (DPE) or inequality (DPI). An advantage of this approach is
back controllers achieving input-to-state (ISS) stability prop-  that it can be applied to a very broad class of plants and its
erties is presented. A synthesis procedure based on dynamic main drawback is the heavy computation required to solve

programming is given. We make use of recently developed :
results on controller synthesis to achieve uniform/> bound DPE/DPI [5]. Nevertheless, the methodology is fundamental

[6]. Our results make an important connection between the and provides useful conceptual insights.
ISS literature and nonlinear H> design methods. On the other hand, ISS related literature builds on the

tradition of stability of dynamical systems and Lyapunov
| INTRODUCTION theory. Research in this area ha}s conce_ntrated on _fmdmg
i ) o appropriate nonlinear generalizations of different firgjaén

_ Analysis and design of control systems with disturbanceg,t-output stability properties that are more natural in
is one of the central topics in control engineering that i$he nonlinear context and fully compatible with Lyapunov
continuing to attract a lot of research interest in the O‘mtetheory. The plant is modelled as a dynamical system with
of nonl|near systems. This trend has been driven by Sever(ﬁlsturbance inputs and the related stability propertias us
major breakthroughs over the past 15 years that occurreddfly make use of nonlinear gains. Majority of ISS related
nonlinear /> control (e.g. [3], [25], [5]) and the input research has concentrated on presenting different equival
to state stability (ISS) related literature (e.g. [23], ][ZQ characterizations of ISS like properties [22], [23], [2],
[2]). These two approaches have been developed relatively,ying appropriate small gains theorems [12] and applying
independently of each other and they differ in stabilitypro he |SS Jike properties to analysis and controller design.
erties that are considered, tools that are us_ed and questigfis jiterature is usually not concerned with computing
that are asked. Both approaches have their advantages gidlimum disturbance gains and the main tool for applying
disadvantages but they both provide invaluable t00lS anflese results are Lyapunov like functions that are very
insight into the problems of analysis and design of nontinegyificylt to find. We are not aware of any results that provide
control systems with disturbances. a systematic procedure for controller design for general

Nonlinear #° control has its roots in the areas of LQsnlinear systems that achieves different ISS like stabili
control and linearH>> control. The main objective of properties for the plant dynamics.

this research has been to translate all liné&¥® control It is the purpose of this paper to exploit techniques

results to a nonlinear setting. In this cpntext, it is typica typically used in nonlinearf> control to address the
model the plant and controller as nonlinear operators and B?oblem of controller design with the goal of achieving
considerL? stability with a finite (linear) gain of the closed 4o |55 property for the plant dynamics. In particular
loop system, which comes from its linear tradition. Moreyye use recent results on uniforf™ bounded (ULIB)
over, this literature often aims at designing controllétatt | stness [6] that extend nonlineB™ techniques to an
achieve minimum (optimal) gains from d|s_turbance '”p‘{t%ppropriateLm stability property. Our main results show
to plant outputs and, hence, controller design often reuir i, the controller design problems achieving ISS property
a solution of an appropriate dynamic programming equatioy the plant dynamics can be solved by solving another
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This paper is an extension of our state feedback I1SBe action of the inputu ;_,). Sometimes we simply use
synthesis result [8]. A range of other ISS-like properties,. or x;. to denoteg(k, zo, wio x—1))-
can be dealt with using the same framework and we will The definition of Input to State Stability (ISS) was given
present the results in a unifying manner in a full version oin [18], [13]. Here we maodify it slightly to accommodate
this paper [9]. the possibility of restricting the range of input conditson
This paper is organized as follows. Preliminaries andnd input values.
notations are given in Section Il. In Section Ill, we present Definition 3.1: Let By C R", W C R#, the system (4)
a modified definition for ISS like properties. In Sectionis input to state stable (ISS) if there existe KL and
IV, we state the measurement feedback synthesis problemse K such that the trajectories of (4) satisfy:
considered in this paper. The problem is then transferred
into ULIB synthesis problems in Section V. In Section VI, |6k, o, wio,k—1))| < Bllzol, k) + v(llwpo k-1 lloc),
thg Qynamic programming 'results are presenFed .using' the all =, € By, wio k1] € Wiok_1], andk > 0.
existing ULIB results. An illustrate example is given in (| the original definition,B, = R and W = R?.)

Section VII. Conclusion is presented in Section VIII. Remark 3.2:By Lemma 2.1, any3 € KL has an upper
bound of the formg; (s,t) = a; (az2(s)e™"). Notice thats3;
[l. PRELIMINARIES itself is also akCL function, so the system (4) is ISS if and

Sets of real numbers, nonnegative real numbers, integéi8ly if there exista;, oz € Koo andy € £ such that the
and nonnegative integers are denoted respectivelRas trajectories of (4) satisfy:

R+, Z andZ+. Moreover, we denote |¢(k7$07w[0,k—1])| <o (042(|370D€_k) +'7(||w[0,k—1]||oo)7

R:=RU{+x}, R:=RU{4o0}U{-0}. (1) (5)
_ ) o for all o € By, wjo,x—1] € Wjp,k—1]» andk > 0. Certainly,
Recall that a functiony : R, — R is of classK if itis  the pounde, (as(Jzol)e=*) may be not as tight as the
continuous, strictly increasing and0) = 0; it is of class  pound g(|z|, k) with 8 € KL. In this paper, we will
Ke if it is of class K and alsoy(s) — oo ass — co. A only consider the case wheiC function is of the form
function 5 : Ry x Ry — R is said to be a function of (4, (s)e~t).
class/CL if for each fixedt > 0, §(-, ) is of classKC and e find it useful to restate Definition 3.1 since its new

for each fixeds > 0, 3(s, -) decreases to zero. _ form is more suited for our paper. First, note that the
Sontag [19] proved the following lemma &0 functions inequality (5) in the 1SS definition is:

that we need. .
Lemma 2.1:[19] Given arbitrary3 € KL, there exist |6(k, o, wpor—17)|—1 (a2(|zo])e ™) =7(lwior—1ll) < O,

two functionsa, as € Ko such that for all zy € By, wpp 1] € Wio 1, andk > 0.

B(s,t) < Bi(s,t) = ay (QQ(S)e*t) , ¥s>0,t>0. (2) Now we define functiongy : R" x Rx R — R, p:
Given W C R*® we use the following notation for R" x Z, — R, and for everyk € Z., functionsyy :

signals: Wio,k—1) — Ry, by
Wiok—1] = {Wo,- -, wr—1}, Yk >0, . p(zo, k) == as(xol)eF, ©)
Wioe—1 = {wpor—1):wi € W,0<i <k —1}, Yre(wpr—1)) = llwpr—1)llco;
Wineo) = {Wjo,00) 1 Wi € W - and
Sometimes we use the notatian = wj ). We use the G(: p,9) = [6] — a1 (p) = (¥), (")
convention thatwy 1) = (. In the sequel, we use the where~ € K and a1, a2 € K... We use the convention

notation Ujo,oc), Yo,k 1], Vjo,k—1]> Vjo.c0)» L€, which have hatq (9) = 0 and note that sincey,_1) = 0, we have

meanings analogous to (3). We also use the foIIowinghat%(w[0 1) =0.
notation: Now we can restate the definition of ISS as follows.
lwio,e-1lloo = gorax jwil Definition 3.3: Let B, € R™ and W C R* be given.

. . o . The system (4) is called input to state stable (ISS) if there
where || is the Euclidean norm. To simplify the notatmn,exisw € K anday,as € Koo such that withp(-, ), ¢ (-)

forTan¥ tTwo vectorsz; andz;, sometimes we also denote ;.4 G(-,-,-) defined by (6) and (7), we have that the
(z1 23)" as(x1,x2). solutions of the system (4) satisfy:

[1l. I NPUT TO STATE STABILITY G(o(k, o, wo k—1)), p(0, k), Yr(wiok-17)) <0, (8)

Consider the following nonlinear system for all zy € By, wjo x—1] € Wok—1], k = 0.
Remark 3.4:There are two reasons for restating Defini-
= k>0 4 . : o . X . :
i1 = f@p,wp), k2 @) tion 3.1 as in Definition 3.3. First, the inequality (8) will
wherez, € R"” is the statew, € W C R? is the input. be shown to be related to an inequality in the Unifafin
We denote byp(k, zo, wjo x—1)) the solution of the system Boundedness (ULIB) problem that was recently considered
at timek that starts from the initial conditiomg and under and solved in the literature [6]. Moreover, we will show



how to transform our problem that involves some of the Remark 4.1:Note a crucial difference between Defini-

properties in Definition 3.1 into an auxiliary ULIB problem tion 3.3 and the statement of the MFISS Problem. In the

that can be solved using techniques of [6]. The inequalitglefinition, we say that the property holds tifiere exist

(8) is especially suited for this problem transformation. functionsy € K and a;,as € K, such that the ISS
Remark 3.5:A range of other stability and detectability inequality holds. However, in the statement of the MFISS

properties can be captured by using the same Definitidroblem wefix all the functionsy € K, aj,as € Ky

3.3 in an appropriate manner by specifying functiongand then attempt to find a controller that satisfies (11).

p, Vi, ok, G for the new properties. Hence, if the controller does not exist for one setyaf IC,
a1, as € Ko, it may exist for another set of these functions.
IV. PROBLEM STATEMENT Obviously, this poses certain limitation in terms of how one

In this section we pose the measurement feedback progan use our tools. However, our results are very useful in a
lem that achieves ISS property for the plant state in theange of engineering situations in which it makes sense to
closed loop system. We will solve the problem by transfix the gains prior to design. Moreover, our results can be
forming it into anauxiliary measurement feedback ULIB used in an iterative manner where, if a controller does not
problem that was recently considered and solved in thexist for a certain set of gains, we then increase the gains
literature (see [6]). In subsection IV-B we also provideand then try to redesign the controller. Finding a design

definitions of the ULIB problem. technique that does not requigepriori fixing of the gain
functions is highly desirable and is left for future reséarc
A. Measurement Feedback ISS Remark 4.2:The MFISS problems require only that a

desired bound is achieved on the solutions of the plant
whereas no such requirement is imposed on the states of
wppr = frg,uk, wi), k>0, (9) @ possibly dynamic controller. There are three reasons for
yr = hlzp,wy), k>0 this: (i) ISS property for nonlinear systems provide a dsbir
Herez, €¢ R*,u, € U C R™w, € W C R%,y, € bound for any initial state of the system. However, for a
RP are the state, control input, disturbance, and measuretbsed-loop system, the initial state of the plant and the
output, respectively. initial state of the controller play different roles. Thétial
Before we state the problem, we define the class aftate of the plant may be arbitrary. But the initial state
admissible controllers that our designs will yield. For-sysof the controller can be chosen by the designer. Hence it
tem (9), letY = rangdh} C R? and U C R™ be may be too strong to require ISS bound to be obtained
given, define) ) and Uy ) similarly as in (3). An for any initial state of the planand any initial state of
admissiblemeasurement feedback controller is a causal mape controllerin the closed-loop system. (ii) We consider
K : Vjo,00) — Ujn,), Meaning that for each timeé > 0  possibly dynamic feedback controller design where the
if yl,y? € Vjo,0) @nd y} =y? forall 0 <1 <k—1then dimension of the controller is not given before the design.
K(yY)r = K(y?)&, i.e., the control at timé is independent (iii) This requirement is compatible with definitions of
of current and future measurements. We denote the setrdnlinear H> problems ([5]) and the ULIB problems that
admissible measurement feedback controllers as are stated next.

Cmf = {K : y[oyoo) — Z/{[OQO%K is causa}. (10)
We sometimes abuse notation by writing = K (y x_y). B- Uniform ¢ Bounded Synthesis
Also, we still denote the trajectories of the plant in \we shall show in section V that the MFISS Problem
the closed loop system consisting of the system ($hr the system (9) can be solved by solving the following

and a given admissible controller, = K(yj,x—1)) @S controller synthesis problem for certain auxiliary syssem

¢(kaxo,%w[o,k—1])- o ) We first state the problem itself and then introduce the
Note that the class of admissible controllers is very larggyxiliary systems in the following section.

and it includes static and dynamic controllers, as well as a for the measurement feedback unifort¥f-bounded

Consider the nonlinear discrete-time system

number of other configurations. (ULIB) synthesis problem, we consider the following sys-
The problem that we consider is stated next. tem

Measurement Feedback ISS (MFISS) ProblemConsider Thir = e upwy), k>0,

system (9), letBy C R", W C R*,y € K,a1,02 € K ye = h(zg,wg), k>0, (12)

be given and define the functiop§, ), ¥x (), andG(:, -, -) 2 = glzx), k> 0.

by (6) and (7). Find, if possible, an admissible measurement N

feedback controlle#l € C,,; such that the trajectories of wherex;, € R",up, € U C R™,wp € W C R%,y; €

the plant in the closed loop system satisfy RP? are the state, control input, disturbance, and measured

output, respectivelyz;, € R is the performance output

G(¢(k7x0; uvw[O,k’—l])vp(:COa k)vwk‘(w[o,k’—l])) < Ov (11) quantity. i

for all zo € Bo,wpr-1] € Wio,k—15,k > 0. When there Notice that the dimensions of the measurement outputs

exists such a controller, we say that the MFISS Problem ©f system (9) and system (12) are the same, the dimensions

solvable for system (9). of the control inputs of system (9) and system (12) are



also the same. So we still use the same notafign and (i) The MFULIB Problem is solvable for system (14) with

#(k, o, u, wio 1—1]) @s those in the MFISS problem By and )\ defined in (15).

Measurement Feedback ULIB (MFULIB) Problem:

Consider system (12) and le€B;, € R™ and A € R Moreover, a controllet € C,,¢ of the form

be given. Find, if possible, an admissible measurement

feedback controlleis € C,,; such that the trajectories of ur = K(ypo,k-1) (16)

the closed-loop system consisting of the plant (12) and the _ )
controller K (-) satisfy solves the MFISS Problem for system (9) if and only if the

same controller (here “the same controller” means the
g(@(k, o, u, wo k—1])) < A, (13) mapping from the measurement output to control input is
the same) solves the MFULIB Problem for the system (14)
guith By and \ defined in (15).

Proof: The MFulSS problem for system (9) is to
find a controller K € C,,;y such that the trajectory of
he closed-loop system consisting of (9) ahd satisfies
E 1). Now we only need to introduce two new variables
ng,nk € R to characterize the termgzo, k), ¥ (wjo,x—1))
in the inequality (11), respectively. We define the new
variable(;, = p(xo, k), the initial value(, and the dynamics

for all zo € Bo,wp k-1 € Wio,k—1), andk > 0. When
there exists such a controller, we say that the MFULI
Problem is solvable for system (12).

Remark 4.3:When the trajectories of the closed-loop
system satisfy (13), we say that the closed-loop system
uniform [*°-bounded (ULIB) dissipative with respect g,
and \. We emphasize that the solutions to the MFULI
Problem have been already obtained in [6].

Remark 4.4:Note the similarity between the bounds in .
(11) and (13) that are respectively used to define the MFIS(g G are given by
and MFULIB problems. The main difference is that the Corn = e~y Co = an(|o)) 17)
bound in (11) depends directly on(k,zo,u,w k1)), k+1 = ks 50 = S2R00)
p(xo, k) and ¢y (wy x—1]) whereas the bound in (13) de-
pends only onb(k, zo, u, wy,x—1)). However, we will show
in the next section thap(zo, k) and v (wjy x—1)) can be
generated as solutions of auxiliary difference equatibas t
are appropriately initialized and, moreover, we can sdhee t
MFISS Problem for the system (9) by solving appropriate Now denote
ULIB problems for augmented auxiliary systems that is

Similarly, define the new variablg, = vy (w r—-1]), the
initial statern, and the dynamics ofy;, are given

M1 = max{ny, [wel}, 70 = 0. (18)

appropriately initialized. This “problem transformatiois T B flz,u,w)
discussed in the next section. E=1 ¢ |, [f&uw)= e 1¢ (29)
U max{n, |wl}

V. PROBLEM TRANSFORMATION . . ) .
i ) then the inequality (11) is equivalent to
In this section we show how the MFISS Problem for

the system (9) can be converted into appropriate MFULIBG(&C) <\ V& € Bo,Vw[U k1] € Wiok_1],k > 0. (20)
problem for auxiliary augmented systems. N ' ' N

Let By CR", W C R*, y € K, a1, a3 € Ko bE given.  \ynereg is defined in (19) 3, and\ are given in (15). This
For system (9), we define the following auxiliary system s the requirement in MFULIB Problem for system

Tp+1 = fE'fk:“kawk'% £k+1 = f(fk,uk,wk)7 k>0
CGey1 = € Gk, 2z = G(), k>0 (21)
Me+1 = max{ny, lwgl}, (14) yr = h(xg,wg), k>0
ar = okl — a1(Ce) = v(m), ' -
ye = h(@g,wg). where f is given in (19) and
We also let:
Gz, ¢m) = la] = a1(Q) = (). (22)
By = : B A=0. (15
0 { ( 0‘2(‘()“:0‘) ) o € 0} ’ 0 (15) Notice that the system (9) and the system (14) have the

same control inpuix and the same measured outputso
The following theorem shows a relationship of the MFISShe set of the admissible controllers for the MFISS Problem
Problem for system (9) and the MFULIB Problem forfor system (9) and the set of the admissible controllers for

auxiliary system (14) withB, and X defined in (15). the MFULIB Problem for system (14) are both, ;. We
Theorem 5.1:Let Y = ranggh} € R? andU C R™  can assert the theorem from the equivalence of (20) and
be given and define the set of admissible contrallgy as  (11). |

in (10). LetBy C R", W C R, v € K, a1, 3 € Koo bE Remark 5.2:Notice the dimension of the auxiliary sys-
given. Then, the following statements are equivalent:  tem (14) is two dimension higher than the original system
(i) The MFISS Problem is solvable for system (9). (9).



VI. DYNAMIC PROGRAMMING RESULTS Proof: Suppose there exists iy € C,,,; solving the

Using Theorems 5.1 and the results of ULIB problems [gMFISS Problem for system (9). Then from Theorem 5.1,
Theorems 4.17, 4.19], we can obtain dynamic programminfo solving the MFULIB Problem for system (14) witH,
results for the MFISS Problem. The results in this sectioAd A defined in (15). Notice that
are direct consequences of Theorems 4.17, 4.19 in [6]. They G(X) = G VX C RnF2 29
provide a framework for measurement feedback controller (X) = sup G(e), - (29)

design to achieve ISS property. where G is defined in (22), by Theorem 4.17 in [6], the

. . RrR"+2
th:iteTtLobfeaflh:u%Isrgfgfilgg +2£1§N;Ngel#if]ee2é' . 2R£9rzdi1§e items 1 and 3 in Theorem 6.2 hold. By the definition of

by Wa:
A — _ _ n+2 Wa(By) < sup sup G(Xy) :
G(X): (w;}:};ex{lxl ar(() =v(m}, VX CR k>0y[01“]~6y[0,“]{
(23) Xo = Bo,uy = Ko(y[o,k—u)} :

andF : 2R"" x R™ x R — 2R""™ py

F(X,u,y) ={(x,{,n) : Jwe W,3(',{',n)e X
such thath(z',w) =y, f(2',u,w) = z,

BecausekK), solves the MFULIB Problem for system (14)
with By and A\, we have

6714/ = <7max{n/7 ‘w|} - 77}' sup sup G(Xk) : XO = Bo,uk- = KO(y[Qkfl])}
(24 k20 yjo0,k—11€V[0,k—1]
The set-valued observas defined as <A\
X1 = F(Xi,ui,:), XoC R, (25) Thus the item 2 in Theorem 6.2 holds. [ |

Remark 6.1:The solution of set-valued observer are sets 'I(;h;orgm §;3.(Su£f|0|§€ncy) Cl_etz ; rqnge{h} dgdfg’
which are estimates of the states of system (14). In fact, f(?\n o € R ’.W < R,UCR © given and detine
Xo CR™, > 1, g1 € Ug i eV, he set of admissible controll€},,; as in (10). Lety; € K,

0 J (0,711 = #0,5=11> Y10,5-1] & 10,5-1] a1, a; € K be given and defing by (22). LetB; and X
X; ={(z,¢,n) : Fwpoj—1] € W,j—1], 30,0, m0) € Xo, come from (15). Lets come from (23) and” come from

such thatv; = 2,(; = (,n; =71, (24). Suppose there exist C 2R""™* W : 2R""” _ R,
h(zi,w;) =y;,0<i<j—1, u:S— U,andX, € S such that the following conditions
wherez; 1 = f(2i, us, w;),Giy1 = € ¢, hold:
Nit1 = max{n;, |w;|},0 <i < j— 1} 1) By C Xo;
2) W(Xo) < X\

Using Theorem 5.1 and Theorems 4.17 and 4.19 in [6], 3) the following DPI holds

we can obtain the dynamic programming results for the

MFISS Problem. W(X) > max{G(X), Inf sup W(F(X,u,y))},
Theorem 6.2:(Necessity) LefY = ranggh} C R? and Uyey
By € R*",W C R*, U C R™ be given and define the VX €5 (30)

set of admissible controlle€,,; as in (10). Lety € K,

a1, a5 € Ko be given. LetB, and A come from (15). Let 4) forall X € 5,

G come from (23) andt” come from (24). If the MFISS max{é( ), sup W(F(X,u(X),y))}
Problem is solvable for system (14), then the value function . yeY (31)
W, : 2R""” _, R defined by = max{G(X), inf sup W(F(X,u,y))};
’ ueU yecy
Wa(X) = Kle%ilei% o lbllelg[“ . 5) the solution of
{G(Xk) D Xo=X,up = K(y[o,k—l])} . X1 = F(Xp,u(Xy), yr) (32)
27
satisfies ) satisfies
1) By € domW, where X €5 (33)
domWV, := { X € 2% —00 < Wa(X) < +oc}; for all Xo € S,k > 0 andyjo k1) € Vpor-17-
} Then the controller defined by
2) Wa(BO) < )\7
3) the following DPE holds up = u(Xy) (34)
Wo(X) = max{é(x), mf sup Wao (F(X,u,y))}, solves the MFISS Problem for system (9).
Uyey Proof: By Conditions 3,4,5 we have that the pair
VX € domW (W, S) is a “good solution” of the DPI (30) in the sense of

(28)  Definition 4.18 in [6]. By Conditions 1,2 and Theorem 4.19
1Herey[0,k_1] is defined similarly as in (3)X; is the solution of (25) in [6], controller K deﬁneq ?y (34) SOl\{eS the MFULIB
with uy, = K (y[o,x—17) and Xo = X. Problem for system (14) witli3, and A\ defined in (15). By



Theorem 5.1, the samE solves the MFISS Problem for and
system (9). ]
Remark 6.4:Now we provide some explanation about X1 = 1{(yo +uo, |70, [yo — zo]) : w0 € R}.
the 5 conditions in Theorem 6.3. Condition 1 says the set Again by (23),
X should containBy; Condition 2 says thél(X,) has\
as its upper bound. Condition 3 says functidn satisfies
the dynamic programming inequality ofi. Condition 4 )
means the infimum in (30) is attained by the functian Notice that
Condition 5 meansS is an invariant set under the closed- -

G(X1) = sup {|yo + uo| — |zo| — [yo — wol}
zoER

loop dynamics when the controller ig(X).

G(X1) > |yo + uo| — |yol -

Remark 6.5:In some of the literatures about ISS prop-(choosez; =0 € R)

erty, max{/3,~v} is used instead of + - in the definition
of ISS. It has been shown that these two definitions are
qualitatively equivalent. We remark here that if the 1SS
property is defined bynax{j3, v} instead of3 ++, then the

method used in this paper is also valid by simply changin

the G function in (22).

VIl. EXAMPLE

In this section we provide a very simple example. Other
examples will be provided in [9]. Consider one-dimensional =

discrete-time system with linear dynamics:

Tk41 =
Y =

wherexg, ur, yr € R,wr € W =R, thenY = R.
SupposeB, = R, consider MFISS Problem with

Tp+up+wg, K>0
T+ wg, k>0

al(s) = S,Oég(S) = 6877(8) =S,

(i.e. B(s, k) = sel7F).

The measurement feedback controller we will choose has

the form
ur = K (Yjo,k—1))- (37)
Sincea(|zg|) = e|xzo|, by (15) we have
Bo = {(z0,¢|z0],0) : 2o € R}.
We chooseX, = By, and hence
Xo = {(wo,e|xol,0) : o € R}. (38)

By (23), we have

G(Xo) = sup {|zo| —Co—mo} = sup {|zo| —e|zo|} = 0.
zoER rzoER

By (25) and (24), for anyug, yo,

X1 = {(z1,¢1,m) : Jwo, I(zo, Co,Mm0) € Xo,such that
To + Wo = Yo, To + Up + Wo = T1,
e ¢ = (1, max{no, |wo|} = m}.

By zq + wg = yo, xo + up + wo = x1, we have

Wo = Yo — To,
1 = Yo+ Uo-
Hence
1 = Yo+ Uo,
m = max{no, lwo|} = max{no,|yo — zo|},
G = e =z

(39)

(36)

It is easy to see that

sup G(X1) <0
YoER

Bolds if and only if

ug = 0.

Now for anyuq, vy, by (25) and (24) we have

Xy = {(y +ur, e |wo| ,max{|yo — xol, [y1 — x1]}) :
xg € R}
{(n + up, et |zol,

max{[yo — Zol,|y1 — Yo — uol}) : o € R}.
Again by (23),

G(X2) = sup {|y1 +u1| — e *ao|
zoER
—max{|y1 — yo — uo|, [yo — zol|}}

lyr + w1 — max{|y1 — yo — uol, |vol}-

Y

For |y, | sufficiently large,|y1 — yo — uo| > |yo|, hence

G(X2) = |y1 +ui| — [y1 — Yo — ol -
It is easy to see that

sup G(X3) <0
y1€ER

holds if and only if

Uy = —Yo — Uo-

Generally, for anyuy, y,, we have

Xiev1 = {(yr + uk, e |zo] , max{|yo — xol
ly1 —yo —uol, s |Yk — Yk—1 — up—1[}) :
o € R}
G(Xk+1) = sup {|yr + up| — e F |zo|

zoER
—max{|yp — Yr—1 — Up—1], ",
ly1 — yo — ol yo — wol}}
> yg + ug| — max{|yx — yr—1 — ug-1/,
“5lyr = Yo — ol s [yol}-

For |yx| sufficiently large,
Yk — Yr—1 — up—1] > max{[yx—1 — Yr—2 — ur—2/,
“5ly1 — o — wol s |yol},
and

G(Xky1) = |ye +url = lyx — ye—1 — u—1].



It is easy to see that

sup G(Xp11) <0,
yLER

holds if and only if
Uk = —Yk—1 — Uk—1-

So we obtain a control law

ug = 07 U = —Yk—1 — Uk—1, k Z 1. (39)
ie.
k—1 .
ug = 07 Up = Z(—l)k-i_lyi, k Z 1. (40)
=0

Now we useS to denote the set of all the possible set-
c11E|ence from (27),

valued observer obtained by (25) when the controller is
the above form (outpugy(k > 0) are arbitrary). i.e.

S={X;:7>0,ys € R(k>0),up =0,
up = Yisg (1) gk > 1)
where X, is given by (38).
Claim: The value functionW,(X) defined by (27)
satisfies
W,(X)=0, VX €S

Proof of the Claim: Whenuy(k > 0) are chosen as the
particular form (39), we have

G(Xo) =0, sup G(Xpy1) <0,Vk > 0.
yrER
By (27),
Wo(X) = inf sup sup {G’(Xk) :

Ke€Cms k>0 Yio,k—1]EVj0,k—1]

Hence we have
Wo(X) <0, VX €8.
On the other hand, obviously we have
Wa(Xo) > G(Xo) = 0.

Whenuy = 0 is fixed, for anyyq,

G(X1) = sup {|yo| — [7o| — [yo — 20|} = 0.
zoER

Hence, for anyy,, we have
Wo(X,) > G(X,) = 0.
Now we considetX; € S, k > 2. Whenugy = 0, for any
Yo, Y1, fix u1 = —yo — uo,

Xy ={(y1 — yo — uo, e~ |zo| , max{|y1 — yo — uol,
lyo — xol}) : o € R}.

For anyus, ys,

X3

{(y2 + ua, e |xo| ,max{|ys — y1 — w1,
ly1 — Yo — uol, [yo — xol}) : xo € R}

G(X3) = sup {|y2 +ua| — 72|
roER
—max{|y2 — y1 — u1l, [y1 — Yo — wol, [yo — o[} }
> |y + ug

—max{|y2 — y1 — w1|,|y1 — yo — uol, [yol}-

Since for sufficient largey,,

ly2 — y1 — ui| = max{|ys —y1 — 1|, |y1 — yo — uo|, |yol},

we have
sup G(X3) > sup {|yz +uo| — g2 — y1 — ual}
y2€R y2€ER

|U2+y1 —|—U1‘ > 0.

W,(X2) > inf sup G(X3)=0.

41
uz€R y2€R ( )

Above we have proved that

Wo(Xo) = Wo(X1) = Wa(X2) =0, VX; €S, =0,1,2.

The proof of the Claim can be completed by induction.
Since

G(X)<0, VXeSs,

it is easy to see tha¥/,(X) satisfies the dynamic program-
ming equation

W, (X) = max{é(X), inf sup W, (F(X,u,y))},
ueR yeR

vXeS
(42)
where

F(X,u,y) = {(y+u,e” "¢, max{n, ly — |}) : (x,¢,n) € X}

The controller (40) is the optimal controller such that the
closed-loop system is ISS with and 5. In fact, using the
controller (40), the closed-loop system becomes

o = o,
Ty = o+ wo, (43)
Te+1 = Wk, k > 1
Obviously it is ISS with
Yals) = s=1(s),
s, k=0
Ba(s, k) = s, k=1 <pB(s,k)=se"F

0, k>2

Remark 7.1:The above example is a very special one
dimensional example. Only for very special examples, it
is possible to obtain an explicit solution. In general, the
set-valued observer is not easy to obtain, this makes the
solving of the dynamic programming equation (inequality)
very difficult (even numerically).



VIIl. CONCLUSION AND FUTURE WORK

In this paper, we considered the synthesis of ISS property.
We make a connection between the ISS property and tffis]
[>° bounded robustness considered in [6]. It turns o
that the design methods provided in [5] is a powerfu
tool that can be applied to the synthesis of ISS propert0]
when the disturbances gain and the transient bound are
prescribed. The measurement feedback synthesis problems
can be solved in principle using dynamic programmin
techniques. Further research include the synthesis pngble 21]
to achieve the optimal/suboptimal gains, and the reduction

of the computation complexity, etc.

Though we only considered ISS synthesis problem i[}s]
this paper, our method can be easily used for many other

stability/detectability related synthesis problems. fsuas
achieving integral input to state stability (iISS) [2], eégtral
input to integral state stability (iliSS) [19], input to qowit

stability (I0S) [24], input output to state stability (IOBS

[14] and incremental input to state stabilitgl$S) [1],

Global Asymptotic Stability (GAS), Boundedness property

(BND), practical ISS like properties [23], etc.
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